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Abstract. Discretizing a differential equation may change the qualitative be-
haviour drastically, even if the stepsize is small. We illustrate this by looking
at the discretization of a piecewise continuous differential equation that mod-
els a population of agents playing the Rock-Paper-Scissors game. The globally
asymptotically stable equilibrium of the differential equation turns, after dis-
cretization, into a repeller surrounded by an annulus shaped attracting region.
In this region, more and more periodic orbits emerge as the discretization step
approaches zero.

1. Introduction. Due to its origins in biology, evolutionary game theory often
uses the replicator equation as a main tool to model changes in population states
[11]. The replicator equation does not require to assume cognitive skills or rational
behaviour of the individuals. However, in some contexts it is useful to assume
certain levels of rationality. Here, the best-response dynamics [6] can be preferable
over the replicator equation. It is defined as follows. For n ∈ N (the number of
strategies), the payoff matrix A ∈ R

n×n, a mixed strategy x ∈ ∆n (the probability
simplex in R

n), we define [9, 12]

BR(x) := argmaxy∈∆n
(yAx) =

{

y ∈ ∆n : yAx = max
z∈∆n

(zAx)

}

(1)

Then, the Best-Response-dynamics (BR-dynamics) is given by

ẋ ∈ BR(x) − x (2)

which is a differential inclusion (or a piecewise continuous differential equation). The
BR-dynamics is the continuous-time limit of fictitious play [3]. The usual derivation
of the BR-dynamics is as follows. Consider a large population of players, each using
one of the n pure strategies. The strategy distribution at time t is x(t) ∈ ∆n.
Assume that in a short time interval ε, a small randomly chosen fraction ε of the
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population changes their strategies to a best response from BR(x(t)) against the
current population state x(t). Then

x(t + ε) ∈ (1 − ε)x(t) + εBR(x(t)). (3)

In the limit ε → 0 this leads to the BR-dynamics (2). In the present paper, we
shall investigate the map (3) which can be viewed as a discretization of (2). Some
general aspects of the best response dynamics and its discretizations were analyzed
in [2, 10]. In this paper, we study the attractor of the discretized best response
dynamics for a simple game with n = 3 strategies: the Rock-Paper-Scissors game.
Other simple games such as the hawk–dove game and matching pennies were studied
in [1].

2. Attractor of the discretized best-response dynamics. For convenience,
we shall use the discretization step h > 0, s.t. ε = h

1+h
to obtain

x′ ∈ F̄ (x) =
1

1 + h
(x + hBR(x)) (4)

Further, let us consider the Rock-Paper-Scissors game with the payoff matrix

A =





0 −1 1
1 0 −1

−1 1 0



 . (5)

For more general Rock-Paper-Scissors games see section 4 below. BR(x) is given
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Figure 1. Best response regions Ri of the Rock-Paper-Scissors
game separated by line segments ℓi.

by

BR(x) =











{P } = {(0, 1, 0)}, if x ∈ R1 := {x ∈ ∆3 : x1 > 1/3 ∧ x3 < 1/3}
{S} = {(0, 0, 1)}, if x ∈ R2 := {x ∈ ∆3 : x2 > 1/3 ∧ x1 < 1/3}
{R} = {(1, 0, 0)}, if x ∈ R3 := {x ∈ ∆3 : x3 > 1/3 ∧ x2 < 1/3}

(6)



DISCRETIZED BR DYNAMICS FOR THE RPS GAME 77

with the (open) best response regions R1, R2 and R3 (c.f. Figure 1). On the bound-
ary of the best response regions, i.e., on the line segments ℓi, BR(x) is multivalued.
For example, for x ∈ ℓ1, i.e., x1 = 1

3 , x3 < 1
3 , we have BR(x) = {(0, α, 1 − α) : 0 ≤

α ≤ 1}. And for the equilibrium

e =

(

1

3
,

1

3
,
1

3

)

, (7)

BR(e) = ∆3. For the continuous-time BR dynamics (2), it is easy to see that
V (x) = maxi(Ax)i is a Lyapunov function, satisfying V̇ = −V along all solutions,
and therefore e is globally asymptotically stable [5, 9]. Similar results hold for
general zero-sum games [10, 12]. The discretized BR dynamics is given by the
following piecewise continuous map

F (x) =











F1(x) = 1
1+h

(x1, x2 + h, x3), if x ∈ R1

F2(x) = 1
1+h

(x1, x2, x3 + h), if x ∈ R2

F3(x) = 1
1+h

(x1 + h, x2, x3), if x ∈ R3

(8)

The multivalued map F̄ in (4) is the extension of F to the whole simplex ∆3, s.t.
the graph of F̄ is closed, and F̄ (x) is convex for each x. Define the global attractor
Ah of F̄ as

Ah =
∞
⋂

n=0

F̄ n(∆3).

Obviously, the equilibrium e is in Ah. Since e is the global attractor for (2), general
results [2, 10] imply that as h → 0, Ah shrinks to e. However, e is a repeller for (4),
see the Proposition below. Let Ae

h denote its dual attractor. It contains the ω-limit
set of all orbits starting at x 6= e. In the following we want to locate and fence in
this attractor Ae

h. Let us consider the point

p =
1

3

(

1,
1 + 2h

1 + h
,

1

1 + h

)

(9)

which is the intersection point of F1(ℓ3) with ℓ1. Further, let T be the rotation

T (x1, x2, x3) = (x2, x3, x1) (10)

Let ∆p denote the equilateral triangle spanned by p, T p, and T 2p (cf. Figure 3).
Note, that p, T 2p, T p form a periodic orbit of period 3 under the multivalued map
F̄ (but not under the piecewise continuous map (8)). This orbit is unstable. Since
p ∈ F̄ (e), there are orbits starting in e (and on ℓi close to e) that jump onto this
periodic orbit in one step.

Proposition 1. The points inside the triangle ∆p have no pre-image under the
map (8).

Proof. The line segment from p to T p is given by x1 = x3 + 1
3

h
1+h

. We want to

show that the points x′ = (x′

1, x′

2, x′

3) in R1 with x′

1 < x′

3 + 1
3

h
1+h

do not have any

pre-image x = F −1(x′) = (x1, x2, x3). It is clear that x′ cannot have a pre-image in
R2. Let us assume that x′ has a pre-image x ∈ R1. Then we get a contradiction by

1

3
< x′

1 < x′

3 +
1

3

h

1 + h
=

1

1 + h

(

x3 +
h

3

)

<
1

1 + h

(

1

3
+

h

3

)

=
1

3
(11)
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Finally, to check that also a pre-image in R3 is impossible, we calculate

x1 + x3 =x′

1(1 + h) − h + x′

3(1 + h)

<

(

x′

3 +
1

3

h

1 + h

)

(1 + h) − h + x′

3(1 + h)

=2x′

3(1 + h) − 2h

3
≤ 2

3
(1 + h) − 2h

3
=

2

3

(12)

But in R3, the sum x1 + x3 is ≥ 2
3 .

A slightly stronger result, now formulated for (4) instead of (8), is

Proposition 2. Let x, x′ ∈ ∆3 with x′ ∈ F̄ (x). If for all i, x′

i > 1
3

1
1+h

then x = e.

Proof. Suppose x 6= e and w.l.o.g. x ∈ R1 ∪ ℓ3. Then x3 ≤ 1
3 and x′

3 ≤ 1
3

1
1+h

. This
contradiction shows x = e.

Thus, the equilibrium e is a repeller and its dual attractor Ae
h is contained in the

complement of the (open) triangle ∆p and even the larger triangle ∆′

p = {x ∈ ∆3 :

xi > 1
3

1
1+h

∀i}. The periodic orbit p, T 2p, T p is contained in Ae
h.

Now we want to find an upper bound or ‘outer boundary’ for the attractor Ae
h.

Following orbits from R1 we see that not all points of R2 can be reached. The
image F1(ℓ1) is a line segment parallel to ℓ1. From the strip between ℓ1 and F1(ℓ1),
i.e., the trapezoid Tq0

spanned by the four corners e, F1(e), q0 = (1
3 , 2

3 , 0) ∈ ℓ1, and
F1(q0), the orbits move towards the vertex S. By tracking the ‘outermost’ point q0

on ℓ1 we can determine the border between the points in R2 which can be reached
from R1 and the points in R2 which are inaccessible from R1 and, in the limit,
obtain an ‘outer boundary’ for the attractor.

S

R P

R1

R3

ℓ1

ℓ2

ℓ3

F1(ℓ1)

q0 F (q0)

Z

b

T

Figure 2. Constructing the outer boundary for the attractor.
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More precisely, we construct a mapping G : ℓ1 → ℓ1, such that all orbits under the
dynamics F of points in R1 are inside of the orbit1 of q0 under G. Geometrically
speaking, we take the ray from F1(q0) towards S and intersect it with the line
segment ℓ2. Instead of looking at the trapezoid between ℓ2 and F2(ℓ2), etc., we
exploit the cyclic symmetry and rotate 120◦ clockwise or 240◦ anticlockwise to the
trapezoid Tq0

, see Figure 2. We define

G = T ◦ Z ◦ F1|ℓ1
(13)

where T is the rotation (10) and Z : R2 → ℓ2 the central projection onto ℓ2 in
direction of S, which is given by2

Z





x1

x2

x3



 =
1

3





x1

x2

1
2 − x1

x2
.



 (14)

All together, we get

G : ℓ1 → ℓ1 (15)

1

3





1
3x2

2 − 3x1



 7→ 1

3





1
2 − 1

3
1

x2+h
1
3

1
x2+h



 (16)

Since ℓ1 is a line segment, it suffices to consider one coordinate

g : x2 7→ 1

9

(

6 − 1

x2 + h

)

(17)

Obviously, g maps the interval [1
3 , 2

3 ] into itself. Because g′(x2) = 1
9

1
(x2+h)2 < 1, g

is contracting and therefore also G is contracting, which means that there exists a
unique stable fixed point q ∈ ℓ1. It is immediately clear that q 6= q0 and also that
q is not the equilibrium e (because e is a repeller). Thus, the orbit of q under G
defines an outer boundary for all orbits of R1 (and thus for all points in ∆3) under
the original dynamics F . To get q, we solve

9q2 = 6 − 1

q2 + h
(18)

and obtain

q2 =
1

6

(

2 − 3h +
√

3h
√

3h + 4
)

(19)

and hence

q =
1

6





2

2 − 3h +
√

3h
√

3h + 4

2 + 3h −
√

3h
√

3h + 4



 =
1

3





1
1
1



 +
1

6





0

−3h +
√

3h
√

3h + 4

3h −
√

3h
√

3h + 4



 (20)

1Every orbit under the map F̄ (except the constant one at e) repeatedly enters Tq0 on its way

cycling around e. Each orbit of (4), i.e., each sequence (xn) s.t. xn+1 ∈ F̄ (xn) for all n = 1, 2, . . . ,
can be extended to a broken line by connecting xn with xn+1 by a line segment, for n = 1, 2, . . . .
As this broken line circles indefinitely around the equilibrium e, by looking at its intersection
points with ℓ1 and ℓ2, we obtain a multivalued transition map F̃ : ℓ1 → ℓ1. The graph of F̃

consists of all pairs (x, T y) such that x ∈ ℓ1 and y ∈ ℓ2 are consecutive intersection points of such

a broken line with ℓ1 and ℓ2. For each x ∈ ℓ1, F̃ (x) is an interval (a subsegment) in ℓ1. Our map

G from (13) is the upper (outer) limit of F̃ , i.e., F̃ (x) ⊆ eG(x).
2Let Z(x1, x2, x3) = (x̃1, x̃2, x̃3). Then x̃2 = 1

3
and x1

x2
= x̃1

x̃2
. This implies (14).
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Thus, we have shown that the attractor of the discretized BR dynamics lies within
the triangle ∆q spanned by F1(q), T (F1(q)) and T 2(F1(q)). Together with Propo-
sition 1, we have shown the following.

Theorem 2.1. The attractor Ae
h of the discretized BR dynamics (8) is contained

in the band between the two triangles ∆q \ ∆p (cf. Figure 3).

S

R P

b

b
p

∆p

b
q

∆q

Figure 3. The outer triangle ∆q is constructed such that the ω-
limits of all orbits must be inside of it. The inner triangle ∆p

contains the set of points which do not have a pre-image under F .
Thus, the region bounded by the two green triangles attracts all
orbits, except the constant one at e.

3. Periodic orbits. We now compute the periodic orbits of the map (8) whose
broken lines produce an isosceles triangle. If a point x̂n ∈ R1 generates such a
periodic orbit of period 3n, then by cyclic symmetry

T 2(x̂n) = F n
1 (x̂n) (21)

with the rotation T as above, and

F n
1 (x) =

1

(1 + h)n





x1

x2 + (1 + h)n − 1
x3



 . (22)

Solving the linear equation (21) gives

x̂n =
1

1 + (1 + h)n + (1 + h)2n





(1 + h)2n

1
(1 + h)n.



 (23)

These points exist for any n, however they define periodic orbits only if F n−1(x̂n) ∈
R1 and F n(x̂n) ∈ R2. The latter follows from equation (23) and for the former we
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h5 h4 h3 h210
h

2
3

x1

1

3

Figure 4. Periodic orbits of periods 3n, which exist for h < hn,
are shown for n ≤ 5. The red curves correspond to the inner and
outer demarkation of the attractor calculated in section 2 and hk

are numerical solutions to the equation corresponding to (26).

need

F n−1(x̂n) =
1

1 + (1 + h)n + (1 + h)2n





(1 + h)n+1

(1 + h)2n − h(1 + (1 + h)n)
1 + h



 ∈ R1. (24)

Since

1 + h

1 + (1 + h)n + (1 + h)2n
≤ 1

3
(25)

condition (24) is equivalent to

(1 + h)n+1

1 + (1 + h)n + (1 + h)2n
≥ 1

3
. (26)

Thus, if n = 1, this condition holds for all h > 0, and for each n ≥ 2 there is
a threshold hn, such that inequality (26) holds for h ≤ hn. In other words, there
is an (asymptotically stable) periodic orbit with period 3 for every h > 0. For
h → ∞ it approaches the best reply cycle {R, P, S}. As h gets smaller, higher
period orbits emerge, while the lower periodic orbits will be maintained, resulting
in multiple coexisting periodic orbits (cf. Figure 4). Each of these periodic orbits
is asymptotically stable, as soon as none of its points is on a line segment ℓi, i.e., if
h 6= hn. This follows, since the maps Fi are contractions on Ri. We can measure
their distance from the center e by comparing their position on ℓ1. Intersecting ℓ1

with the line segment x̂nP gives

1

3





1
2 − 1

(1+h)n

1
(1+h)n



 (27)
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(a) h = 1.00 (b) h = 0.30

(c) h = 0.25 (d) h = 0.20

(e) h = 0.12 (f) h = 0.05

Figure 5. Periodic orbits of various periods together with their
(numerically calculated) respective basins of attraction, for various
values of the stepsize h. Red is the basin of attraction for period
3, dark red for period 6, light green: 9, green: 12, yellow 15, olive
18 and blue 21. The inner and outer triangles ∆p and ∆q are also
shown (gray lines).
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Note that for n = 1 we get precisely the point p from (9). Figure 4 shows the
emergence of periodic orbits and their distance from the equilibrium. Figure 5 shows
the basins of attraction of these orbits. The accompanying movie3 shows how these
basins change with decreasing stepsize h.

4. Generalisation. Let us now consider the general symmetric Rock-Paper-
Scissors game with the payoff matrix

A∗ =





0 −b a
a 0 −b

−b a 0



 (28)

with a, b > 0. Then the regions R∗

i are separated by the line segments ℓ∗

i

ℓ∗

i : xi =
(a − b)xi+1 + b

a + 2b
(29)

with i ∈ Z3, i.e., i + 3 = i. Decoration with a ∗ signifies the analogs for the game
(28) of concepts and notations used so far for game (5).

If a > b then the equilibrium e is evolutionarily stable, and globally asymptoti-
cally stable for all standard continuous time dynamics, whereas for a < b, the game
(28) is positive definite and the equilibrium e is repelling, see [7]. Since the expected
payoff at e is a−b

3 , for a < b the equilibrium e is unattractive as a solution: it gives
less than the tie payoff 0.

For the discretized best response dynamics, e is repelling for all a, b > 0 and all
h > 0. Again, the attractor can be confined to an annulus-shaped region. Compared
to the case a = b = 1, the inner boundary is a smaller (a > b) or larger (a < b)
rotated triangle. Similar to Proposition 2 we get.

Proposition 3. Let x, x′ ∈ ∆3 with x′ ∈ F̄ ∗(x). If for all i, x′

i >
(a−b)(1+h)x′

i+1+b

(a+2b)(1+h)

then x = e.

Proof. Suppose x 6= e and w.l.o.g. x ∈ R∗

1 ∪ ℓ∗

3. Then x3 = x′

3(1+h), x1 = x′

1(1+h)

and x3 ≤ (a−b)x1+b

a+2b
. Therefore, x′

3 ≤ (a−b)(1+h)x′

1+b

(a+2b)(1+h) . This contradiction shows

x = e.

Note that for a < b, the repelling region around e is even wider, similar to
the continuous best-response dynamics, where the BR dynamics converges to the
Shapley triangle [5, 9]. Regarding the ’outer boundary’, let us now consider the
point on ℓ∗

1

q∗

0 =
1

2a + b





a
a + b

0



 (30)

By tracking q∗

0 we get the border between the points in R∗

2 which can be reached from
R∗

1 and the points in R∗

2 which are inaccessible from R∗

1. As before, we construct a
mapping G∗ : ℓ∗

1 → ℓ∗

1, such that all orbits under the dynamics F̄ ∗ of points in R∗

1

are inside of the orbit of q∗

0 under G∗:

G∗ = T ◦ Z∗ ◦ F ∗

1 |ℓ∗

1
(31)

3Supplementary file at http://homepage.univie.ac.at/Josef.Hofbauer/AnimationBR.avi

http://homepage.univie.ac.at/Josef.Hofbauer/AnimationBR.avi
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Note that the central projection Z∗ now maps R∗

2 to ℓ∗

2. It is given by

Z∗





x1

x2

x3



 =
1

b(x2 − x1) + a(x1 + 2x2)





ax1

ax2

ax2 + b(x2 − x1)



 . (32)

The explicit formula for G∗ is more complicated, so we give only the second coor-
dinate

g∗ : x2 7→ a2(h + x2) + ab(3h + 2x2) + b2(2h + 3x2 − 1)

b2(2h + 3x2 − 1) + a2(2h + 3x2) + ab(1 + 5h + 3x2)
. (33)

Since g∗ is a linear fractional map (both numerator and denominator are linear in
x2), that maps the interval [1

3 , a+b
2a+b

] into itself, it is a contraction (w.r.t. projective

distance), see e.g., [5].
Therefore g∗ and hence G∗ has a unique, stable fixed point q∗ ∈ ℓ∗

1. Thus, as
before, the orbit of q∗ under G∗ defines an outer boundary for all orbits of R∗

1 (and
thus for all points in ∆3) under the map F̄ ∗. To get q∗, we solve g∗(q∗

2) = q∗

2 and
obtain

q∗

2 =
(a2 + ab + 4b2 − 2a2h − 5abh − 2b2h

6(a2 + ab + b2))
+

+
(a + 2b)

√

b2(1 + h)2 + 2ab(h + 2h2 − 1) + a2(1 + 8h + 4h2)

6(a2 + ab + b2))
(34)

Hence

lim
h→0

q∗

2 =
a2 + ab + 4b2 + (a + 2b)|a − b|

6(a2 + ab + b2)
,

and, for a 6= b, the difference is of order h (since
√

c2 + h = |c| + O(h)). If a ≥ b,
q∗

2 approaches 1
3 as h → 0. And for a > b, the attractor A∗

h shrinks to e linearly

with h, as h → 0, whereas for a = b it does so only with order
√

h. For b > a,

q∗

2 → b2

a2+ab+b2 , and the limit of q∗ is a corner of the Shapley triangle, compare the

expressions in [5, 9].
Thus, we have shown that the attractor of the discretized BR dynamics lies in

the triangle ∆q∗ spanned by F1(q∗), T (F1(q∗)) and T 2(F1(q∗)). Together with
Proposition 3, and by defining

∆p∗ = {(x1, x2, x3) ∈ ∆3 : xi >
(a − b)(1 + h)xi+1 + b

(a + 2b)(1 + h)
for all i ∈ Z3},

we have shown the following

Theorem 4.1. The attractor Ae∗

h of the discretized BR dynamics for game (28) is
contained in the region between the two triangles, ∆q∗ \ ∆p∗ .

Overall, if a > b, the dynamics behaves qualitatively very similarly to the case
a = b : more and more periodic orbits emerge, as h → 0. For b > a, the general
results in [2] imply that the dual attractor Ae∗

h approaches the Shapley triangle, as
h → 0, therefore only orbits within a narrow range of periods (proportional to 1

h
)

are possible. If the stepsize h > 0 is fixed, then the behaviour of F̄ is robust against
small perturbations of a and b. The periodic orbits constructed in section 3 persist,
as long as they stay in the open regions R∗

i and do not hit the lines ℓ∗

i .
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5. Conclusion. For the standard rock–paper–scissors game (5) we have shown
that all trajectories of (4) and (8) (except the one staying at the fixed point e) end
up in a region confined between the two triangles as can be seen in Figure 3. As h
approaches 0, higher period orbits emerge. By construction of the map G for the
outer boundary, new periodic orbits emerge precisely on this boundary. Therefore
convergence of the outer boundary of the attractor towards the center cannot be
faster than with order of square root in the following sense: We can measure the
triangles’ ∆p and ∆q distance from the center by, e.g., the x2 coordinate of their
intersection with ℓ1. Then from (9) and (19) we get

p2 =
1

3

1 + 2h

1 + h
=

1

3

(

1 +
h

1 + h

)

h→0≈ 1

3
(1 + h)

q2 =
1

6

(

2 − 3h +
√

9h2 + 12h
)

h→0≈ 1

3

(

1 +
√

3h
)

As h → 0, the inner boundary converges to the center with linear order, while the
outer boundary approaches the center only with order of the square root.

To some extent the behaviour is similar to the work [8]: For a smooth differential
equation in R

2 with an asymptotically stable equilibrium with purely imaginary
eigenvalues, discretization makes the equilibrium unstable and produces as new
attractor an invariant curve around the equilibrium of radius proportional to

√
h

and with rotation number proportional to h. The behaviour in the present paper
is more complicated, due to the discontinuity. The attractor still shrinks like

√
h

towards the equilibrium, but the smaller h the more complex is the dynamics.
For the non-zero-sum version (28) the results are similar. The equilibrium e is al-

ways unstable. Thus, this dynamics is a better match for many experimental results
[4, 13, 14] than the continuous time dynamics. Cason et al. [4] observe persistent
deviation from the equilibrium and sustained oscillations around the equilibrium,
both for the stable and the unstable type of RPS games. Only the cycle amplitudes
are consistently larger in the unstable games — similar to our dynamics.
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