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Abstract 

Agriculture and forestry activities are one of the many sources of greenhouse gas 

(GHG) emissions, but they are also sources of low-cost opportunities to mitigate these 

emissions compared to other economic sectors. This paper provides a first estimate of 

the potential for mitigation in the whole Spanish agriculture. A set of mitigation 

measures are selected for their cost-effectiveness and abatement potential and an 

efficient mix of these measures is identified with reference to a social cost of carbon of 

40 €/tCO2e. This mix of measures includes adjusting crop fertilization and managing 

forests for carbon sequestration. Results indicate that by using the efficient mix of 

mitigation measures the annual abatement potential could reach 10 million tCO2e, 

which represents 28% of current agricultural emissions in Spain. This potential could 

further increase if the social cost of carbon rises covering the costs of applying manure 

to crops. Results indicate also that economic instruments such as input and emission 

taxes could be only ancillary measures to address mitigation in agriculture. These 

findings can be used to support the mitigation efforts in Spain and guide policymakers 

in the design of country-level mitigation strategies.  

Keywords. Climate change, Agriculture, Mitigation measures, Carbon sequestration, 

Abatement costs and benefits. 
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1. Introduction   

The increase in concentration of greenhouse gases (GHG) is largely driving the current 

and projected climate change in earth (IPCC, 2007). Anthropogenic global GHG 

emissions have been growing since pre-industrial times with a 90% increase between 

1970 and 2011, driven by the use of fossil fuels, land use changes, and agriculture 

intensification (IPCC, 2014a). Estimates of global GHG emissions indicate a continuous 

rise over the next decades that would cause further warming and large changes in the 

global climate system (IPCC, 2014b). The agriculture and forestry sectors are 

responsible for about one fifth (about 10 GtCO2e/year) of global anthropogenic GHG 

emissions. Agriculture releases about 12% of emissions, and it is the main source of 

non-CO2 emissions such as methane (CH4) and nitrous oxide (N2O). Forestry releases 

7% of emissions (difference between sources and sinks) (Smith et al., 2014).  

The only binding international agreement to reduce emissions under the United 

Nations Framework Convention on Climate Change (UNFCCC) is the Kyoto Protocol, 

which entered into force in 2005 and will end in 2020. The Kyoto Protocol does not 

include the three countries responsible for almost half of the GHG emissions: China, 

the USA and India. Also, several countries who signed the Kyoto Protocol have 

abandoned the agreement (Canada, Japan, New Zealand and Russia). However, a large 

number of countries have voluntarily pledged to reduce their emissions in the recent 

Paris Agreement (Richards et al., 2015). This agreement aims to hold the rise in global 

average temperatures by 2100 to well below 2°C above pre-industrial levels and to 

pursue efforts to limit the temperature increase to 1.5°C.   

Although the Paris agreement does not explicitly outline the role of agriculture in 

reducing global emissions, it makes clear that the global community must address the 

effects of climate change on agriculture to build resilience and enhance food security 

globally (UNFCCC, 2015). Several studies indicate that agricultural emissions will 

constitute the largest sector of surplus emissions in the future, as other sectors are 

projected to achieve large reductions by 2030, underlining the critical role of 

agriculture in meeting global climate targets (Bajzelj et al., 2014; Gernaat et al., 2015). 

Additionally, agriculture provides low cost alternatives to reduce GHG emissions 
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compared to other sectors, which implies that excluding agricultural emissions from 

mitigation efforts will increase the cost of mitigation (Reisinger et al., 2013). Some 

attempts to quantify the global mitigation effort for agriculture by 2030 to stay within 

the 2°C limit using global agricultural and economic models indicate that it is about 1 

GtCO2e/year, representing a 15% reduction over a business-as-usual scenario (Smith et 

al., 2014; Wollenberg et al., 2016). But these global estimates of agricultural mitigation 

potential are challenged under many local conditions, and the feasible mitigation 

potential at country level remains poorly understood (Grosso and Cavigelli, 2012). 

Agricultural activities in Spain play an important role in the economy, but also 

generate significant GHG emissions to the atmosphere. However, there is a lack of a 

country-level strategy aimed at mitigating agricultural emissions (Alvaro-Fuentes et al., 

2016). In recent years, many studies have examined the factors that control 

agricultural GHG emissions in a variety of regions in Spain evaluating the feasibility of a 

wide range of mitigation measures (Kahil and Albiac, 2012, 2013; Plaza-Bonilla et al., 

2014; Sanchez et al., 2016). Despite the significant contributions of these studies, no 

study has yet provided information on the potential for mitigation in the whole 

Spanish agriculture, or integrated the results from different regions and fields of study.  

The purpose of this paper is to provide a first estimate of the potential for 

mitigation in the agriculture and forestry sectors in Spain. This information could be 

useful to guide policymakers in the design of country-level mitigation strategies. The 

rest of the paper is organized as follows: section 2 gives an overview of the 

methodology and describes land use in Spain, the sources and sinks of GHG emissions 

in agriculture and forestry, and the mitigation measures to be analyzed. Section 3 

presents the results, and section 4 concludes with the summary of findings and policy 

recommendations.  

2. Materials and methods 

Our approach to evaluate the potential for mitigation of agricultural GHG emissions in 

Spain follows three sequential steps. First, local and regional information on the costs 

and effectiveness of selected mitigation measures have been collected. Costs 

represent the impact on farmers’ profits (the difference between gross benefits and 
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production costs) or the increase in investment and operation costs from 

implementing each mitigation measure, and effectiveness measures the potential of 

each measure to abate GHG emissions. Subsequently, this information has been 

upscaled to country level by determining the extent of application of each measure in 

the different Spanish regions using data on land use and GHG emissions, and expert 

judgement. Second, the cost-effectiveness ratio of each mitigation measure (in € per 

tCO2e abated) has been calculated and the measures have been ranked based on their 

cost-effectiveness using the Marginal Abatement Cost Curve (MACC) method, an 

assessment tool widely used in policy analysis (Moran et al., 2011).  

Lastly, a cost-benefit analysis has been conducted using the results of the MACC 

and the social cost of the GHG emission damages estimated by OECD at 40 €/tCO2e 

(Smith and Braathen, 2015). The cost-benefit analysis has been used to identify the 

efficient mix of measures that can potentially mitigate agricultural GHG emissions 

without damaging the social benefits generated by crop and livestock activities in 

Spain (Pearce et al., 2006; Perni and Martínez-Paz, 2013). However, the results of the 

cost-benefit analysis depend on the estimate of the social cost of carbon assumed in 

the empirical application. Thus, a sensitivity analysis has been conducted in order to 

assess the robustness of the results to different estimates of the social cost of carbon 

(20 and 80 €/tCO2e). 

The main sources of information used in the calculations are the outcomes of 

various regional agro-economic models developed by the authors of the present paper 

during the last several years (Albiac et al., 2003; Kahil and Albiac, 2012 and 2013; Kahil 

et al., 2015a and 2015b; Kahil et al., 2016a, 2016b and 2016c; Martínez and Albiac, 

2004 and 2006). These models integrate detailed biophysical and economic 

information of both the crop and livestock activities in various Spanish regions. 

Farmers’ behavior is simulated under a wide range of environmental and policy 

scenarios, and provide information on economic benefits, inputs use, emission loads 

and activity level. Moreover, additional information on emissions and mitigation 

measures not covered by those models have been collected by reviewing the literature 

(Albiac et al., 2016; Daudén and Quıĺez, 2004; MAGRAMA, 2014, 2015a, 2015b, 2015c  
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Table 1. Main field crops and fruit trees in dry and irrigated lands (1,000 ha). 

  Dryland  Irrigated Land 

Field crops   

    Barley 2,600 230 

    Wheat 2,040 240 

    Sunflower    720  

    Corn  400 

    Alfalfa  170 

    Tomato    55 

    Lettuce    34 

Fruit trees   

    Olive 1,860 750 

    Vineyard    600 370 

    Almond    530  

    Orange  140 

    Mandarine  100 

    Peach    80 

Total crops       10,500             3,600 

 

 

and 2016; Montero et al., 2005; Notivol, 2008, 2009 and 2010; Orus et al., 2011; 

Teresa et al., 2016). 

2.1 GHG emissions from agriculture and carbon capture by forests  

Spain is located in the Iberian Peninsula in south-western Europe, covering an area of 

506,000 km
2
. Most land in Spain is used in agricultural and forestry activities, which 

represent 72% of the land area. Another 19% is covered by meadows and pasture, and 

around 3% is under urban and industrial land uses. Agricultural land use in Spain is 

dominated by rainfed cultivation that extends over 10.5 million ha. The main rainfed 

cultivated crops are barley, wheat and sunflower among field crops, and olive, 

vineyard and almond among fruit trees. Irrigated land amounts to 3.6 million ha, and 

the main cultivated crops are corn, wheat, barley, alfalfa, tomato and lettuce among 

field crops, and olive, vineyard, orange, mandarin and peach among fruit trees (Table 

1) (MAGRAMA, 2015a, 2015b). 

The prevailing irrigation technology in Spain is drip irrigation (1,790,000 ha), 

followed by surface irrigation (980,000 ha) and sprinkle (870,000 ha). In the last fifteen 

years, the area of surface irrigation has decreased by 30%, while the area under drip 

and sprinkle irrigation technologies has increased by 70 and 15%, respectively 
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Table 2. Main livestock herds by region (1,000 heads). 

  Swine Cattle Sheep 

  Cataluña 7,500  
 

  Aragon 6,300   

  Castilla-Leon  1,300 3,100 

  Galicia    900  

  Extremadura   3,000 

     Spain 26,000 6,000 15,000 

 

(MAGRAMA, 2015c). Expansion of advanced irrigation systems is explained by the 

growing water scarcity problems, new investments in irrigation, and changes in 

cropping patterns. Traditional winter cereals have been substituted by more intensive 

summer crops, such as corn and alfalfa, and fruit trees such as vineyard and peach. 

Vegetables and fruits production is linked to important agrifood industries with a good 

quality and a strong export market. 

Livestock production activities have significant social, economic and 

environmental importance. Spain has a large and capitalized swine production 

industry, with the swine herd exceeding 26 million heads, concentrated mainly in the 

regions of Cataluña and Aragon. The cattle herd reaches 6 million heads and it is 

located mainly in the regions of Castilla-Leon and Galicia. The sheep herd is close to 15 

million heads located mainly in Castilla-Leon and Extremadura (Table 2) (MAGRAMA, 

2015a). 

During recent decades, the agricultural production in Spain became highly 

intensive in capital and technologies. This intensification is linked to high levels of 

fertilizers and agrochemicals use in cultivation to maximize crop yields, and a 

significant increase in livestock production mainly related to a rise in the proportion of 

animal protein in the diet of the Spanish population. The drawbacks from agriculture 

intensification are the overuse and mismanagement of mineral fertilizers and livestock 

manure, which are the main cause of N2O emissions, eutrophication of water courses, 

and atmosphere acidification. Figure 1 shows the density of nitrogen inputs in soils in 

Spain compared to other European Union regions. 

In Spain, the application of mineral fertilizers and livestock manure to crops is 

840.000 and 310.000 tN, respectively. However, the nitrogen available in livestock 
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Figure 1. Density of the nitrogen inputs in European soils (kgN/km
2
). 

 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                            Source: Leip et al. (2011). 

 

manure amounts to 710.000 tN,
1
 and therefore there are 400.000 tN of remaining 

manure not used as fertilizer. This manure could be used to halve mineral fertilization. 

Also, total nitrogen fertilization should be reduced because current nitrogen 

fertilization from mineral and organic sources exceeds crop requirements by 33% 

(380,000 tN or 22 kg/ha) (MAGRAMA, 2014). This excessive nitrogen fertilization of 

crops and the remaining livestock manure not used as fertilizer add up to a surplus of 

780.000 tN. This surplus is responsible for the large pollution loads that create serious 

environmental problems. These problems could be reduced by substituting synthetic 

fertilization for manure, and the benefits would be mitigating GHG emissions (N2O and 

CH4), improving water quality (nitrogen in water courses), and reducing acidification 

(ammonia). However, empirical findings indicate that farmers in Spain do not take 

advantage of the large amount of manure available, because of the costs of  

                                                           
1
 Nitrogen in manure by herd is cattle 320.000 tN, swine 180.000 tN, sheep 100.000 tN, and fowl 

100.000 tN.  
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Table 3. GHG emissions from agriculture in Spain (MtCO2e). 

Type of GHG  CH4 N2O 

Total agricultural emissions 19.5 16.0 

Crops   13.7 

    Direct emissions      10.4 

    Indirect emissions       3.3 

Livestock 19.5 2.3 

    Enteric fermentation 11.7  

         Cattle     7.5  

         Sheep     3.0  

    Manure management  7.8 2.3 

         Swine      5.7   0.5 

         Cattle     1.9   0.6 

         Poultry    1.2 

 

transportation and spreading, the difficulties of management and the new equipment 

needed, and the uncertain results on crop yields (Orus et al., 2011). 

At present, total GHG emissions in Spain amount to 329 million tCO2e (Hereafter 

MtCO2e), which comply with the emission threshold allocated to Spain under the 

Kyoto protocol (330 MtCO2e), although further reductions have to be made under the 

European Union Climate and Energy Package in 2020, and the European Council 

Agreement in 2040. The main emitting sectors are transport (24%), energy (23%), and 

industrial (19%) sectors, followed by agriculture (11%). Emissions from the energy and 

industry sectors are regulated by the emission trading system, but the emissions from 

the diffuse sectors are not regulated and represent 60% of emissions (MAGRAMA, 

2016). Agriculture releases 36 MtCO2e of GHGs from crop and livestock activities. The 

costs of these emissions could be estimated at 1,440 million €, using the OECD carbon 

social cost of 40 €/tCO2e. These costs reduce the social welfare provided by 

agricultural activities, which generate 22,000 million € in market profits.   

Livestock emissions amount to 22 MtCO2e of CH4 and N2O. The main components 

are CH4 emissions from enteric fermentation (12 MtCO2e) of cattle and sheep, and 

manure management emissions (10 MtCO2e) of CH4 and N2O. CH4 from manure is 

mostly generated by swine and cattle, while N2O from manure comes from poultry, 

cattle and swine (Table 3). The other major component of agricultural GHG emissions 

is N2O from crop fertilization, reaching close to 14 MtCO2e in direct emissions from 

soils and indirect emissions from nitrogen leaching and runoff. As indicated above,  
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 Figure 2. Location of broadleaf and coniferous forests and carbon capture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
    Sources: MARM (2008) and Bravo (2007). The figures of carbon capture correspond only to the main 

mountain ranges, but do not include all carbon sequestration. 

 

mineral and organic fertilization of crops is excessive, with an amount of nitrogen 

fertilization from both mineral and organic sources close to 1.2 million tN, which 

releases the direct and indirect N2O emissions. The main N2O emissions are coming 

from cereals (barley, wheat and corn), vegetables, citrus and olives (MAGRAMA, 2014). 

Forests are important carbon sinks that offset the emissions from agriculture. The 

forested area in Spain extends over 18 million hectares, of which broadleaf forests 

cover 55% of the area, coniferous forests cover 37%, and mixed forests cover 8% 

(Figure 2). The major forest species are Quercus ilex, Fagus sylvatica, Quercus 

pyrenaica, Quercus robur and Eucalyptus spp. among broadleaf forests, and Pinus 

pinaster, Pinus sylvestri, Pinus halepensis and Pinus nigra among coniferous forests. 

Public or collective property accounts for 45% of the forest land, and the remaining 

55% is owned and managed by private smallholders. The carbon stock in Spanish 

forests exceeds 2,800 MtCO2e, and every year forests remove 35 MtCO2e from the 

atmosphere (Montero et al., 2005). The environmental benefits from annual carbon 
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sequestration can be estimated at 1,400 million € per year using the OECD carbon 

social cost of 40 €/tCO2e, exceeding the current market value of forest production 

activities (800 million €). 

There is a spatial concentration of GHG emissions in the middle Ebro, the lower 

Guadalquivir and the Duero basins because of the intensive irrigation and large 

livestock herds located in these regions. By contrast, the larger carbon sinks are 

located in areas with low agricultural income based on quite extensive production 

activities linked to forestry, such as Northwestern Spain, the Pyrenees and the Iberic 

mountain range (Figure 2). 

2.2 Evaluation of mitigation measures in agriculture and forestry 

A set of measures to abate GHG emissions from agriculture have been identified and 

evaluated in the literature including improvements in the management of cropland, 

livestock and forests, and the use of economic instruments. Land management 

measures include a more precise application of nitrogen fertilization, reducing tillage, 

using cover crops and crop rotations, and substituting synthetic fertilizers by organic 

fertilizers (Paustian et al., 2016). Livestock management measures include intensifying 

livestock production, abating emissions from manure, and reducing demand of 

livestock products. Specific measures for enteric fermentation are using feed additives, 

modifying the feed diet and improving feed digestibility. Measures for manure 

management are proper manure storage, application of manure to crops, and 

investments in manure treatment technologies using biological, physical and chemical 

processes (Herrero et al., 2016; Smith et al., 2007). Forest management measures have 

a large abatement potential by implementing a forest management oriented towards 

carbon capture, although there is a trade-off between water use and carbon capture in 

areas under severe water scarcity. Economic instruments include taxes levied on 

emissions or on inputs, subsidies to promote the adoption of low emissions farming 

technologies, and emission trading (De Cara et al., 2005; Pérez Domínguez et al., 

2009).  

In this paper, we focus on mitigation measures related to crop fertilization, 

manure in livestock, and carbon capture in forests. Measures for crop fertilization are 
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standards on nitrogen fertilization, taxes levied on nitrogen fertilization and on 

irrigation water, taxes levied on N2O emissions from crops, and investments in efficient 

irrigation technologies. Measures for livestock are application of manure to crops and 

investments in manure treatment technologies. These treatment technologies are 

based on biological processes such as anaerobic digestion, nitrification/denitrification 

and composting, which have high investment and operating costs. Other treatment 

technologies are based on solid-liquid separation with lower costs depending on the 

scale of operation. In forestry, the measure is management regimes oriented to carbon 

sequestration which could be achieved by modifying the spacing, rotation age and 

thinning regime of forests stands. Table 4 provides a description of the selected 

mitigation measures and the sources of information. The abatement costs of crop and 

forest measures indicate the change in famers’ profits per ton of abatement, while the 

abatement costs of livestock measures indicate the investment and operation costs 

per ton of abatement required to achieve such abatement. 

Here, the choice of mitigation measures is based on the available information on 

cost-effectiveness and possible linkages with other environmental policies dealing with 

water and climate change adaptation. Also, some measures have already been 

implemented in some Spanish regions, such as manure treatment technologies or 

collective management of manure in crop fertilization, which may facilitate their 

transfer to other regions. It should be noted that many of the selected mitigation 

measures when applied in combination interact, and their abatement potential and 

cost-effectiveness would likely change in response to the combination. For example, if 

a tax on nitrogen fertilization is implemented, then less N fertilizer is used lessening 

the abatement potential of fertilization standards or manure fertilization. In this paper, 

the stand-alone values of the abatement cost and potential of each measure have 

been considered in the calculations and the interaction effects among measures have 

not been included because these effects remain largely unexplored in the literature.
2
     

 

                                                           
2
 This assumption do not affect the results obtained in this paper because the best policy mix presented 

in section 3 combines measures that do not interact. However, the interaction effect should be further 

investigated in future studies.    
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Table 4. Mitigation measures in crop cultivation, livestock and forests.  

Measures Description References 

Crop measures 

Fertilization standards 
Nitrogen fertilizer is applied at adequate rates supplying enough nitrogen to both dryland and 

irrigated crops to meet expected yields based on recommendation of the extension services.  
 Kahil and Albiac, 2012, 2013 

Emission tax 
Tax levied on both direct (from fertilization) and indirect (from leaching and runoff) N2O 

emissions. The tax rate is 40 €/tCO2e equal to the OECD carbon social cost. 
 Kahil and Albiac, 2012, 2013 

Nitrogen tax  
A 50% increase of the current price of mineral nitrogen fertilizer. This increase is equal to 0.5 

€/kgN. 

 Kahil and Albiac, 2012, 2013; 

Martínez and Albiac, 2004; Martínez 

and Albiac, 2006 

Water tax  A 50% increase of the current price of irrigation water. This increase is equal to 2.5 cent€/m
3
. 

 Kahil and Albiac, 2012, 2013; Kahil et 

al., 2016c; Martínez and Albiac, 2004; 

Martínez and Albiac, 2006 

Irrigation 

modernization 

Upgrading irrigation networks and replacing less-efficient surface irrigation system by more-

efficient sprinkler and drip systems. The cost of irrigation modernization is 300 €/ha.  

 Kahil and Albiac, 2012; Kahil, 2011; 

Lecina et al., 2009 

Livestock measures 

40% manure share 

Increasing the share of manure fertilization in total applied nitrogen from 27 to 40%. To 

achieve this increase manure have to be transported up to 5 km with a cost of 2.6 €/m
3
 of 

manure.  

 Albiac et al., 2016; Daudén et al., 

2011; Teresa et al., 2016 

55% manure share 

Increasing the share of manure fertilization in total applied nitrogen from 40 to 55%. To 

achieve this increase manure have to be transported up to 15 km with a cost of 4.8 €/m
3
 of 

manure. 

 Albiac et al., 2016; Daudén et al., 

2011; Teresa et al., 2016 

Manure treatment 

plants 

Investing in manure treatment plants based on Nitrification/denitrification process, with a 

treatment capacity of 50,000 m
3
 and a cost of 7 €/m

3 
of manure.  

 Albiac et al., 2016; Flotats et al., 

2011; Teresa et al., 2016 

Forest measures 

Forest management 
Adopting a forest management regime oriented towards carbon sequestration. This can be 

achieved by changing the spacing, rotation and thinning of stands. Costs do not increase.   

 Kahil and Albiac, 2012; Notivol, 2008, 

2009, 2010 
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Figure 3. Marginal abatement cost curve. 

 

 

 

  

 

 

 

 

Note. The cost-effectiveness and abatement potential of each measure represent stand-alone values 

and do not include the interaction effect among measures. 

 

3. Results 

Figure 3 shows the abatement cost and potential of the selected mitigation measures. 

Each of the bars in Figure 3 represents an individual mitigation measure. The vertical 

axis represents the abatement cost, where negative abatement cost values mean 

savings. The horizontal axis represents total abatement potential of each measure, 

with the bar width indicating the magnitude of the abatement potential.  

Economic measures considered here are taxes levied on N2O emissions from 

cultivation, and taxes on the inputs nitrogen fertilizer and irrigation water, aimed at 

internalizing the damages from GHG emissions, akin to a carbon tax for agriculture. 

Results show that the costs of these taxes are substantial for farmers, given by the 

losses in their private benefits. The costs of a tax on nitrogen fertilization or a tax on 

emissions of N2O are 310 and 230 €/tCO2e, respectively, both achieving an abatement 

of 18% in N2O emissions (2.5 MtCO2e). A tax on irrigation water is too inefficient to be 

considered, because abatement is only 3% (0.4 MtCO2e) and costs are 

disproportionate at 2,170 €/tCO2e.  
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Another measure considered is investing in advanced irrigation technologies. This 

is achieved through upgrading the distribution networks of irrigation districts, and 

replacing less-efficient surface irrigation system in parcels by more-efficient sprinkle 

and drip systems. The modernization costs of 300 €/ha indicated in table 4 are the 

annual amortization of the investments during the life cycle of the investments. 

Efficient irrigation systems require less nitrogen fertilizer application, generate less 

nitrogen leaching, and could increase crop yields compared to old systems. This 

measure can be applied to the current 1 million ha of surface irrigation in Spain. 

Results indicate that irrigation modernization would involve significant abatement 

costs at 400 €/tCO2e, with an abatement potential of 2.1 MtCO2e (15% of emissions). It 

is important to note that the impact of irrigation modernization on energy use and the 

ensuing CO2 emissions is not included in this paper because of the lack of reliable 

information on the full energy and CO2 emission impacts of this measure.        

A standard on nitrogen fertilization, which adjusts nitrogen application to crop 

uptake without reducing crop yield and area, is an interesting measure achieving a 21% 

abatement (2.9 MtCO2e) at negative costs of -110 €/tCO2e. However, organizing the 

control and enforcement of this measure is quite challenging and will involve 

substantial transaction costs, such as measurement of nitrogen loads in return flows 

from irrigation districts. The approach of the European Nitrates Directive to deal with 

the enforcement of fertilization standards is to require a nitrogen balance book from 

farmers drawn randomly. Farms located in zones officially declared vulnerable to 

nitrate pollution but not complying with the fertilization standards are penalized in 

their CAP payments. Yet, the efficacy of the Nitrates Directive control mechanisms 

after two decades remains to be seen as the high pollution loads in figure 1 show.
3
 The 

reasons are that the Nitrate Directive ignores pollution loads and damages in whole 

basins, disregards any limits on synthetic fertilizers, overlooks polluting crops not 

                                                           
3
 The issue to be addressed in Europe is that livestock manure contains 7 million tN, and this manure can 

substitute a considerable part of the 11 million tN contained in synthetic fertilizers. The nitrogen surplus 

results in 6 million tN of nitrogen inputs from agriculture into European aquatic systems (Leip et al. 

2011), contributing with a major share to the 4 million tN of nitrogen river loads that pollute coastal 

waters (Seitzinger et al. 2010). 
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receiving CAP subsidies such as vegetables and fruit trees, and also because the shaky 

enforcement mechanism is not linked to ambient pollution loads (Albiac, 2009). 

Using manure to substitute synthetic fertilizers in crops is another interesting 

option  for reducing the entry of nitrogen in soils and the ensuing N2O emissions, and 

also for preventing very costly investments in manure treatment technologies (Flotats 

et al., 2011). The measure is being already implemented in the Bardenas irrigation 

district in the Ebro basin through collective management without subsidies (Daudén et 

al. 2011). Manure application to fields is a good alternative for the Guadalquivir, 

middle Ebro, and Duero basins, where large irrigation districts are coupled with high 

livestock density areas.
4
 

At present, manure provides 27% of nitrogen crop fertilization in Spain (310,000 

tN), and the measure considered here is to increase the share of manure up to 40% 

(460.000 tN) and then to 55% (630.000 tN), while reducing synthetic fertilization. It is 

assumed that manure is transported 5 kilometers from livestock farms to crop fields to 

achieve the 40% share of manure, and is transported up to 15 kilometers to achieve 

the 55% share of manure. These are only potential shares of manure because 

organizing manure application to crops requires farmers’ cooperation, with sizable 

transactions costs involved. The information is taken from the results of manure 

application experiments in the middle Ebro valley (Albiac et al., 2016; Daudén et al., 

2011; Teresa et al., 2016). The costs of manure application include the load, transport, 

unload and spreading operations, and the use of specialized equipment (tractor, tank 

and applicator). The costs per cubic meter of manure are 2.6 € for a distance of 5 

kilometers and 4.8 € for 15 kilometers. The 40% share of manure reduces synthetic 

nitrogen fertilization by 150.000 tN, abating direct and indirect N2O emissions by 1.26 

MtCO2e at 75 €/tCO2e. The 55% share implies an additional reduction of 170.000 tN in 

synthetic fertilization abating emissions by 1.43 MtCO2e at 140 €/tCO2e. 

Another measure considered here is the use of manure treatment technologies. 

These technologies require substantial investments and high operation and 

                                                           
4
 Irrigation area is 850.000 ha in Guadalquivir, 780,000 in Ebro and 550,000 in Duero. Swine density is 

high in the three basins, while cattle density is high in the Duero and Guadalquivir basins.  
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maintenance costs. For example, a large plant for collective management of manure 

(50,000 m
3
/year) with a nitrification/denitrification process, requires an investment 

close to 1.5 million € (Flotats et al., 2011). Thus, treatment plants could be built when 

there is no option of applying manure in crops to close the nitrogen loop between 

livestock and crop production. The costs of N2O abatement with manure treatment 

plants are around 200 €/tCO2e. The abatement of N2O with treatment plants could go 

up to 1.4 MtCO2e, which corresponds to treating all manure not used at present as 

fertilizer in Spain (400.000 tN).  

Forest management oriented to maximize tree and soil carbon storage is another 

promising strategy to offset GHG emissions in Spain. Management for carbon capture 

could be achieved by modifying the spacing, rotation age and thinning regime of 

forests stands, taking into account the fire recurrence especially in Mediterranean 

forests. The comparison between the costs involved in current management 

operations and carbon capture management operations shows that carbon capture 

management regimes do not increase the current costs of forest management, and 

costs could even decrease in some cases. By applying the carbon capture regimes, the 

average increase in annual carbon sequestration is around 20% (Notivol 2008, 2009 

and 2010; Kahil and Albiac 2012), which would increase carbon capture by forests in 

Spain from the current 35 up to 42 MtCO2e.
5
 

Table 5 presents the results of the cost-benefit analysis. This analysis shows the 

mix of mitigation policy measures that can be used to abate agricultural GHG 

emissions without damaging the social benefits generated by the crop and livestock 

activities in Spain. Results indicate that nitrogen standards entail large environmental 

benefits from N2O abatement coupled with significant private benefits to farmers from 

savings in nitrogen fertilization. In monetary terms, the environmental benefits are 120 

million € and private costs are negative (-320 million €), so social benefits amount to 

440 million €. As indicated above, a caveat on fertilization standards is the transaction 

costs involved in this measure, which are highlighted by the poor performance of two 

 

                                                           
5
 These calculations include carbon sequestration from study cases on important species in Spain: Pinus 

halepensis, Pinus sylvestris, Pinus nigra and Quercus pyrenaica. 
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Table 5. Social benefits from GHG mitigation in agriculture. 

Measures  

Abatement 

potential 

(MtCO2e) 

Environmental 
benefits      

(M€) 

Private costs 

(M€) 

Social  

benefits 

(M€) 

Crop measures 

Fertilization standards 2.9 120 -320  440 

Emission tax  2.5 100  570 -470 

Nitrogen tax 2.5 100  770 -670 

Irrigation modernization 2.1   80 810 -730 

Water tax  0.4   20 870 -850 

Livestock measures 

40% manure share 1.3 50 100  -50 

55% manure share 2.7 110 300 -190 

Manure treatment plants 1.4 60 280  -220 

Forest measures 

Forest management 7.0 280 0 280 
Note: Environmental benefits are equal to the abatement potential times the OECD carbon social cost 

(40 €/tCO2e). Private costs are equal to the abatement potential times the abatement costs (from figure 

1). Social benefits are equal to the difference between environmental benefits and private costs.  

 

decades of the Nitrates Directive in the European Union (Figure 1). Both a tax on N2O 

emissions and a tax on the inputs nitrogen or irrigation water reduce social benefits 

because the private costs of abatement are above environmental benefits. 

Investments in irrigation modernization result also in negative social benefits due to 

the high private costs of investments. On the other hand, all livestock measures abate 

GHG emissions but the social benefits are negative because of the high private costs 

compared to environmental gains. In forestry, a change in forest management regime 

oriented towards carbon sequestration contributes with a large abatement and 

positive social benefits. 

The results in table 5 indicate that the best policy mix to abate agricultural GHG 

emissions in Spain is combining fertilization standards with a carbon sequestration 

regime in forest management. These two measures maximize social benefits up to 720 

million € with no private costs but rather private benefits. The mitigation potential is 

close to 10 MtCO2e (2.9 MtCO2e in agriculture and 7 MtCO2e in forestry), representing 

28% of current agricultural emissions. It should be noted that the environmental 

benefits from the crop, livestock and forest measures presented in table 5 include only 

the benefits from reducing GHG emissions. However, these mitigation measures  
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Table 6. Sensitivity analysis of social benefits under different social costs of carbon.  

Measures 
Abatement potential 

(MtCO2e) 
Social benefits (M€) 

  
with social costs of 

carbon at 20 €/tCO2e 

with social costs of 

carbon at 80 €/tCO2e 

Crop measures 

Fertilization standards 2.9 380 550 

Emission tax  2.5 -520 -370 

Nitrogen tax 2.5 -720 -570 

Irrigation modernization 2.1 -770 -640 

Water tax  0.4 -860 -840 

Livestock measures 

40% manure share 1.3 -70 10 

55% manure share 2.7 -250 -80 

Manure treatment plants 1.4 -250 -170 

Forest measures 

Forest management 7.0 140 560 

 

provide other additional environmental benefits to society, such as the abatement of 

nutrients leaching into water bodies, the reduction of ammonia emissions to the 

atmosphere, and improving biodiversity, among others. McLeod et al. (2015) indicate 

the importance of accounting for ancillary effects when evaluating GHG mitigation 

measures, and underline the lack of empirical estimations of such effects in the 

literature.   

Table 6 presents the results of the sensitivity analysis of the social benefits of GHG 

mitigation with different estimates of the social cost of carbon. Results do not change 

when the social cost of carbon is reduced to 20 €/tCO2e, the mitigation potential 

remains equal to almost 10 MtCO2e because of the low private cost of fertilization 

standards and forest management. However, the rise of carbon social cost to 80 

€/tCO2e increases the mitigation potential by 1.3 MtCO2e, to achieve more than 11 

MtCO2e (31% of agricultural emissions). The measure that enters the policy mix is 

expanding the share of manure in crop fertilization to 40% because abatement 

benefits (80 €/tCO2e) would cover the manure application costs (75 €/tCO2e). All other 

measures entail very high social costs and would require much higher values of the 

social cost of carbon. 
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4. Conclusions and policy recommendations   

This paper provides a first estimate of the potential for mitigation in the whole Spanish 

agriculture, which we believe can be useful to guide policymakers in the design of 

country-level mitigation strategies. The paper collects fragmented information on GHG 

emissions and sinks and the cost-effectiveness of the most relevant mitigation 

measures in Spain. The results rank the selected measures by their costs and benefits, 

and show the most efficient mix of mitigation policy measures in agriculture. Results 

indicate that combining nitrogen standards with a carbon oriented forest management 

regime achieves an abatement close to 10 MtCO2e and large social benefits. If the 

social cost of carbon is valued above 75 €/tCO2e, then the mitigation potential could 

further increase by expanding the application of manure in cultivation. Results indicate 

also that mitigation policies based on pure economic instruments, such as input taxes 

on nitrogen fertilizer or irrigation water, or emission taxes on N2O, display high 

abatement costs for farmers and limited social benefits. The implication is that pure 

economic instruments can only be ancillary in the design of mitigation policies in 

agriculture. Investing in irrigation modernization is also a very costly mitigation 

measure. 

This study could be extended to improve the accuracy of policy 

recommendations. A number of technical challenges remain in the estimation of cost-

effectiveness of measures. A first challenge is the inclusion of the transaction costs of 

measures, especially in the case of fertilization standards and substitution of synthetic 

fertilizers by manure, since both measures require adequate institutions for collective 

action. A second challenge is the spatial coverage of the optimization models 

simulating taxes, standards and irrigation modernization. The information used in this 

paper is derived from models that analyze agricultural activities of some regions of 

Spain, which are quite representative of Spanish farmland, and results are upscaled to 

country level. This study can be considered a sufficient approximation to the ordering 

of the cost-effectiveness of measures, although policy outcomes could be improved 

with a full country land use model. A third challenge is the inclusion of the effects of 

the interaction between different mitigation measures and the potential ancillary costs 

and benefits of mitigation measures. Lastly, it is important to understand why farmers 
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are sometimes reluctant to adopt apparent win-win mitigation measures such as 

fertilization standards and forest management, and what incentives are needed to 

foster the adoption of those measures (McLeod et al. 2015).    

As a final remark, agriculture in Spain holds a high potential to reduce GHG 

emissions (estimated at 28% of current agricultural emissions), and presents real 

opportunities for the reduction of GHG mitigation efforts in other sectors with higher 

abatement costs. However, the attainment of this potential faces a number of 

obstacles, such as high transaction costs, accommodation of stakeholders’ strategic 

behavior, enforcement difficulties, forest land tenure, path dependency of current 

environmental regulation, and inertia of the political status quo. These shortcomings 

can be overcome by the introduction of good farming and forestry practices, strong 

technical assistance for farmers, improved monitoring and information systems, and 

the support of collective action through public incentives and institutions (Seitzinger et 

al., 2010). 
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