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PREFACE 

In a number of economic situations a decision maker is con- 

fronted with the problem of modifying a given and unsatisfac- 

tory resource allocation in order to improve it. This requires 

a control strategy to be implemented sequentially over time. 

Typical constraints are, loosely speaking, the control effort 

he is willing (or able) to exert, the information requirements 

on the system "state", the feasibility of intermediate alloca- 

tions,and the total time in which the process is to be completed. 

This paper deals with some of these aspects: an "equal realloca- 

tion policy" is introduced and appropriate convergence proper- 

ties are derived. On the basis of income distribution data for 

the Italian Economy, an example of wealth reallocation over in- 

come classes is presented. 
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INTRODUCTION 
. 

A rather primitive concept in economics is the non-negati- 

vity of the resources shared by each agent at a given time and 

in a given social context, as well as the finitness of the re- 

sources sharedamong all agents. A formal translation of this 

concept leads to an apparently simple set-theoretic property, 

convexity, from which far-reaching implications and unsus~ected 

results are often derived. In the past and more recently, the 

somewhat disguising feature of this property has drawn the 

attention of applied mathematicians and mathematical economists 

to several aspects of the ensuing "Convex Theory" (~ockafellar, 

1969 ;  Nikaido, 1 9 6 8 ) .  

It appears quite natural that a systems theory viewpoint 

on this matter should be primarily concerned with dynamic sys- 

tems defined on a convex state space. One such system is con- 

sidered in this paper. When the matter of concern is convex re- 

allocation dynamics, a fundamental question can be formulated as 

follows: How would a policy based on taking from the "rich" and 

giving to the "poor" succeed in equalizing shares over a fixed 

time horizon? T'his paper answers that question for the singular 

but important case of an equal reallocation policy. 

2. BASIC ASSUMPTIONS 

In addition to the standard assumptions of homogeneity and 

divisibility of resources, the policy discussed in this paper is 

based on the following assumptions: 



(i) Theresourceset can be modeled as a Unit Simplex. 

(ii) The policy maker operates at discrete time-points and 

has direct access to one component of the distribution 

at a time. 

iii) The reallocation is evenly redistributed over the re- 

maining components. 

A few comments are in order. Regarding (i), it has been argued 

that reallocation dynamics in a Unit Simplex, to the extent in 

which it postulates constant-sum resources, contradicts the possi- 

bility of growth. It seems more accurate to say, however, that 

what isomitted fromthis description is the feedback link between 

distribution and growth. But this link can be added in an 

integrated growth-distribution model, if one recognizes that no 

conceptual difficulty arises in separating a multidimensional- 

growth process into a balanced-growth of all components and a 

zero-growth redistribution among them. 

As for (ii), we should first notice that when access to all 

components is possible, the reallocation problem becomes mathe- 

matically trivial. Convex combinations of unit-sum vectors are 

unit-sum vectors and such combinations may be chosen at will. 

Given two vectors, start-end, a trajectory connecting them and 

containing a desired number of arbitrarily spaced points can 

easily be constructed. 

On the other hand, this case presupposes on the policy maker 

side a very strict and efficient control on all his resources. 

This, in practice, may result in costly - if not infeasible - 
policies. In brief, this case appears both trivial mathe- 

matically and of very restricted scope for application. 

At the other extreme, we have the case in point. One compo- 

nent is controlled at each step. In order to preserve convexity, 

it is assumed that the amount by which one component is varied 

will be evenly redistributed over the remaining components. That 

this policy should converge to any desired distribution, while 

intuitively plausible, will require s0rr.e anount of 3athematical 

reasoning to be rigorously established. 



Regarding (iii), some implications of this assumption can be 

best appreciated in the light of the policy algorithm to be pre- 

sented in the next paragraph. For this reason, discussion on 

this point will be deferred until the conclusion. 

PROBLEM STATEMENT 

As usual, resources are modeled as non-negative unit-sum 

vectors. A convenient geometric interpretation is suggested by 

the notion of a Unit Simplex (Nikaido, 1968) in R ~ .  In two- 

dimensional space, resource vectors have one end on the line seg- 

ment through the points (1,O) and (0,l) and this segment is a 
2 Unit Simplex in R . 

Let S N-l be the simplex in R~ defined by 

where A's are scalars and - e's unit vectors. To avoid trivial 

cases, we will assume N > 2. As we are interested in motions 
N- 1 within the simplex, we define a trajectory in S . 

def. 1 A T r a j e c t o r y  T is a  c o Z Z e c t i o n  o f  v e c t o r s  
in  SEJ-l  i n d e x e d  b y  t h e  i n t e g e r  t, i . e .  

For each t, we also introduce 

def. 2 An a-Ne ighborhood  o f  - x f t )  is t h e  s u b s e t  o f  ;iil 

where 

with unit component in position k. The vector abk can be re- 

garded as the control vector for the reallocation policy. For 

fixed a. X(t) contains exactly N vectors. Notice that x(t) - is 

not contained in any of its a-Neighborhoods. 





Thus,  a  F e a s i b l e  T r a j e c t o r y  i s  c o m p l e t e l y  s p e c i f i e d  by ( 2 ) - ( 9 ) .  

W e  now t u r n  t o  t h e  main q u e s t i o n .  Given two d i s t i n c t  p o i n t s  i n  

.SN-' d o e s  t h e r e  e x i s t  a  F e a s i b l e  T r a j e c t o r y  s t a r t i n g  a t  one  p o i n t  

and  e n d i n g  a t  t h e  o t h e r ?  

An answer  i s  g i v e n ,  i n  some s e n s e ,  by t h e  f o l l o w i n g  r e a l l o c a -  

t i o n  p o l i c y .  

PJ- 1 P o l i c y  1 Gitren - x ( 0 )  a n d  x # ~ ( 0 )  i n  S , c o n s t r u c t  t h e  s e q u e n c e  - 
Ex* - ( t )  1 a c c o r d i n g  t o  

w i t h  bk s p e c i f i e d  i n  ( 3 )  and a t  e a c h  t I k  and a c h o s e n  

a c c o r d i n g  t o  t h e  " R o b i n  Hood EuZe":  

* 
if x4 - x  .(t) > O and 3#0 c h o o s e  a=6 and k=j , 

u 3 
( 1 6 )  

* 
i f  x - x - i t )  > C and 6=0  c h o o s e  a=-y and k = h ,  j J ( 1 7 )  

ff xj - x 5 t )  < 0 c h o o s e  a=-y and k = j  , 
J 

( 1  3 )  

i f  n o n e  o f  t h e  a b o v e  a p p l i s s  s t o p  t h q  a l g o r i t h m .  ( 1 9 )  

Remark W e  w i l l  t r y  t o  comment b r i e f l y  on t h i s  a l g o r i t h m .  * 
A t  e a c h  s t e p ,  t h e  c u r r e n t  s t a t e  x  ( t )  i s  compared t o  t h e  - * 
d e s i r e d  s t a t e  - x .  The d i f f e r e n c e  v e c t o r  - x ( t )  - - x  is  

a n a l y z e d  component-wise t o  f i n d :  

- t h e  h i g h e s t  a b s o l u t e  v a l u e  ( B ;  component j ) ,  and  

- t h e  h i g h e s t  v a l u e  (y; component h )  . 



Now t h e  i d e a  is  t o  modify e i t h e r  component o f  t h e  c u r r e n t  

s t a t e  s o  a s  t o  o b t a i n  a new s t a t e  v e c t o r  " c l o s e r "  t o  t h e  de-  

s i r e d  s t a t e .  I f  j = h ,  w e  d e c r e a s e  t h e  j - t h  component of  t h e  

c u r r e n t  s t a t e .  N o  p roblems a r i s e  w i t h  c o n s t r a i n t s  i n  

t h i s  case ( 1 0 ) .  I f  j f h ,  w e  i n c r e a s e  t h e  j - t h  component 
+ 

t o  t h e  e x t e n t  p e r m i t t e d  by t h e  cr, c o n s t r a i n t  ( 1 6 ) .  But  
j 

t h e r e  migh t  b e  cases where no i n c r e a s e  i s  p e r m i t t e d ,  

i. e., a+=0.  I n  t h i s  c a s e ,  w e  d e c r e a s e  t h e  h - t h  component 
3 

( 1 7 ) .  

Convergence r e s u l t s  a r e  summarized i n  t h e  f o l l o w i n g :  

Theorem 

The sequence ( 1 2 )  in Policy I is a Feasible ~ r a j e c t o r y .  If 

this sequence is finite, its last element is x, otherwise - 
{ x * ( t )  - ; t = 1 , 2 , .  . . m o n o t ~ n i c a t Z y  converges to x in the - 
Euclidean Norm. 

Proof  

( 1 3 ) - ( 1 8 )  imply  ( l o ) ,  ( 1 1 )  t h u s  { x * ( t ) ;  - t = 1 , 2 ,  ... 1 i s  a 

F e a s i b l e  T r a j e c t o r y .  I f  ( 1 2 )  c o n t a i n s  a f i n i t e  number o f  

p o i n t s ,  t h e n  a t  some t = T < - s t e p  ( 1 9 )  o f  P o l i c y  1 h a s  

been  r e a c h e d .  T h i s  means 0 = x - x $ ( T )  = I x j  - x ~ ( T ) I  a n d ,  
j 

N To p r o v e  monotonic  conve rgence ,  e q u i p  . R  w i t h  t h e  E u c l i d e a n  

Norm I / 1 1 2 .  Then 

where w e  p u t  

Observe  t h a t  ( 1 6 ) - ( 1 3 )  imply 

c (0 .11 ;  a A x k ( t )  - > 0;  la1 5 n x k ( t )  / , 
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Remark 1 The Trajectory obtained with (12)- (18) satisfies a local 

optimality criterion in the following sense. At each 

step t, / 15 - x*(t) - 1 l 2  is decreased proportionally to 
Axk(t) and by (13)-(15) any different choice of Axk(t) 

whould yield a lower value of Axk (t) . 
However, local optimality does not ensure global opti- 

mality, that is a locally non-optimal choice of k may 

yield faster convergence than a locally optimal one, 

as shown by this counter-example. Assume initial state = - 

and finale state = . A globally optimal ()- 
Feasible Trajectory is the finite sequence 

whereas a locally optimal Feasible Trajectory would 

generate 

Remark 2 In several applications, reallocation policies that are 

"smoother" than implied by this rule may be desired. 

This, however, can be obtained by restricting the 

a-range to a suitable sub-interval of (0,1] with no 

prejudice on convergence results. 

4. AN EXAMPLE: INCOME DISTRIBUTION IN THE IATLIAN ECONOMY 

As a possiSle application of the preceding results, consider 

the per-capita income distribution in Italy during the period of 

1974-76. The dynamics of the distribution is best illustrated 

by normalized histograms, as in Figure 1. Per capita income has 

been divided into ten income classes ranging from one fifth to 

twice the average income. The diagrams show the percentage of 

the national income allocated to each income class. The area of 

the histograms is proportional to the gross national income and 

is normalized to one. 

This representation permits the comparison of income dis- 

tributions at different epochs, irrespective of variations in popu- 

lation size and gross national income. The three-year record 

shows no substantial change in the distribution, thus it is 

reasonable to assume a balanced growth of all classes at a com- 

mon growth rate. 



P E R C A P I T A  INCOME / AVERAGE INCOME 

P E R C A P I T A  INCOME / RVERRGE INCOME 

.e  . .6 .a 1 .0  1 . 2  1 . 4  1.6 1 . 8  2.0 

P E R C R P I T A  INCOME / AVERAGE INCOME 

F i g .  1 Income d i s t r i b u t i o n  i n  I t a l y  ( S q u r c e :  
B u l l e t i n  o f  Bank o f  I t a l y ,  y r s  1966-78)  



A rather controversial issue in Economic Theory is whether 

or not the observed distribution represents an economic optimum - 
aside from the question of whether or not such an optimum really 

exists. I will not enter that dispute here. But, for illustration 

purposes, I shall assume that some benevolent governmental goal has 

been set so as to reach the target distribution in Figure 2 (light 

line) starting from the 1976 situation. Assume that income trans- 

fers are controlled by some government action (fiscal policy, so- 

cial benefits, interest rates, etc.) on a trimester basis. Assume 

further that the policy employed is selective, i.e. at each tri- 

mester t the fraction of the national income allocated to one parti- 

cular income class is varied by a value not exceeding a pre-set 

transfer rate g(t). If this class is chosen according to Rule 

(13)-(13), the reallocation process becomes a Feasible Trajectory 

in Income Space with 

= min(b,g(tj) if (16) applies, otherwise 
( 2 9 )  

a = max(-y,-g(t)) . 

Assuming a cons'tant 5 2  transfer rate, the hypothesized policy 

results i-1 the graphs shown in figure 2 (dark line). 

Table 1 shows the number of steps required to get to the 

target distribution within a 15 norm error, in function of 

the maximum transfer rate which is assumed constant at each step. 

It may be of (academic?) interest to note that no improvement 

in the convergence ( number of steps) can be achieved by trans- 

fer rates higher than 5.86%. 

5. CONCLUSIONS 

There are cases where equal readjustment occurs as a spon- 

taneous property of an economic system. In the Theory of Demand, 

for instance (Hildebrand, 1974), there is room for the case in 

which a price increase in one commodity affects an agent's con- 

sumption plan by a decrease in the budget share of that commodity 

and a common increase of the remaining ones. The equal readjust- 

ment process is endogenously performed by the system, i.e.,the 

commodity market, whose behavior is - so to speak - inherently 
convex. 





Table 1. Convergence up to 1% norm error as a function 
of maximum transfer rate. 

In other economic situations a system may not possess that 

property, in which case, of course, it becomes the responsibility 

of the policy maker to enforce equal readjustment over the re- 

maining components. The advantage of concentrating the control 

effort on a single component is lost in this case. 

1.00 

Despite this obvious drawback, the equal readjustment policy 

still appears to merit special attention over the other, possibly 

more flexible, policies when considered from the viewpoint of 

information requirements. As information is minimal in a vector 

of equal components, it is plausible to expect that information 

costs would be minimal with a control vector containing as many 

common values as possible, as is the case with akk type of controls. 
Although it would be desirable to support this statement on the 

basis of a firmer formal theory, an attempt to clarify this point 

on heuristic grounds can be made along the line of reasoning 

contained in the Appendix. 

2.00 

NUMEER OF STEPS 

I 

MAX TRANSFER RATE ( % )  4.00 5.86 100 3.00 5.00 

8 2 2  8 14 9 9 12 
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APPENDIX 

We will try to justify the minimality of the information re- 

quirement associated to an equal readjustment policy on the basis 

of the block-diagram shown in figure Al: 

OLD PRESENT STATE - 
( UIJREVEALED) 

STATE i (Reveal pre- 

- , - - - .  
ECONOMIC SUBSYSTEM/COMPUTER 

! INTERFACE PRESENT 
1 STATE 

1- 1 I 

CONTROL I COMPARE 

(policy al- (present state 
gorithm) vs. desired state) 1 

. DESIRED 

i STATE 
Figure Al. Block Diagram of a Reallocation Policy 

Each block in the diagram is representative of a finite set 

of elementary operations: storage and retrieval of information. 

Some of these are to be performed by computer (square blocks), 



others involve interaction between the economic subsystem 

and the appropriate governing agency (round blocks). Assuming 

that major costs are concentrated on the latter, the equal re- 

adjustment policy involves: 

-a sorting of an N-component vector (eqs. ( 13) , (1 4) , (1 5) ) in 

the OBSERJE block: no storage is necessary and 

-an assignment of two values in the MODIFY block: the amount 

by which k-th component is to be changed and the amount by 

which the remaining components are to be changed. However, 

remaining components need not be identified. In this case, 

storage requirement is independent of the size N of the 

problem. 

A more flexible policy would require instead: 

-an appraisal of N different values in the OBSERVE block- 

these are to be stored for subsequent processing and 

-an assignment of N different values and additional informa- 

tion on the identity of each component in the MODIFY block. 

Information is dependent on the size N of the problem in 

this case. 


