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Abstract
Path-dependent stochastic processes are often non-ergodic and observables can no longer be
computedwithin the ensemble picture. The resultingmathematical difficulties pose severe limits to
the analytical understanding of path-dependent processes. Their statistics is typically non-multi-
nomial in the sense that themultiplicities of the occurrence of states is not amultinomial factor. The
maximumentropy principle is tightly related tomultinomial processes, non-interacting systems, and
to the ensemble picture; it loses itsmeaning for path-dependent processes. Here we show that an
equivalent to the ensemble picture exists for path-dependent processes, such that the non-
multinomial statistics of the underlying dynamical process, by construction, is captured correctly in a
functional that plays the role of a relative entropy.We demonstrate this for self-reinforcing Pólya urn
processes, which explicitly generalizemultinomial statistics.We demonstrate the adequacy of this
constructive approach towards non-multinomial entropies by computing frequency and rank
distributions of Pólya urn processes.We showhowmicroscopic update rules of a path-dependent
process allow us to explicitly construct a non-multinomial entropy functional, that, whenmaximized,
predicts the time-dependent distribution function.

1. Introduction

‘It seems questionable whether the Boltzmann principle alone,meaningwithout a complete [...]mechanical
description or some other complementary description of the process, can be given anymeaning’. Einstein’s
famous critical comment on the completeness of Boltzmann entropy [1], is still thought provoking. For ergodic
systems, e.g. [2], over a well defined set of states, this critique has turned out to be ofminor relevance. Herewe
demonstrate howEinstein’s observation becomes relevant againwhen dealingwith non-ergodic, path-
dependent systems or processes, i.e. processes where ensemble and time averages cease to yield identical results
and the ensemble descriptions of a processes fails to describe the dynamics of a particular process (e.g.
compare [3]).

Moreover, for path dependent systemswe have to specify what wemeanwith ‘entropy’, since no unique
generalization of entropy from equilibrium to non-equilibrium systems exists. However, Boltzmann’s principle
is grounded in the idea that in large systems themost likely samples wemay draw from a process, i.e. the so called
maximum-configuration, also characterize the typical samples, while it becomes very unlikely to draw atypical
samples. In fact wewill demonstrate the possibility to directly construct ‘entropic functionals’ from the
microscopic properties determining the dynamics of a large class of non-ergodic processes usingmaximum-
configuration framework. In this approachwe identify relative entropy (up to amultiplicative constant)with the
logarithmof the probability to observe a particularmacro state (which typically is represented by a histogram
over a set of observables states), compare e.g. [4]. By construction,maximization of the resulting entropy
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functionals leads to adequate predictions of statistical properties of non-ergodic processes, inmaximum
configuration.

For ergodic processes it is possible to replace time-averages of observables by their ensemble-averages, which
leads to a tremendous simplification of computations. In particular, this is true for systems composed of
independent particles or for Bernoulli processes, i.e. processes where samples are drawn independently, and the
states of the independent components or observations collectively follow amultinomial statistics. The
multinomial statistics of such a systemwithW observable states = ¼i W1, , is captured by a functional that
coincides with Shannon entropy [5], = -å =( )H p p plogi

W
i i1 . In this context = ¼( )p p p, , W1 is the empirical

relative frequency distribution of observing states i in an experiment of drawing from the process forN times, i.e.
p=k/N is the normalized histogram of the experiment where state ihas been drawn ki times. Clearly,

å =k Ni i . In this contextH(p) can be understood as the logarithmof themultinomial factor, i.e.

-å ~= ( )p plog logi
W

i i N

N

k1
1 , where and =  =( ) ! !N kN

k i
W

i1 (e.g. compare [6]).
Maximization of Shannon entropy under constraints therefore is away offinding themost likely relative

frequency distribution function (normalized histogramof sampled events) onewill observewhenmeasuring a
system, provided that it follows amultinomial statistics. Constraints represent knowledge about the system.
Bernoulli processes withmultinomial statistics are characterized by the prior probabilities, = ¼( )q q q, , W1 . In
general, the set of parameters characterizing a process, we denote by θ. In themultinomial case q º q.

Denoting the probability tomeasure a specific histogramby q( ∣ )P k N, , themost likely histogram k̂ , that
maximizes q( ∣ )P k N, , is the optimal predictor or the so-calledmaximum configuration. For amultinomial

distribution function, q =  =( )( ∣ )P k N q, N

k i
N

i
k

1
i, where qi are the prior probabilities (or biases), the functional

that ismaximized is y q = + å( ∣ ) ( )p H p p qlogi i i, which is (up to a sign) called the relative entropy or
Kullback–Leibler divergence [7]. The termH(p) coincides with Shannon entropy, the term that depends on q is
called cross-entropy and is a linear functional in p. By re-parametrizing be= -( )q expi i , where b > 0 is a
constant, one gets the standardmax-ent functional

å åy q b e= - =
⎡
⎣⎢

⎤
⎦⎥( ∣ ) ( ) ( )p N H p p p, 1 . 1

i
i i

i
i

In statistical physics, the constants ei typically correspond to energies andβ to the so called inverse temperature of
a system.Maximization of this functional with respect to p yields themost likely empirical distribution function;
this is sometimes called themaximum entropy principle.

Clearly, systems composed of independent components follow amultinomial statistics. Note that a
multinomial statistics is also a direct consequence of workingwith ensembles of statistically independent
systems. In this case themultinomial distribution function reflects the ensemble property and is not necessarily a
property of the system itself. ThereforeH(p) only has physical relevance for systems that consist of sufficiently
independent elements. For path-dependent processes, where ensemble- and time-averages typically yield
different results,H(p) remains the entropy of the ensemble picture, but ceases to be the ‘physical’ entropy that
captures the time evolution of a path-dependent process. Obviously, assuming that the entropy functionalH,
which is consistent with an underlyingmultinomial statistics, in general also is adequate for characterizing path-
dependent processes that are inherently non-multinomial (breakmultinomial symmetry), is nonsensical.

Surprisingly, the possibility that non-multinomialmax-ent functionals can be constructed for path-
dependent processes seems to have caught only little attention. In [4] it was noticed that a particular class of non-
Markovian randomwalks with strongly correlated increments can be constructed, where themultiplicity of
event sequences is no longer given by themultinomial factor, and themax-ent entropy functional of the process
class exactly violates the composition axiomofKhinchin [8]. The generalmethod of constructing a relative
entropy principle for a particular process class does not inherently depend on the validity of particular
information theoretic axioms, which opens away for a general treatment of path-dependent, and non-
equilibriumprocesses.We demonstrate this by constructing themax-ent entropy ofmulti-statePólya urn
processes [9, 10].

Inmulti-state Pólya processes, once a ball of a given color is drawn from an urn, it is replaced by a number of
δ balls with the same color- see figure 1. They represent self-reinforcing, path-dependent processes that display
the the rich get richer and the winner takes all phenomenon. Pólya urns are related to the beta-binomial
distribution, Dirichlet processes, the Chinese restaurant problem, andmodels of population genetics. Their
mathematical properties were studied in [11, 12], extensions and generalizations of the concept are found in
[13, 14], applications to limit theorems in [15–17]. Pólya urns have been used in awide range of practical
applications including response-adaptive clinical trials [18], tissue growthmodels [19], institutional
development [20], computer data structures [21], resistance to reform in EUpolitics [22], aging of alleles and
Ewens’s sampling formula [23, 24], image segmentation and labeling [25], and the emergence of novelties in
evolutionary scenarios [26, 27]. A notion of Pólya-divergencewas recently defined in [28] in the context of

2

New J. Phys. 19 (2017) 033008 RHanel et al



Sanov’s theorem [29]. This work characterizes Pólya urns in a regime ofweak reinforcement.More precisely the
Pólya divergence is derived for situationswhere the ratio betweenN, the number of samples drawn from the
Pólya urn, and the numberA0 of balls initially contained in the urn, are asymptotically fixed by the parameter
b º N A0 such that b¥ > > 0. As a consequence, in the limit  ¥N the reinforcement parameter
g d= A0 asymptotically approaches zero (g db~ N 0). So even if the number δ of balls added to the urn at
each trial is large, the number of balls initially contained in the urn ismuch larger. In this regime ofweak
reinforcement Pólya urns behave similarly to Bernoulli processes. Our constructive approach allows us to access
strong reinforcement parameters g > 0 and the transition of Pólya urn dynamics fromBernoulli-process like
behavior to awinner-takes-all type of dynamics can be studied.

2.Non-multinomialmax-ent functionals

The general aim is to construct amax-ent functional for a path-dependent process, which allows us to infer the
maximumconfiguration, i.e. themost likely sample wemay draw from a process of interest. From a given class
of processesXwe select a particular process q( )X , specified by a set of parameters, θ. Running the processes

q( )X forN consecutive iterations produces a sequence of observed states q = ¼( ) [ ]x N x x, , , N1 , where each xn
takes a value fromW possible states. As before, we assume the existence of amost likely histogram k̂ , that
maximizes q( ∣ )P k N, . To construct amax-ent functional forX, one has to conveniently rescale q( ∣ )P k N, ,

which happens in two steps. First, we define q qY º( ∣ ) ( ∣ )p N P Np N, log , . Note, if k̂ maximizes q( ∣ )P k N, ,

then =ˆ ˆp k N maximizes qY( ∣ )p N, . Second, a scaling factor f ( )N can be used to scale out the leading termof
theN dependence ofΨ. Typically f =( )N Nc , for some constant  >c1 0, compare [4]. f ( )N corresponds to
the effectivenumber of degrees of freedomof samples of sizeN.We identify themax-ent functional with
y q q fº Y( ∣ ) ( ∣ ) ( )p N p N N, , . Again, if k̂ maximizes q( ∣ )P k N, with å =k Ni i , then =ˆ ˆp k N maximizes
y q( ∣ )p N, , with å =p 1i i . In other words, y q( ∣ )p N, represents (up to a sign) a functional providing uswith a
notion of relative entropy (information divergence) for the process-classX. If this process-classX is the class of
Bernoulli-processes, such that ( ∣ )P k q N, is themultinomial distribution, then asymptotically
y- ~ å -( ∣ ) ( )p q N p p q, log logi i i i , is the Kullback–Leibler divergence, and f =( )N N . In the followingwe

compute y q( ∣ )p N, for Pólya urn processes.

3.Max-ent functional for Pólya urns

In urnmodels observable states i are represented by the colors balls contained in the urn can have. The likelihood
of drawing a ball of color i is determined by the number of balls contained in the urn. Initially the urn contains ai
balls of color = ¼i W1, , . The initial prior probability to draw a ball of color i is given by =q a Ai i 0, where

= åA ai i0 is the total number of balls initially in the urn. Balls are drawn sequentially from the urn.Whenever a

Figure 1. Schematic illustration of a Pólya process.When a ball of a certain color is drawn, it is replaced by d+1 balls of the same
color. Then the next ball is drawn and the process is repeated forN iterations. Here d = 2. This reinforcement process creates a
history-dependent dynamics. The configurations obtained after successive iterations have non-multinomial structure.
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ball of color i is drawn, it is put back into the urn and another δ balls of the same color are added. This defines the
multi-state Pólya process [9]. A particular Pólya process is fully characterized by the parameters,
q d= ¼( )q q A, , ; ,W1 0 . Drawingwithout replacement is the hypergeometric process, drawingwith replacement
(d = 0), is themultinomial process.

If d > 0, afterN trials there are d= +( )a N a ki i i balls of color i in the urn ( = ( )a a 0i i ). The total number
of balls is d= å = +( ) ( )A N a N A Ni 0 , and the probability to draw a ball of color i in the +( )N 1 th step is

q
d
d

= =
+
+

( ∣ ) ( )
( )

( )p i k
a N

A N

a k

A N
, , 2i i i

0

which depends on the history of the process in terms of the histogram k.With =( ) [ ]x 0 the empty sequence, the
probability of sampling sequence x can be computed




q q= - =
d

d
=

=( ∣ ) ( ∣ ( ( )) ) ( )
( )

( )p x p x k x n
a

A
1 , , 3

n

N

n
i

W
i

k

N
1

1
,

0
,

i

where the function d( )m r, is defined as

d d dº + + + -d ( )( ) ( ( ) ) ( )( )m m m m m r2 1 . 4r,

Note that d( )m r, generalizes themultinomial law,

å å =
å

d
d

= =

⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠ ( )

( )

{ ∣ }

( )a
N

k
a , 5

i
i

N

k N k i

W

i
k

,

1

,

i i

i

and forms a one-parameter generalization of powersmr. For d = 0, =( )m mr r0, and for
d = 1, = + - -( )! ( )!( )m m r m1 1r1, .

The probability of observing a particular histogram k afterN trials becomes

q =
 d

d
=⎜ ⎟⎛

⎝
⎞
⎠( ∣ ) ( )

( )

( )P k N
N

k

a

A
, , 6i

W
i

k

N
1

,

0
,

i

with  qå =å = ( ∣ ){ ∣ }P k N, 1k k N0i i i
. Note that q( ∣ )P k N, is almost ofmultinomial form, it is amultinomial

factor times a termdepending on θ. Onemight conclude that themax-ent functional for Pólya processes is
Shannon entropy in combinationwith a generalized cross-entropy term that depends on θ. However, this turns
out to bewrong, since contributions from the generalized powers d( )m r, in equation (6) cancel themultinomial
factor almost completely. To see this wefirst rewrite

d d

d d

d

d

= + + -

= + +

= + +

~ +

d

d

d d d

d

+

+

+
d




 ( )

( ) ( ( ) )
( ) ( )

! ( )

! ( ) ( )

( )a a a a k

a a k

k

k k

1

1 1

1 , 7

i
k

i i i i

i i i
a

a k

i
k a a

k

a

a k

i
k

i
a

a k

, i

i

i i

i i i

i

i

i i

i
ai i

i i

wherewe use å ~ += ( )slog 1r
s

r1
1 and + ~ ( )y y1 exp , which is valid for sufficiently small d=y ai , i.e. for

sufficiently large δ.With the notation g dº A0 we obtain

q
g

g
=

+

+

+

+=g

g

( )
( )

( ∣ ) ( )P k N
N p

N
,

1

1 1
, 8

N
i

W
i N

p

q
1 1

1
qi

i

i

1

where k=pN. Following the construction discussed above, we identify q qY =( ∣ ) ( ∣ )p N P pN N, log , , which
no longer scales explicitly withN, but f =( )N 1 (c= 0), so that y = Y. Inserting equation (7) into (6), leads to
the expression

å

å å

y q

g

g g

=- - +

- +
-

+
+

- + + + -

g

g

g

=

= =

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( ) ( )

( )

( ∣ )

( ) ( ) ( )

p p

q

p
q

N W N

1 log

log 1 log

log 1 log 1 log . 9

i

W
q

i N

i

W

N
i

i N i

W

i

N

1

1

1

1
1

1

1 1

i

More precisely, the finite sizePólya ‘entropy’ can be conveniently identifiedwith the terms in y q( ∣ )p that do not
depend on q,
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å l
= - +

=

⎜ ⎟⎛
⎝

⎞
⎠( ) ( )́H p p

N
log , 10

i

W

i
Polya

1

where l > 0 can in principle be chosen freely. Up to a constant depending only on γ andN, thefinite size cross-
entropy can be identifiedwith

å g g
lg

= - + - +
-

+
+l

⎜ ⎟
⎡

⎣
⎢⎢

⎛
⎝

⎞
⎠

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎤

⎦
⎥⎥( ∣ ) ( )́H p q

q
p

N N

q

p
qlog

1
log 1

1
log . 11

i

i
i

i

i N

icross
Polya

Convenient choices forλ are the following. l = 1, represent ylog as in equation (9). Alternatively, onemay
choose l g= ( )W1 , which is a convenient choice if one considers a uniform initial distribution, =q W1i , of
balls in the urn. Thefinite size Pólya entropy equation (10), yields awell defined entropy even if some states i
have vanishing probability pi=0.

To simplify the following analysis we consider the limit  ¥N of this functional, where the notion of
‘information divergence’ for Pólya processes, essentially reduces to

å å åy q
g

= - + +
= = =

( ∣ ) ( )p p q p qlog
1

log log , 12
i

W

i
i

W

i i
i

W

i
1 1 1

up to terms of order N1 and terms that do not explicitly depend on pi or qi. In this limit the asymptotic Pólya
‘entropy’ is given by,

å= -
=

( ) ( )́H p plog . 13
i

W

i
Polya

1

Weobserve that one cannot derive ( )́H pPolya from themultiplicity of the system, which gets canceled by counter
terms, as we have seen above. In addition, we note that the q dependent terms, å q plogi i i, in equation (12) play
the role of the Pólya ‘cross-entropy’, which is no longer linear in p.

Maximizing y q( ∣ )p with respect to p on å =p 1i , either leads to the solution

z
g= -( ) ( )p q

1
, 14i i

for < <p0 1i , or, if this can not be satisfied, to boundary solutions pi=0. ζ is a normalization constant. There
exist three scenarios:

(A) For g < ( )qmin , equation (14) is the max-ent solution for all i (no boundary-solutions). The limit g  0
provides the correctmultinomial limit p qi i.

(B) If g> >( ) ( )q qmax min ,ψ getsmaximal for those i with g>qi and follows solution equation (14); those
i where g<qi are boundary-solutions, =p 0i .

(C) For g > ( )qmax all pi are boundary-solutions,meaning that onewinner i takes it all, =p 1i , while all other
states have vanishing probability.

Since y¶ ¶ <́ p 0i
2

Polya
2 if g < qi, for all i, case (A) applies. If g<qi , equation (14) becomes negative but

also unstable and is replaced by a boundary solution: cases (B) and (C). The Pólyamax-ent not only allows us to
predict pi from the initial prior probabilities qi, it also identifies γ as the crucial parameter that distinguishes
between the three regimes of Pólya urn dynamics5. For sufficiently large butfiniteN, the analysis above ismore
involved but solvable.

Assuming uniformly distributed priors, =q W1i for all i, themax-ent result equation (14) correctly
predicts uniformly distributed =p̂ W1i , while observed distributions pmay strongly deviate from this
prediction. This result reflects the fact that despite the Pólya urn process being inherently instable (e.g. winner
takes all)with little chance of predictingwho in particular will win, i.e. which color of balls will dominate the
others, repeating the experimentmany times every color of balls has the same chance towin (or biased according
to the priors q). This discrepancy between ensemble average and time averagemakes it impossible to predict who
in particular will win or loose in the course of time.However, using detailed information about the process one
can predict howwinners win. In particular one can (i) predict the onset of instability, i.e. the emergence of colors
i that will effectively never be drawn, at g = ( )qmincrit (compare figure 2), and (ii) construct amaximum entropy

5
Note that a Pólya urnU1 that initially containsA0 balls and has evolved forN stepswith g d= A0, can be regarded as another Pólya urn,

U2, in its initial state, containing d= +A A NN 0 balls, that evolves with an effective reinforcement parameter g d=( )N AN , and the
initial distribution of balls q=( ) ( ∣ ( ) )q N p i k N , , where k(N) is the histogramof colors drawn in thefirstN steps of the original urn process
U1. Obviously the asymptotic behavior of Pólya urns gets determined early on in the process, where the effective reinforcement parameter
g ( )N is largest. The probability of a Pólya urn to enter awinner-takes-all dynamics, i.e. to end up in one of the scenarios A, B, or C, depends
on the reinforcement parameter γ.

5
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functional for predicting the time dependent frequency distribution of a process, i.e. the number of times one
observes states i for n times. As a consequence, one also can derive the rank distributions of the process, i.e. the
frequency of observing balls of some color after ranking those frequencies according to theirmagnitude.

3.1. Rank and frequency distributions of Pólya urns
With the presentedmax-ent approachwe now compute frequency distribution functions. Given the histogram
= ¼( )k k k k, , W1 2 is obtained afterN iterations of the process,we define new variables,

åc= =
=

( ) ( ) ( )n k k z , 15z
i

W

i
1

whereχ is the characteristic function that returns 1 if the argument is true and 0 if false. nz(k) is the number of
colors i that occur z times after running the Pólya process forN iterations. nz is subject to the two constraints,

å å= =
= =

( ) ( ) ( )W n k N n k zand , 16
z

N

z
z

N

z
0 0

which can be included in themaximization procedure introducing Lagrangemultipliers,α andβ. The
probability of observing some = ¼( )n n n, , N1 is


åq q=

=

˜( ∣ ) ( ∣ ) ( )
{ ∣ ( )}

P n N P k N, , . 17
k n n k0i

Defining the relative frequencies p = n Wz z and =p̄ z Nz we can construct themax-ent functional from
q˜( ∣ )P n N, .We identify y p q qº˜ ( ∣ ) ( ˜( ∣ ))N P n N W, log , .

For themultinomial q = ( )( ∣ )P k N q, N

k i i
ki, and uniformpriors =q W1i we find up to an additive

constant,

å

å

y p q p p

p

=-

-

=

=

˜ ( ∣ )

¯ ¯ ( )

N

N p p

, log

log . 18

z

N

z z

z

N

z z z

0

0

y p q˜ ( ∣ )N, has to bemaximized subject to equation (16),

å åp p= =
= =

¯ ( )p
W

1 and
1

, 19
z

N

z
z

N

z z
0 0

Figure 2.The fraction of distinct colors contained in the Pólya urn, which at least get sampled oncewithin the firstN=500 steps of
the process, for numbers of colors = ¼W 2, 3, , 10 for uniformly distributed initial conditions =q W1i , = ¼i W1, , , evaluated
from 250 runs for each g = ¼0.01, 0.02, , 1. The onset of instability g = =( ) ( )q q Wmin 1crit (circularmarkers) is very well
reproduced experimentally.
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so thatwe get the asymptotic solution for largeW and largeN, (  N W 1),

p
f
z

=
!

( )
z

. 20z

z

This is the Poisson distribution, exactly as expected formultinomial processes. f = - + b( )Ne 1 N , ζ is a
normalization constant, and pz getsmaximal at f= ~ẑ N W .

For the Pólya urnwith uniformpriors we get from equation (17)

q
q

=


+

+
g= =

g⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

( )˜( ∣ )
( )

!
!

¯

¯
( )P n N

Z N

W

n

p

p
,

1

,
. 21

z
N

z z

N
z N

z WN

n

0 0

1

1

W
z1

q( )Z N, is the normalization. Up to a constant themax-ent functional y p q qº˜ ( ∣ ) ( ( ∣ ))́ N P n N W, log ,Polya is

å

å

å

y p q p p

p

p

=-

- +

+ +

g

g

=

=

=

( )
( )

˜ ( ∣ ) ( )

¯

¯ ( )

́ N

p

p

, log

log

log . 22

z

N

z z

z

N

z z WN

W
z

N

z z N

Polya
0

0

1

1

0

1

maximizing y p q˜ ( ∣ )́ N,Polya under the conditions of equation (19) provides the frequency distribution of the
Pólya process for uniformpriors,

p
z
f=

+

+
g

g( ) ( )z

z

1 1
, 23z

z

W

1

W
1

with f b= -( )exp , and normalization z a= + -g( )Nexp 1 1W
1

.
The rank distribution of states, f (r), can nowbe obtained as follows. r=1 is the state that occursmost

frequently, r=W is the least occupied state. For = ¼r W1, , wedefine intervals +[ ]t tr r1 with =t N1 and
=+t 0W 1 , such that  på ~<+

W1t z t zr r1
. Tofind tiwe substitute sums by integrals and get

ò òp p= =
+ +

( ) ( )
W

z f r
W

N
z z

1
d and d . 24

t

t

z
t

t

z
r

r

r

r

1 1

Results for the frequency distributions for ai=1,W=100, and d = 2 are shown infigure 3, togetherwith a
numerical simulation for the same process. The inset shows the rank distribution. The Pólyamax-ent predicts
frequency and rank distribution extremelywell.

The above results were all derived under the assumption that g > 0 is sufficiently large. By numerical
simulationwefind that the solution equation (23) alsoworks remarkablywell for very small values of γ, if the
value of γ in equation (23) is appropriately renormalised, g g 0. In particular for g = 0 (multinomial process)

Figure 3. Frequency distribution of a Pólya urn process and uniform initial conditions (red line), forW=100, d = 2, ai=1 for all
i=1, and =N 105 steps. Simulations are shown for 100 (green) and 5000 (blue) repetitions of the process. Inset: rank distributions
of themax-ent result and the numerical realizations in semi-log scale.
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we sample the Poisson distribution function, equation (20). The Pólyamax-ent solution recovers the Poisson
distribution extremely well if g g=  = +( ) ( )W N N W0 , 1 30 . In this sense the Pólyamax-ent remains
adequate in the limit of small γ.

4.Discussion

Pólya urns offer a transparent way to study self-reinforcing systemswith explicit path-dependence. They behave
similarly to Bernoulli processes if the reinforcement is weak, i.e. if the number of balls initially contained in the
urn is large in comparison to the number of balls added to the urn at each trial. This weak reinforcement regime
has been studied in [28].

If reinforcement gets stronger, Pólya urns start to behave differently and the Pólya divergence derived in [28]
no longer applies. Based on themicroscopic rules of the process, we constructively derive the generalized
information divergence or relative entropy y- , for strongly reinforcing Pólya urns. The functionalψ acts as the
corresponding non-multinomialmax-ent functional. This provides uswith an alternative to the ensemble
approach for path-dependent processes that enables us to predict the statistics of the process. Themaximization
of the functional leads to an equivalent of the classicalmaximum configuration approach, which by definition
predicts themost likely distribution function. In this sensemaximumconfiguration predictions are optimal,
and can be used to understand even details of the statistics of path-dependent processes, such as their frequency
and rank distributions.

It is interesting to note that the functional playing the role of the entropy in the Pólya processes violates at
least two of the four classic information theoretic (Shannon–Khinchin) axiomswhich determine Shannon
entropy [8]. Evenmore, for thefinite size Pólya entropy, three of the four axioms are violated. This indicates that
the classes of generalized entropy functionals that are useful for amax-ent approachmay be even larger than
expected [30, 31]. Onemight speculate that in this sense the classic information theoretic axioms are too
rigorous, when it comes to characterizing information flow and phase space structure in non-stationary, path-
dependent, processes. The observation that each particular class of non-multinomial processes requires a
matchingmax-ent functional that can in principle be constructed from the generative rules of a process, opens
the applicability ofmax-ent approaches for awide range of complex systems in ameaningful way. The
generalizedmax-ent approach in this sense responds to naturally Einsteins comment onBoltzmann’s principle.

Finally we note the implications for statistical inferencewith data fromnon-multinomial sources, which
implicitly involves the estimation of the parameters θ that determine the process that generates the data. In a
max-ent approach this is done by fitting classes of curves to the data, that are consistent with themax-ent
approach. For doing this, the nature of the process, i.e. its class, needs to be known. For path-dependent
processes, which are non-multinomial by nature, entropywill no longer be Shannon entropyH, and the
information divergence will no longer be theKullback–Leibler divergence.
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