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ABSTRACT 

Population and economic growth pose unique challenges in securing sufficient water, energy, and food 
to meet demand at the sub-national (regional), national, and supra-national level. An increasing share of 
this demand is met through trade and imports. The unprecedented rapid growth, extent, and complexity of 
global value chains (GVCs) since the 1980s have reshaped global trade. The GVCs – and new economic 
patterns of regionalization – affect the demands on water, energy, and food within countries and across 
global supply chains. East Asia is of particular interest due to the region’s rapid economic growth, 
substantial population size, high interdependence of the region’s economies, and varying degree of resource 
availability. While greater interdependence across the region has increased the efficiency of production and 
trade, these activities require the input of water-energy-food and generate disturbances in the environment. 
The transnational inter-regional input-output approach is utilized in a tele-connected Water-Energy-Food 
Nexus (WEFN) analysis of the East Asia GVC to assess competing demands for these resources and 
environmental outcomes.  

This analysis demonstrates the hidden virtual flows of water, energy, and food embodied in intra-
regional and transnational inter-regional trade. China’s current national export oriented economic growth 
strategy in East Asia is not sustainable from the WEFN perspective. In terms of water-energy-food, China 
is a net virtual exporter to Japan and South Korea. China’s prioritization of economic growth and trade in 
low value added and pollution intensive sectors consumes a great amount of water-energy-food within its 
territory to satisfy consumers’ demands in Japan and South Korea. Japan’s Kanto and Kinki regions and 
South Korea’s Sudokwon region were the major beneficiaries while China bore the environmental burden 
associated with the production of exports. For example, net virtual exports from China’s East region 
included over 1.2 billion m3 of scarce water and 61.3 million metric (CO2 equivalent) tons of greenhouse 
gases (i.e. CO2, NH4, and N2O) and 2 million metric tons of SOx emissions. 

Trade is an important mechanism for overcoming resource bottlenecks, but, taking into account 
environmental linkages, regional specialization is not necessarily mutually beneficial. This analysis 
demonstrates a mismatch between regional water-energy-food availability and final resource consumption 
and the lack of attention for environmental impacts in national economic growth strategies. Resource scarce 
countries like China must, therefore, incorporate trade-off decisions between pursuing national economic 
growth, incurring environmental degradation, and food security into strategic regional development 
policies.  
 

 
Keywords: Multi-regional input-output analysis, water scarcity, virtual water, footprint analysis, 
environmental indicators, CO2 equivalent, greenhouse gases  
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1. INTRODUCTION 

In today’s globalized world, population increase and economic growth pose important challenges in 

securing sufficient water, energy, and food to meet demand at the sub-national (henceforth, regional), 

national, and supra-national level. East Asia is of particular interest due to the region’s rapid economic 

growth, substantial population size, relatively recent regional economic structural transformation, and 

differing degree of resource availability and environmental pressures. The unprecedented rapid growth, 

extent, and complexity of global value chains (GVCs) since the 1980s have reshaped global trade and 

consumption of these three closely linked resources within and between countries (Gasiorek and Lopez, 

2014). Policies for water, energy, and food – at the regional and national levels – have numerous interwoven 

challenges; including access to resources, environmental impacts, securing national priorities (e.g. 

economic growth), and national security. The inter-connectedness of the water, energy, and food 

subsystems has become ever more apparent as evidenced by the increasing application of the Water-

Energy-Food Nexus (WEFN) approach to identify tradeoffs and the search for cross-sector efficiencies to 

these challenges not only within countries but across global supply chains. With substantial quantities of 

commodities and services being traded across economic and ecosystem boundaries, an integrated 

assessment quantifying the virtually traded resources (and linked environmental pressures) of all three 

subsystems is needed in order to better understand the complexity of the WEFN and to adopt a 

comprehensive management approach. Furthermore, solving the issues of limited resource availability and 

sustainability requires an understanding of the integrated structure of the supra-national, national, and 

regional – see Figure 1 – economies in the context of the WEFN.   

Over the past six decades, countries in the East Asia region have enjoyed some of the highest annual 

gross domestic product (GDP) growth rates in the world by pursuing independent export oriented trade 

policies; dominated by trade with the United States (World Bank, 2007). The People’s Republic of China, 

Japan, and the Republic of Korea (South Korea) each demonstrated 8% to 10% GDP growth rates for 

sustained periods of time; each achieving industrialization, urbanization, electrification, and motorization 

in the short span of 20 to 30 years (Pempel, 2013). The 1997-98 Asian Financial Crisis forced the East 
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Asian countries to realign economic strategies and foster inter-regional economic cooperation – in the form 

of cross-border investments, financial coordination, trade, and inter-regional production networks – in order 

to avoid falling behind the European Union (EU) and North America GVCs (Aggarwal et al., 2008). The 

three economies became increasingly integrated and restructured the intra-industrial division of production 

and services to build up a highly interdependent network. China’s accession to the World Trade 

Organization in 2001 resulted in a tremendous economic and political shift in the region. By 2005, the East 

Asia GVC had become established centered on China at its core (Yunling, 2010; ADB, 2014).  

GVCs divide up the production of goods and services into linked stages of production distributed across 

international borders and economies. Instead of producing a product originating from a single factory, a 

product originates from a network of suppliers from multiple locations (ADB, 2014). China, as the 

manufacturing hub in East Asia’s production networks, has been the main driving force increasing the inter-

regional economic interdependence and an engine of economic growth. Over 50% of China’s export is 

Figure 1 Map of East Asia’s Regions 
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composed of processing trade – i.e. raw materials, parts and components, technology and equipment, and 

economic services are exported from other East Asian economies to China for final processing and then 

exported to the U.S. and the EU. China’s huge domestic market is also a source of export growth for 

neighboring countries for both manufactured products and primary commodities. Typically, this results in 

China possessing a substantial trade surplus with the U.S. and a considerable trade deficit with Japan and 

South Korea (Chiang, 2013; Kuroiwa and Ozeki, 2010). In 2005, China’s exports to Japan and South Korea 

totaled, respectively, $109.8 billion and $31.8 billion while imports were, respectively, $96.2 billion and 

$66.7 billion. There is a similar trade deficit between Japan and South Korea, Japan’s exports to and imports 

from South Korea were $52 billion and $25.9 billion (IDE-JETRO). China’s close production networks 

with Japan and South Korea – as well as its seemingly inexhaustible pools of low-wage workers and 

abundant raw materials – have allowed China to become the world’s largest manufacturer and exporter 

(Gereffi, 2014). These inter-regional production networks have implications on demand for water-energy-

food and ecosystems.  

Recently, the WEFN approach has become an increasingly popular perspective among scholars. A 

‘nexus’ among water-energy-food was conceived by the World Economic Forum to highlight the 

inseparable linkages between the use of resources and the universal human rights to water, energy, and food 

security (WEF, 2011). For example, water is consumed for the production of food and energy (e.g. fossil 

fuel processing, biofuels) and energy is necessary to transport, treat, and distribute water, fuel farming 

equipment, and manufacture chemical inputs necessary for agriculture production. The WEFN concept is 

based on systematic analysis of the interactions between the natural environment and human activities in 

order to better understand and to work towards a more balanced use of natural resources (FAO, 2014).  

Early WEFN publications typically only analyzed two of the three subsystems in a nexus relationship: 

water-food nexus (see Brown and Halweil, 1998; Hoekstra and Hung, 2005; Dalin et al., 2014; Antonelli 

and Tamea, 2015; Vanham, 2016), food-energy nexus (see Karkacier and Goktolga, 2005; Abdelradi and 

Serra, 2015), and water-energy nexus (see Scott et al., 2011; Hardy et al., 2012; Pfister et al., 2012; Walker 

et al., 2013; Vilanova and Balestieri, 2015; Murrant et al., 2015; Pradeleix et al., 2015; Gua et al., 2016; 

Vieira and Ghisi, 2016; Wong and Pecora, 2016). Current WEFN publications have become more 
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sophisticated and capable of investigating all three subsystems: for example, biomass or biofuel crop 

production (see Gerbens-Leenes et al., 2009; Bazilian et al., 2013; Miara et al., 2014; Mirzabaev et al., 

2015), future impact scenarios of climate change on WEFN (see Ringler et al., 2016), incorporating satellite 

remote sensing analysis to assess the WEFN (see review by Sanders and Masri, 2016), modeling water-

energy-food interdependencies and management (Bazilian et al., 2011; Daher and Mohtar, 2015; Al-Ansari 

et al., 2015; Zimmerman et al., 2016; Zhang and Vesselinov, 2017), and the consumption of water and 

energy in the production of greenhouse tomatoes in Spain (Irabien and Darton, 2016).   

While the nexus concept has been widely embraced, it is not a clearly defined construct or fully tested 

in practice (Wichelns, 2017). Despite not possessing a defined framework or a universal set of sectors to be 

analyzed, the concept has encouraged a wide range of approaches in a variety of WEFN contexts; for 

example, critical emphasis on particular subsystems including water (Vanham, 2016), food security (de 

Laurentiis et al. 2016), climate change (Ringler et al., 2013; Berardy and Chester, 2017), and so forth. A 

criticism of the nexus concept has been the lack of a clear definition of integration within the nexus which 

makes it difficult to establish what constitutes a ‘successful’ nexus analysis; creating significant challenges 

to developing nexus-orientated strategies. In other words, how to implement the WEFN and deliver real 

world solutions has proven difficult (Leck et al., 2015; Wichelns, 2017).  

 In general, ecosystems have been the ignored dimension of the nexus (i.e. over-using, depleting, and 

polluting unvalued or under-valued environmental resources and services) (see Vora et al., 2017), but 

ecosystems underpin each of the three nexus subsystems and the services they provide. Ecosystem 

degradation can undermine energy access, the availability of water, and food production, thereby impacting 

human health and livelihoods. Taking an integrated view of such interlinked issues is highly challenging 

given that nexus issues manifest themselves in different ways in the context of individual countries with 

differing resource and technology endowments, governance and development trajectories. Therefore, a 

‘successful’ approach to resource management and sustainable development must be one that is capable of 

quantifying flows and inter-dependencies of water, energy, and food and environmental pressures at various 

scale.   
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The objective of this paper is to clarify the tele-connected supra-national structure of the WEFN and 

environmental linkages between the three subsystems and examine the impacts and tradeoffs between each 

subsystem across scale.  The term teleconnections is used to describe the spatial linkages between local 

consumption and environmental impacts over large distances (Yu et al., 2013; Hubacek et al., 2014). This 

paper incorporates the environmental indicators water scarcity and CO2, CH4, N2O, and SOx emissions. 

The major greenhouse gases CO2, CH4, and N2O (henceforth, GHG) caused by human activities have 

global implications contributing to the warming of the planet (USEPA, 2017). The group of sulfur oxide 

(SOx) gases – including the component of greatest concern sulfur dioxide (SO2) – is emitted primarily from 

the burning of fossil fuels by power plants, industry, and shipping. SOx is a pollutant whose effects are felt 

locally. Exposure to SOx has been linked to respiratory illnesses in humans, damage to plant foliage and 

growth, and is an important acid rain precursor (ibid, 2017).  A tele-connected WEFN approach is applied 

to investigate regional water, energy, and food consumption, the competing domestic and international 

demand for these resources, and the linked environmental pressures in East Asia’s transnational inter-

regional trade by modelling data contained in the Transnational Interregional Input-Output Table (TIIOT) 

– which includes production, consumption, and trade flows between China, South Korea, and Japan – for 

the year 2005 (IDE-JETRO).  

2. DATA AND METHODOLOGY  

The concept of ‘virtual’ trade originates from J. Anthony Allan’s (1994) discussion of ‘virtual’ water. 

The term ‘virtual’ extends beyond the water physically contained in the product to include the resource 

‘embodied’ in products and used in the whole production chain of goods and services. Over time, the 

application of the ‘virtual’ concept in the research literature has expanded to include quantifying a variety 

of resources required to produce any commodity or associated pollution byproducts (Fang et al., 2014). The 

‘virtual trade flow’ is the embodied resource traded between regions or exported to foreign countries. The 

concept of the ‘footprint’ originates from the idea of the ecological footprint (see Rees, 1992). The footprint 

captures the total amount of a resource that is used to produce the goods and services consumed by an 

individual or nation; within its spatial boundaries and embodied within its imports (Daniel et al. 2011).  
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There are two approaches in virtual trade accounting: “bottom-up” and “top-down”.  The Life Cycle 

Assessment (LCA) is a “bottom-up” approach that defines the system boundary at various scale and then 

assesses the overall resource consumption using detailed descriptions of individual production processes. 

The LCA has the ability to provide detailed process analysis on specific products, but requires huge amounts 

of data for multiple commodities (e.g. several thousand). Input-output analysis (IOA) is a ‘top-down’ 

approach that begins at the highest level defined by the system boundary and then breaks down to lower 

levels according to further defined sub-boundaries. Feng et al. (2011) compared the top-down versus 

bottom-up approaches and determined the IOA possesses several advantages: able to distinguish between 

intermediate and final users; scalable and capable of tracing entire regional, national, or global supply 

chains; includes both direct and indirect consumption throughout the supply chain; and, avoids the ‘bottom-

up’ truncation error.  

Environmental input-output analysis (EIOA) incorporates environmental indicators to measure 

different aspects of an economy in an integrated and systematic approach. This paper adopts the term 

‘environmental pressures’ promoted by the European Union to refer to the environmental indicators (i.e. 

scarce water and GHG and SOx emissions) in the analysis to show the pressures which human activities 

place on the environment (European Communities, 2001). Furthermore, in this study the agriculture land 

use indicator represents land displaced from food production. EIOA is able to trace multiple environmental 

impacts driven by production of infinite order, between sectors within an economic region and between 

regions, and, therefore, capable of analyzing the tele-connected interactions between the environment, 

economic, and social systems (Hubacek et al., 2009).  Within the last decade, the EIOA has been extended 

to evaluating various human-induced effects on resources and the environment: e.g., scarce water (Feng et 

al., 2014a; Lenzen et al., 2013); water pollution (Okadera et al., 2006); CO2 (Du et al., 2011; Feng et al., 

2013); emergy (Cho, 2013); ecological and water footprints (Hubacek et al., 2009; Ewing et al., 2012); 

land, carbon, and water (Lee, 2015).  

EIOA studies focusing on the WEFN are rare. One exception is Karkacier and Goktolga (2005) study 

on the energy-food interlinkages in Turkey utilizing IOA modelling to explicitly analyze the 

interdependency between the agriculture and energy sectors.  Li et al. (2012) applied an EIOA-LCA hybrid 
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model to evaluate water consumption and CO2 emissions from China’s wind power sector. Their water-

energy nexus study determined the water required for wind power generation and incorporated an 

environmental indicator for CO2 emissions.  Holland et al. (2015) global water-energy nexus study 

investigated the impact of nations’ energy demands on freshwater resources utilizing a global multi-regional 

input-output (MRIO) model – including 129 countries/regions – to measure the total freshwater 

consumption along global supply chains.  

2.1 Multi-Regional Input-Output Modeling (MRIO)  

The IOA is based on data contained in input-output tables. Each entry in the i-th row and j-th column 

illustrates the flow from the i-th sector to the j-th sector. The IOA consists of N linear equations depicting 

the production of an economy represented in Eq. (1): 

xi = ∑ 𝑧𝑧𝑁𝑁
𝑗𝑗=1 Rij + yi                 (1) 

where N is the number of sectors in an economy; xi is the total economic output of the i-th sector; yi is the 

final demand of sector i. zij is the monetary flow from the i-th sector to the j-th sector.  

The MRIO model extends the standard IOA matrix to a larger economy that includes each industry in 

each country or region possessing a separate row and column. The MRIO represents the complete input-

output interactions of the defined economy.  

The matrix of intermediate use coefficient can be calculated directly by Eq. (2): 

𝑨𝑨𝒓𝒓𝒓𝒓 = (𝑎𝑎𝑖𝑖𝑗𝑗𝑟𝑟𝑟𝑟) = (𝑧𝑧𝑖𝑖𝑗𝑗𝑟𝑟𝑟𝑟 R / 𝑥𝑥𝑗𝑗𝑟𝑟)R         (2) 

where 𝑧𝑧𝑖𝑖𝑗𝑗𝑟𝑟𝑟𝑟 R represents the inter-sector flow from the i-th sector in region r to j-th sector in region s. 𝑥𝑥𝑗𝑗𝑟𝑟 is the 

total output of j-th sector in region s. Assume that the total number of regions is R and the total number of 

final demand categories is F, the economy wide sectoral output is a vector (NR × 1) and can be shown as 

Eq. (3): 

 𝒙𝒙 = (𝑥𝑥11 ⋯𝑥𝑥𝑁𝑁1  ⋯𝑥𝑥1𝑟𝑟 ⋯𝑥𝑥𝑁𝑁𝑟𝑟 ⋯𝑥𝑥𝑁𝑁𝑅𝑅  ⋯𝑥𝑥1𝑅𝑅)′ =  �
𝒙𝒙𝟏𝟏
𝒙𝒙𝟐𝟐
⋮
𝒙𝒙𝑹𝑹
�      (3) 

The final demand matrix (NR × F) can be shown as Eq. (4): 
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Y = (𝒚𝒚𝒓𝒓,𝒇𝒇) = 

⎝

⎛
𝒚𝒚𝟏𝟏,𝟏𝟏  𝒚𝒚𝟏𝟏,𝟐𝟐   ⋯   𝒚𝒚𝟏𝟏,𝑭𝑭

𝒚𝒚𝟐𝟐,𝟏𝟏  𝒚𝒚𝟐𝟐,𝟐𝟐   ⋯   𝒚𝒚𝟐𝟐,𝑭𝑭

⋮       ⋮      ⋱      ⋮
𝒚𝒚𝑹𝑹,𝟏𝟏  𝒚𝒚𝑹𝑹,𝟐𝟐   ⋯   𝒚𝒚𝑹𝑹,𝑭𝑭⎠

⎞        (4) 

where 𝒚𝒚𝒓𝒓,𝒇𝒇 represents the f-th category of final demand vector in region r. The total final demand vector (y) 

is the sum of the following five categories in this research: household consumption, government 

expenditure, capital formation, changes of inventory, and international export.  Eqs. (1)-(4) can be written 

in a matrix form as follows.  

�
𝒙𝒙𝟏𝟏
𝒙𝒙𝟐𝟐
⋮
𝒙𝒙𝑹𝑹
� = �

𝑨𝑨𝟏𝟏𝟏𝟏 𝑨𝑨𝟏𝟏𝟐𝟐 ⋯
𝑨𝑨𝟐𝟐𝟏𝟏 𝑨𝑨𝟐𝟐𝟐𝟐 ⋯
⋮ ⋮ ⋱

𝑨𝑨𝟏𝟏𝑹𝑹
𝑨𝑨𝟐𝟐𝑹𝑹
⋮

𝑨𝑨𝑹𝑹𝟏𝟏 𝑨𝑨𝑹𝑹𝟐𝟐 ⋯ 𝑨𝑨𝑹𝑹𝑹𝑹
��

𝒙𝒙𝟏𝟏
𝒙𝒙𝟐𝟐
⋮
𝒙𝒙𝑹𝑹
� + ∑

⎝

⎛
𝒚𝒚𝟏𝟏,𝒇𝒇

𝒚𝒚𝟐𝟐,𝒇𝒇

⋮
𝒚𝒚𝑹𝑹,𝒇𝒇⎠

⎞𝒇𝒇         (5) 

where the coefficient matrix A (NR × NR) represents the intermediate input matrix across sectors and 

regions. Vector x represents total output of each economic sector in each region. 

The mathematical structure can be re-written as Eq. (6): 

x = Ax + y           (6) 

The Leontief inverse L matrix (I – A)-1 captures both direct and indirect inputs required to satisfy one 

unit of final demand. Solving for x results in Eq. (7): 

x = (I – A)-1 y          (7) 

where I is the identity matrix. Please note that Eq. (7) can be driven by an individual category of final 

demand to derive total sectoral outputs that are necessary for satisfying this given category of final demand.    

The MRIO table is extended with environmental coefficients of different environmental indicators. In 

order to capture both the direct and indirect resource consumption and emissions, the matrix of 

environmental-impact coefficients K (by environmental category, by sector, and by region) are multiplied 

with the Leontief matrix L and final demand vector y, as presented in Eq. (8):  

𝑻𝑻 = 𝑲𝑲(𝑰𝑰 − 𝑨𝑨)−𝟏𝟏𝒚𝒚P

         (8) 

where T is a matrix representing different environmental-impact indicators. In matrix K, each element, 𝑘𝑘𝑗𝑗
𝑟𝑟,𝑒𝑒, 

represents direct impact on environmental category e caused by per unit of economic output of sector j in 

region r. 
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 The environmental coefficients 𝑘𝑘𝑗𝑗
𝑟𝑟,𝑒𝑒 are assumed to be fixed within the specified period of time. The 

environmental categories we focus in this research include water (Kc), scarce water (Ks), energy (Ken), and 

agricultural land use (Kal) and the generation of CO2 (KCO2), CH4 (KCH4), N2O (KN2O), and SOx (KSOX) air 

pollution.  

This paper adopts the Water Stress Index (WSI) concept as defined and advanced by Pfister et al. 

(2009). Focus is placed on the effects of consumptive water use as a function of total water availability. 

The water use to availability ratio (WTA), WTAm = ∑ 𝑊𝑊𝑊𝑊𝑛𝑛 mn / WAm, is calculated for each watershed m. 

Where WAm is the annual freshwater availability and WUmn is withdrawals for use n in watershed m. WTAm 

is WTA in watershed m. Use categories include industry, agriculture, and households. Pfister et al. (2009) 

applied a logistic curve to represent thresholds for water stress levels at continuous values between 0.01 

and 1 in Eq. (10):  

𝐖𝐖𝐖𝐖𝐖𝐖 = 𝟏𝟏

𝟏𝟏+𝒆𝒆−𝟔𝟔.𝟒𝟒∙𝐖𝐖𝐖𝐖𝐖𝐖∗� 𝟏𝟏
𝟎𝟎.𝟎𝟎𝟏𝟏−𝟏𝟏�

         (9) 

where WTA* is the weighted ratio of annual freshwater withdrawals for different users (i.e. industry, 

agriculture, and households) to annual freshwater availability calculated for each basin watershed 

accounting for annual and monthly precipitation variability and flow regulation by basin. The distribution 

curve is adjusted to result in a WSI of 0.5 for a WTA of 0.4 so that the threshold between moderate and 

severe water stress is expressed as the median value; i.e. a WSI value greater than 0.5 represents a severely 

stressed area. The WSI concept indicates the portion of water consumption that deprives freshwater to other 

users – or degree of ‘water deprivation’ – to indicate the pressure on renewable water resources. The WSI 

describes water stress at a high spatial resolution of 0.5°. Water scarcity weighting, Ks, is incorporated into 

the calculation based on Eq. (8) to account for scarce water in the virtual water flow and thus to reflect the 

scarcity of the water being used. 

2.2 Data 

IDE-JETRO’s 2005 TIIOT contains regional economic flows between China (seven regions), South 

Korea (four regions), and Japan (nine regions) aggregated into fifteen sectors (see SI). The TIIOT also 

includes “other” countries (i.e. Taiwan, ASEAN5, United States) not incorporated into the WEFN analysis. 
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The TIIOT links the sub-national (i.e. regional) inter-regional input-output tables of China, Japan, and 

South Korea into a single matrix using the bilateral trade data provided by the individual countries (sources: 

State Information Center of China, Bank of Korea, and IDE-JETRO). The table permits analysis of the 

economic linkages across borders and mapping the cross-national production networks in East Asia at the 

regional scale. The TIIOT was extended with satellite accounts for water, energy, agriculture land use, 

scarce water, and GHG and SOx emissions for each sector.  

Water consumption was estimated based on the sectoral water withdrawal of each province within the 

region multiplied by the ratio of water withdrawal to water consumption in the agricultural, industrial, 

service and domestic sectors of that province. Water consumption is defined as water use that is not returned 

to the original water source after being withdrawn; consequently unavailable for other users within a given 

time period. Only ‘blue water’ in million m3 was analyzed due to the data availability and its relevance to 

water policy. China’s water consumption ratios for the year 2008 were estimated based on official Water 

Resource Bulletins for river basins (e.g., Yellow River Water Resource Bulletin) and provincial Water 

Resource Bulletins (e.g., Liaoning Water Resource Bulletin). Additional economic and environmental data 

was obtained from official publications (e.g., Beijing Statistical Yearbook 2009). South Korea’s 2005 water 

consumption ratios were obtained from the Ministry of Land Transportation, Water Resources, and Policy 

Bureau, Statistics Korea, and WIOD. Japan’s 2007 water consumption ratios were obtained from the 

Research and Statistics Department, Minister's Secretariat Ministry of Economy, Trade and Industry, 

provincial water statistics (i.e. Niigata, Nagano, Shizuoka, and Fukui), and the Ministry of Land, 

Infrastructure, Transport, and Tourism.   

To explicitly consider the impact of water extraction, we incorporate the water stress index (WSI) as 

an indicator of water scarcity. The WSI calculation for each region in China, Japan, and South Korea was 

applied according to Pfister et al. (2009) methodology to account for virtual scarce water flows to reflect 

the scarcity of the water being used. In other words, the WSI weighting converts total water use into scarce 

water use. 

The data for Japan, China, and South Korea analyzing the food (land unit: hectare) and energy (unit: 

terajoule) subsystems and CO2, CH4, and N2O (unit: CO2 equivalent metric ton) and SOx (unit: metric ton) 
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emissions were obtained from the World Input-Output Database (WIOD). All GHG emissions were 

converted into CO2 equivalents to permit comparison. Each GHG has a different global warming potential 

(GWP) and persists in the atmosphere for different lengths of time. This paper follows the 100-year GWP 

for greenhouse gases reported by the United Nations Framework Convention on Climate Change: carbon 

dioxide (1x), methane (25x), and nitrous oxide (298x) (UNFCCC, 2007).  Agricultural land use data were 

obtained from 2005 WIOD agriculture land accounts. The displacement of agriculture land is used as a 

proxy for the food subsystem of the WEFN. Total land consumed for the agriculture sector consisted of 

arable land, permanent crops, and pasture land types. Energy and GHG and SOx emissions were obtained 

from 2005 WIOD accounts. WIOD data for energy and CO2 emissions consisted of 25 sources which were 

consolidated into nine: coal, oil, gas, hydropower, geothermal, solar, wind, nuclear, and biofuels.  

In this study, we aggregated WIOD’s 36 sectors to match with the TIIOT’s 15 sectors at the national 

level; utilizing IDE-JETRO’s expanded 76 intermediate sector classification table as reference for 

aggregation (see SI).  For example, WIOD ‘food, beverages, and tobacco’, ‘leather and leather footwear’, 

and ‘wood and products of wood’ sectors were consolidated into the ‘other non-electrical consumption 

products for daily-use’ sector. In order to analyze WIOD’s national level energy, land, and GHG and SOx 

emissions data at the sub-national (i.e. regional) level, a proportional scaling was applied for each region 

and sector. To match these data with regions in East Asia, we disaggregated the respective national data to 

the seven China, nine Japan, and four South Korea regions according to their sectorial economic output. 

This scaling method assumes that the environmental pollution and resource consumption per unit of output 

(i.e. environmental coefficients) for a region are the same as at the national level.  

Regional and national population data for 2005 was obtained from National Bureau of Statistics of 

China, the Statistics Bureau of Japan, Ministry of Internal Affairs and Communication, and Statistics Korea.    

2.3 Limitations 

IDE-JETRO’s 2005 TIIOT contains bilateral trade between China, South Korea, and Japan as well as 

“other” countries (i.e. Taiwan, ASEAN5, and the United States). Water-energy-food and environmental 

pressure coefficients were incorporated into the analysis for China, South Korea, and Japan. The 

environmental footprints for China, Japan, and South Korea does not include imported water-energy-food 
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and pollution offloading data from “other” countries. However, the MRIO analysis of the TIIOT does 

include China, Japan, and South Korea exports of water-energy-food and pollution generation to the “other” 

countries; domestic environmental implications and water-energy-food exports to the “other” countries are 

not included in the Results section.  

The IDE-JETRO TIIOT is for the year 2005. The age of the data is a significant shortcoming. However, 

the 2005 TIIOT is the most current region-specific dataset for East Asia. The 2005 TIIOT has two distinct 

advantages. First, the TIIOT’s regional data specific to East Asia permits an analysis of the harmonized 

transnational inter-regional data of virtual trade in resources and environmental pressures at the supra-

national to region and region to region level between China, Japan, and South Korea. There exist more 

current global multi-regional input-output (GMRIO) databases (see Tukker and Dietzenbacher, 2013), but 

a major shortcoming of the GMRIO databases is the lack of detailed trade flow data below the national 

level, i.e. between regions. Recently, several methodologies have been developed (see Bachmann et al., 

2015; Wenz et al., 2015; Wang et al., 2015) which permit multiple spatial scales (i.e. global, supra-national, 

national, regional, etc.) to be incorporated into an analysis; i.e. capturing the heterogeneity of regions within 

the global economy. However, the disadvantage of these approaches is increased data inaccuracy due to the 

disaggregation approximations of trade flows from one region in one country to a region in another country. 

Second, the TIIOT permits a unique window into the development of the East Asia GVC – prior to the 

2008-9 global economic crisis – and the inter-regional production networks centered around China as the 

‘factory of the world’ (Gereffi, 2014).   

The limitations of IOA are well documented in the literature. For a summary, see for example 

Wiedmann (2009), Lenzen et al. (2010), Daniels et al. (2011), and Wiedmann et al. (2011). This paper 

applies the standard MRIO which does not have the ability to measure the impact of individual products. 

An alternative approach with higher sectoral resolution – such as the input-output assisted hybrid life cycle 

assessment (see Suh, 2004; Li et al., 2012) – was not utilized as the MRIO is the appropriate model for this 

investigation of the East Asia region.  MRIO analysis provides only a ‘snapshot’ of the state of an economy 

during a single accounting period, generally a year. This research shares shortcomings particular to all IOA 

studies in regards to data uncertainty due to sectoral aggregation error (see Lenzen, 2011; Steen-Olsen et 
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al., 2014). Data aggregation uncertainty exists due to the highly aggregated 15 sector TIIOT. For the energy 

and GHG and SOx air pollution data obtained from the 36-sector WIOD, the correspondence between the 

WIOD data and the TIIOT was many-to-one; resulting in greater aggregation of data. The water coefficient 

data sectors had variable sector count (not including direct household consumption) depending on the 

country and data source; i.e. Japan 24-sector, China 30-sector, and South Korea 12-sector. Japan’s and 

China’s water data were aggregated to 15 sectors and, due to the fact that water data for South Korea had 

fewer sectors than the TIIOT, it was necessary to disaggregate the water data to the corresponding TIIOT 

sectors according to their sectoral economic output. This was done by assuming that the sectorial water 

intensity in the corresponding TIIOT sectors was the same as the intensity of the more highly aggregated 

original water data. Regarding aggregation at the sector level, for example, all agriculture is aggregated into 

one “agriculture” sector; including water intensive livestock, aquaculture, fruits, rice, and etc. production 

as well as lower water intensive agriculture crops. Averaging natural resource requirements for all crops 

and sectors under ‘agriculture’ may under- or over-estimate the water requirements and, therefore, the 

virtual flows in the East Asia transnational inter-regional trade (Daniels et al., 2011).  

Directly measuring food production and consumption in this MRIO WEFN analysis is challenging; i.e. 

developing a satellite account of food consumption coefficients would require a comprehensive database 

of the East Asian region’s food consumption preferences and trends. This study incorporates agriculture 

land use data as a proxy for food production and consumption and trade across the East Asia region. The 

association of food production and consumption with the agriculture land use coefficient as a proxy has 

limitations in its application. First, the agriculture land use coefficient consists of the land types arable land, 

permanent crops, and pastures; which include a broad spectrum of food and non-food (e.g. wool) agriculture 

products. Second, as noted earlier in this section, due to aggregation of data under the ‘agriculture’ sector 

(i.e. inclusion of highly land intensive as well as low land intensive agriculture) there is the possibility for 

over-estimating the land use coefficient for food production and consumption. Third, this study does not 

have the ability to account for multiple and simultaneous uses of agriculture land, but that is a common 

problem of IO analysis using physical land coefficients.   

3. RESULTS 
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3.1 Direct Water-Energy-Food and Environmental Pressures 

In the water-energy linkage, water is necessary for energy extraction, conversion, transport and power 

generation (Siddiqi and Anadon, 2011). Water consumption for fossil energy (e.g. coal, crude oil, natural 

gas) extraction varies by geographical features and extraction technologies. All types of energy generation 

require water, but the amount of water needed is determined by thermal efficiency, heat sink accessibility, 

cooling systems, and the type of power plant. Thermoelectric forms of electricity generation include coal, 

oil, natural gas, and nuclear (Chang et al., 2016; WEF, 2008). Thermal power plants constitute almost 80% 

of electricity generation worldwide. All thermoelectric plants that use steam turbines require water for 

cooling. Regardless of the fuel source, cooling is responsible for 80% to 90% of the water consumed in 

thermoelectric plants. There is a large range of results in the literature regarding the amount of water 

required by each form of energy generation technology. In terms of direct water withdrawals per unit of 

electricity production,  nuclear is the largest and natural gas fired the least water consuming thermoelectric 

technology; solar and wind power systems consume almost no water for generating electricity (WEF, 2008; 

IEA, 2012; Tan and Zhi, 2016). Recently, there have been an increasing number of publications that 

calculate both direct water consumed and embodied water from all upstream inputs required by sector (e.g. 

oil extraction, oil refining, steel and concrete production for structures, crops for biofuel) to meet final 

energy demand (see Li et al., 2012; Holland et al., 2015; Feng et al., 2014b). For example, Feng et al. 

(2014b) analysis of the total life cycle water consumption (i.e. net amount of water consumed along the 

supply chain to produce 1/kWh of electricity) estimated that biomass and hydropower were the most water-

intensive forms of energy generation, followed by coal, oil, nuclear, natural gas, solar, and wind. The water 

footprint of crops such as sugarcane, maize, and soybean is significantly higher than that of fossil energy 

generation (Chang et al., 2016; Tan and Zhi, 2016). Taking into account the increase in water evaporation 

from dammed reservoirs, hydroelectric power generation is a significant water consumer in the water-

energy linkage; additionally, dams may alter the timing of stream flows and conflicts may arise during 

periods of severe water shortage over water flow (Yillia, 2016). 

Direct water consumption for electricity generation was the third largest consumer of water in China 

(16.3 billion m3; 6% of national water consumption) and South Korea (900 million m3; 21%).  Electricity 
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generation was the second largest consumer of water in Japan (18.1 billion m3; 18%). National consumption 

of energy was 50.9 million TJ in China, 18.7 million TJ in Japan, and 7.3 million TJ in South Korea. Japan’s 

and South Korea’s consumption had an expected higher water requirement per kilowatt generated as a 

greater proportion of national electricity was obtained from water-intensive nuclear technology. In 

comparison, China’s substantially larger and less water-intensive national electricity consumption was 

obtained primarily from coal. The proportion of national electricity generation from different technologies 

were the following: China (coal 90%, hydropower 5%, oil 2%, nuclear 2%, gas 1%), Japan (nuclear 32%, 

gas 28%, coal 24%, oil 12%, hydropower 3%, geothermal 1%), and South Korea (nuclear 43%, coal 36%, 

gas 13%, oil 8%).  

The water-food linkage mainly refers to the water required for agricultural products (e.g. livestock, 

crops). Animal products have a much larger water requirement compared to crops per calorie unit (Chang 

et al., 2016). Food production in China was the largest direct water consumer in East Asia totaling 223.4 

billion m3 (77% of national water consumption). Nationally, food production in Japan and South Korea 

were similarly the largest direct water consumers accounting for, respectively, 54.7 billion m3 (55%) and 

1.7 billion m3 (40%). The national food subsystem by land type consisted of the following: China’s 118.3 

million hectare (ha) (22.3%) arable land, 12.5 million ha (2.4%) permanent crops, and 400 million ha 

(75.4%) pasture; Japan’s 4.3 million ha (93%) arable land, 324 thousand ha (7%) permanent crops, and 0 

ha pasture; and South Korea’s 1.6 million ha (87.4%) arable land, 181 thousand ha (9.6%) permanent crops, 

and 57 thousand ha (3%) pasture.   

The energy-food linkage is the energy required for agriculture production; including fertilizer 

production, tillage, planting, weeding, pumping irrigation water, harvesting, transport, distribution, and 

storage as well as the energy used for inputs to these sectors (ADB, 2013; Chang et al., 2016). Renewable 

forms of energy, in the form of biofuels, have become a major agricultural output in some countries; 

resulting in competition for land used for food production or energy production (Yillia, 2016). As noted 

earlier in the proportion of national electricity generation from different technologies, biofuel was not a 

significant national contributor and biofuel crops production was practically non-existent in East Asia in 

2005. Direct energy consumption for agriculture production was relatively low in all East Asian countries.  
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Energy consumption for agriculture production was 1.7 million TJ (3% of national energy consumption) in 

China, 251 thousand TJ (1%) in Japan, and 146 thousand TJ (2%) in South Korea.  

In terms of environmental pressures, agriculture production was the largest consumer of direct scarce 

water for all three countries: 112.6 billion m3 (80% of national scarce water consumption) in China, 7.9 

billion m3 (50%) in Japan, and 420 million m3 (40%) in South Korea. Electricity generation was the second 

largest consumer of direct scarce water for Japan and the third largest for South Korea and China. 

Agriculture production was the largest emitter of direct GHG for all three East Asian countries.  GHG 

emissions from agriculture production totaled 1 billion tons (t) (54% of national GHG emissions) in China, 

1 billion t (54%) in Japan, and 36.3 million t (52%) in South Korea.  Agriculture production was similarly 

the largest SOx emitter totaling 15.1 million t (51% of national SOx emissions) in China. In contrast, 

electricity generation in Japan and South Korea was responsible for the largest direct SOx emissions totaling, 

respectively, 789 thousand t (44%) and 601 thousand t (42%).   

3.2 Direct and Indirect (Virtual Flows) Water-Energy-Food and Environmental Inter-Linkages 

3.2.1 National Footprints  

 Table 1 presents total direct and indirect (i.e. virtual flows) water-energy-food and environmental 

pressures by final household consumption. For example, Table 1 illustrates that the Secondary and Tertiary 

Sectors in China were responsible for consumption of, respectively, 80.2 million ha (19%) and 140 million 

ha (34%) of the national agriculture land footprint. Japan’s Secondary and Tertiary Sectors, respectively, 

accounted for 8.6 million ha (56%) and 4.8 million ha (31%) of the national agriculture land footprint.  

South Korea’s Secondary and Tertiary Sectors, respectively, accounted for 2.7 million ha (51%) and 1.6 

million ha (31%) of the national agriculture land footprint. In other words, virtual flows of agricultural 

commodities and the environmental pressures associated with the consumption of the commodities are 

accounted for per sector and region of final household consumption. Accounting for the hidden inter-

regional virtual trade flows and footprints of each East Asian country provides a unique perspective of the 

WEFN analysis. The largest consumer of water in China totaling 88.6 billion m3 (37% of national water 

footprint) was for the production of household consumption of agricultural products. In contrast, Japan’s 

and South Korea’s household consumption for industrial products were the largest consumers of water 
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totaling, respectively, 38 billion m3 (38%) and 2.2 billion m3 (37%). The energy footprint of the 

consumption of agricultural products was relatively low in all three East Asian countries totaling: China 

1.8 million TJ (5% of national energy footprint), Japan 173 thousand TJ (1%), and South Korea 98 thousand 

TJ (2%).  In terms of environmental pressures, China’s consumption of primary products caused the largest 

impact on scarce water totaling 44.7 billion m3 (39% of national scarce water footprint). Japan’s and South 

Korea’s consumption of industrial products caused the largest amount of scarce water consumption along 

the supply chain totaling, respectively, 7.8 billion m3 (38%) and 928 million m3 (46%).  The GHG (CO2, 

CH4, and N2O) and SOx emissions footprints were largest for the consumption of services for all East Asian 

country.  

 
 
Table 1 National Water-Energy-Food and Environmental Pressures Footprints  

 

3.2.2 Regional Footprints 

Figure 2 illustrates the top ten regions with the largest water-energy-food and environmental pressures 

footprints in East Asia. All seven of China’s regions are in the top ten. Central is the largest water-energy- 

food consumer and environmental pressure generator. In terms of East Asia’s (i.e. China, Japan, and South 

Korea) regional footprints, China’s Central region consumption represented 59.4 billion m3 (17%) of total 

water, 23.6 billion m3 (17%) of scarce water, 8.5 million TJ (14%) of energy, and 115 million ha (26%) of 

agriculture land and emitted 1.1 billion t (18%) of GHG and 5.7 million t (22.2%) of SOx.  
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In terms of water stress and energy, as a very water stressed country China would be the most adversely 

affected. In East Asia, the largest consuming regions of direct and indirect scarce water inputs for electricity 

consumption were China’s very water stressed East (3.8 billion m3), slightly water stressed Central (1.5 

billion m3), and extremely water stressed North (1 billion m3) and Japan’s slightly water stressed Kanto (1.8 

Figure 2 Top Ten Region Water-Energy-Food  and Environmental Pressures Footprints  

  

   

  
The water footprint and scarce water footprint include, respectively, direct household water and household scarce water 
consumption. The region footprint is equal to local consumption (darker color) + imported intra-regional virtual flows 
(lighter color) + imported (yellow) inter-regional virtual flows. 
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billion m3). The water-food linkage was dominated by China’s regions. The top four water consuming 

regions for the production of agriculture products were Northwest (56.3 billion m3), Central (53.5 billion 

m3), East (33.2 billion m3), and Southwest (25.2 billion m3). The largest scarce water consuming regions 

for agricultural products were China’s very water stressed Northwest (45.5 billion m3), North (28 billion 

m3), East (24.7 billion m3), and Central (17.9 billion m3). The energy-food linkage demonstrates that the 

top four largest direct and indirect energy consumers for agricultural consumption were China’s Central 

(631.5 thousand TJ), North (386.2 thousand TJ), East (357.2 thousand TJ), and Southwest (354.9 thousand 

TJ). Regionally, direct and indirect GHG and SOx emissions were dominated by China’s regions. The North 

and Central contributed, respectively, 266.7 million t and 245.4 million t of GHG emissions from other 

services consumption. The Central and Southwest regions contributed, respectively, 1.7 million t and 1.1 

million t of SOx emissions from agriculture consumption. 

3.2.3 Final Household Consumption of Commodities  

The panel charts in Figure 2 present the three top final household consumption of commodities in East 

Asia responsible for the largest energy-water-food and environmental pressure footprints. As noted in the 

section above, China’s supply chain for agricultural products was the largest consumers of water and 

agriculture land footprints, followed by the construction sector with 42.6 million m3 of water (18%), 80.2 

million ha displaced agriculture land (19%), and 8.9 million TJ (25%) of energy. China’s construction 

industries were also the second largest consumer of 20.8 million m3 (18%) of scarce water and contributed 

1 billion t (24%) GHG and 4.7 million t (21%) of SOx emissions. South Korea’s and Japan’s daily products 

(in Secondary Sectors) and other services (in Tertiary Sectors) were the top water-energy-food and scarce 

water consumers and the main contributor to GHG and SOx emissions. Supply chains for other services in 

Japan and South Korea were responsible for consumption of, respectively, 18.6 billion m3 (18%) and 993 

million m3 (16%) of water footprints, 3.4 million ha (22%) and 1 million ha (19%) of displaced agriculture 

land footprints, and 5.5 million TJ (30%) and 1.8 million TJ (32%) of energy footprints. Other services in 

both countries generated large environmental pressures responsible for 3.8 billion m3 (20%) and 353 million 

m3 (17%) consumption of scarce water footprints and contributed 333.1 million t (29%) and 127.9 million 

(32%) to the GHG footprints and 595 thousand t (25%) and 376 thousand t (28%) to the SOx footprints.   
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Unlike China, agriculture products in Japan and South Korea was the second largest consumer of, 

respectively, 19.2 billion m3 (19%) and 742 million m3 (12%) of national water footprint and third largest 

consumer of 2.1 million ha (13%) and 943 thousand ha (18%) of national displaced agriculture land 

footprint. South Korea’s agricultural commodities imports from China and Japan, respectively, constituted 

a significant proportion of its consumption footprints: 135.3 million m3 and 29.4 million m3 (or, combined, 

22.2%) water footprint and 299.4 thousand ha and 1.8 thousand ha (or, combined, 32%) displaced 

agriculture land footprint of agriculture commodities consumption.  

3.2.4 Per Capita Final Household Consumption  

  Table 2 provides the breakdown of per capita total water, scarce water, energy, and land consumption 

and GHG and SOx emissions by East Asian region. Table 2 illustrates that China’s per capita consumption 

of water-energy-food and GHG and SOx gases emissions are relatively low in comparison to per capita 

consumption in Japan and South Korea. With the exception of land and scarce water, Japan’s and South 

Korea’s per capita consumption of energy and generation of GHG gases was several multiples greater than 

China’s per capita consumption.  Japan’s per capita consumption of water was several multiples greater 

than both China’s and South Korea’s per capita consumption.  

Table 2 Per Capita Consumption by Region 
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Figure 3 Top Three Water-Energy-Food Footprints and Environmental Pressures by 
Final Consumption Sector   

  

  

    

Note: The footprint is equal to local consumption + intra-regional +imported virtual flows. The panel charts 
highlight (yellow) virtual imports merely for illustrative purposes; i.e. virtual imports are not separate from the 
footprint.  
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3.3 Virtual Trade Flows Water-Energy-Food and Environmental Pressures 

3.3.1 Regional Net Virtual Trade Flows  

 Figure 4 presents the net virtual trade flow (net flow = export – import) of the top five net exporting 

and top five net importing regions of virtual water-energy-food and environmental pressures flows between 

regions. With the exception of the Southwest’s scarce water (6 million m3 net import), China’s seven 

regions were all net virtual exporters of water-energy-food and burdened with the associated environmental 

pressures of production and trade. Figure 4 Top Five Net Exporting Regions shows that the Northeast (1.5 

billion m3 total water), North (1.3 billion m3 scarce water and 4 million ha land), and East (563 thousand 

TJ energy, 61.3 million t GHG, and 2.1 million t SOx) were the largest net virtual exporters in East Asia. 

China’s Northeast and North are significant agricultural and industrial production regions and the East 

region possesses a high concentration of industries and energy generation capacity. Figure 4 Top Five Net 

Figure 4  Top Five Net Import/Export Virtual Water-Energy-Land and Environmental Pressures Regions 

Top Five Exporters                   Top Five Importers 
    Top Five Exporters                   Top Five Importers 
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Importing Regions shows that Japan’s Kanto is the largest net importer of 1.7 billion m3 total water, 1.2 

billion m3 scarce water, 539 thousand TJ energy, and 4.4 million ha agriculture land and outsourcing 69.7 

million t GHG and 207.3 thousand t SOx. With the exception of Okinawa’s scarce water (152 million m3 

net export), Japan’s nine regions were all net virtual importers of water-energy-food and generated 

environmental pressures in other East Asian regions. With the exception of Yeongnamkwon’s and 

Honamkwon’s energy (44.7 thousand TJ and 23.5 thousand TJ) net export, South Korea’s four regions were 

all net virtual importers of water-energy-food and generated GHG emissions in other regions. All four of 

South Korea’s regions were net exporters of SOx emissions.  

3.3.2 Net Intra-regional and Inter-regional Virtual Water-Energy-Food and Environmental 
Pressures Export Flows 

 
 Figure 5a-f provides greater insight into the origins and pattern of intra-regional (i.e. within national 

boundaries) and transnational inter-regional (i.e. outside of national boundaries) virtual export flows of 

water-energy-food and environmental pressures (scarce water and GHG and SOx emissions) by region in 

East Asia. Figure 5a-b ranks the degree of water scarcity for all regions in China, Japan, and South Korea 

in terms of the Water Stress Index (WSI) (see Pfister et al., 2009). A WSI of 0.5 is the threshold between 

moderate and severe water stress. According to Figure 5a-b, Japan’s regions range from water abundant to 

slightly water stressed, China’s regions range from water abundant to extremely water stressed, and South 

Korea’s regions are only slightly water stressed (Sudokwon is moderately water stressed). In terms of intra-

regional virtual water flows: China’s highly water stressed Northwest was a significant provider of both 

total water and scarce water to the extremely water stressed North, water stressed East, slightly water 

stressed Central, and water abundant Southwest and South; Japan’s slightly water stressed Kanto was a 

recipient of virtual water from water abundant Hokkaido and Tohoku; and, moderately water stressed 

Sudokwon received virtual water from the slightly water stressed other three South Korean regions. In terms 

of transnational inter-regional virtual water flows, the top ten virtual flows all originated from China’s 

slightly water stressed Northeast and very water stressed East and Northwest to Japan’s slightly water 

stressed Kanto and Kinki and South Korea’s moderately water stressed Sudokwon.   
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Figure 5c-f illustrates the intra-regional and transnational inter-regional virtual flows for energy and 

land and the offloading of GHG and SOx air pollutants. Figure 5c-f indicates regions which were net virtual 

exporters (dark blue) and net virtual importers (light blue). In terms of intra-regional virtual flows, China’s 

Northeast, Northwest, and Central regions were burdened with environmental pressures and were 

significant exporters of virtual energy and land to the North and East regions. Similarly, Japan’s Kanto and 

South Korea’s Sudokwon regions were net virtual importers of intra-regional energy and land and were 

responsible for offloading environmental pressures. Transnational inter-regional virtual flows of energy 

and land demonstrate that China was a net virtual exporter to Japan and South Korea. China’s North and 

East regions constitute seven of the top ten virtual energy export flows. Major recipients of China’s virtual 

energy flows were Japan’s Kanto, Kinki, and Chubu. China’s Northeast, North, and East regions were 

virtual land exporters to Japan’s Kanto and Kinki and South Korea’s Sudokwon. Similarly, China bore the 

burden of environmental degradation from transnational inter-regional trade and the export of commodities 

to Japan and South Korea. China’s regions incurred the largest amount of virtual GHG and SOx emissions 

in the North and East embodied in its trade of products and services to Japan and South Korea. Japan’s 

Kanto and Kinki and South Korea’s Sudokwon regions were the major beneficiaries of this virtual 

environmental offloading.  
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Figure 5 East Asia Virtual Water-Energy-Food  and Environmental Pressure (Scarce Water, CO2, 
and non- CO2) Flows by Region 
 
a. Net Virtual Water Flows and Water Scarcity by Region (Unit: million cubic meter (106 m3)) 

 
b. Net Virtual Scarce Water Flows and Water Scarcity by Region (Unit: million cubic meter (106 m3)) 

 
Arrows are proportionate to the size (unit: million cubic meters) of the net flows (net flows = export – import) of virtual water trade: top seven 
China intra-regional, top five Japan intra-regional, top three South Korea intra-regional, and the top ten transnational inter-regional export 
destinations by region in East Asia. Figure 6a-b illustrates the level of water abundance or water stress by region based on Pfister et al. (2009) 
Water Scarcity Index (WSI); dark blue indicates water abundance, light blue slight water stress, pink moderate water stress, red high water stress, 
and dark red severe water stress. 
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c. Net Virtual Energy Flows (Unit: petajoule (1015 joule))  

 
 
d. Net Virtual Agriculture Land Flows (Unit: thousand hectare (103 ha)) 
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e. Net Virtual Green House Gases Flows (Unit: ten thousand metric ton (104 t)) 

 
f. Net Virtual SOx Flows (Unit: ten thousand metric ton (104 t)) 

 
Arrows are proportionate to the size of the net flow (net flow = export – import) of virtual trade: top seven China intra-regional, top five Japan 
intra-regional, top three South Korea intra-regional, and the top ten transnational inter-regional export destinations by region in East Asia. In 
Figure 5c-f, dark blue indicates net virtual exporter and light blue net virtual importer region. Figure 5c-f shows both the largest intra-regional 
and transnational inter-regional net virtual flows embodied in trade: energy (unit: petajoule or one quadrillion joule), land (unit: thousand 
hectare), and GHG (unit: ten thousand metric ton) and SOx (unit: ten thousand metric ton) air pollutants. 
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4. DISCUSSION/CONCLUSION 
 

Globalization increases the interconnectedness of people, places, and the consumption of water-energy-

food. Trade connects consumption of resources, production, and the exchange of products and services 

while at the same time distances impacts on foreign ecosystems. In economic value, China possessed a 

considerable trade deficit with South Korea and a small trade surplus with Japan. However, the results of 

this paper show that China’s current national export oriented economic growth strategy – in the context of 

the hidden virtual flows of water, energy, and food (agriculture land) and environmental pressures – is not 

sustainable. In terms of water-energy-food, China was a substantial virtual net water-energy-food exporter 

to both Japan and South Korea. Overall, via inter-regional trade, China bore the burden of environmental 

pressures associated with the production of exports for the benefit of both Japan and South Korea. 

Competing national priorities and global drivers have a strong influence on the water-energy-food resources 

that requires consideration of withdrawal, environmental degradation, and resource scarcity. The nexus 

approach is, therefore, crucial in identifying entry points in a defined economy to identify and manage 

tradeoffs between the three subsystems and across various spatial scales.  

The WEFN analysis reveals national economic and environmental priorities of each country in the East 

Asia region. China’s significant water-energy-food investment and policy of maintaining 95% self-

sufficiency in grain production signifies the strategic importance of its agriculture sector. China’s 

prioritization of economic growth and trade in low value added sectors ‘wearing apparel and textile 

products’, ‘products for daily use’, ‘household electrical appliances’, and ‘manufactured products’ 

consumes a significant quantity of water-energy-food within its territory to satisfy consumers’ demands in 

Japan and South Korea. For example, Japan’s import from China accounted for 74% water, 79% energy, 

and 100% displaced agriculture land of household consumption for clothing and apparel commodities. 

Similarly, South Korea’s imports from China accounted for 82% water, 36% energy, and 98% displaced 

agriculture land of household consumption for clothing and apparel commodities. China’s national 

priorities surrounding water, energy, and food must necessarily balance between competing demands for 

national production and trade to support economic growth, maintain political stability, support livelihoods, 

and address increasing public awareness and concern over environmental quality (Liu and Mu, 2016). 
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However, increasing competing demands for limited resources has resulted in tension between agricultural 

self-sufficiency and the requirements for water and energy supply for the industrializing economy.  

Trade can be an important mechanism for overcoming a country’s resource bottlenecks of water, 

energy, and food. South Korea’s and Japan’s national priorities place the agriculture sector at a lower 

priority and emphasize the manufacturing and services sectors. Japan’s and South Korea’s post-industrial 

economies (i.e. services and trade-based) are relatively uncoupled from domestic resource constraints. 

National energy and food security are interwoven with trade and foreign policy; e.g., Japan and South Korea 

are the world’s fourth and fifth largest importers of crude oil and second and seventh largest importers of 

natural gas (World Factbook, 2016). Via inter-regional trade with Japan and China, South Korea imported 

and consumed 2.4 billion m3 of virtual water embodied in products and services; significantly contributing 

to South Korea’s total national water footprint of 6.1 billion m3. Trade is an important mechanism for 

overcoming resource bottlenecks, but regional specialization is not necessarily mutually beneficial. The 

production, consumption, and trade of virtual water, energy, and food have negative environmental 

implications. Japan and South Korea externalize environmental impacts by importing low value added and 

pollution intensive commodities produced in China. In 2005, Japan and South Korea externalized virtual 

environmental pressures totaling 4.4 billion m3 scarce water and 270.3 million t GHG and 1.1 million t SOx 

emissions by the consumption of China’s exported goods and services.   

 WEFN interactions take place within the context of global drivers, increasing population and economic 

growth, international and regional trade, demographic shifts and urbanization, and increasing per capita 

prosperity with corresponding changes in lifestyle patterns and dietary demands. These drivers impact 

demand for energy and food production and use of limited water resources. East Asia, particularly China, 

is increasingly an urban society placing greater stress on water, energy, and food needs (ADB, 2013). China 

possesses over 20% of the world’s population, but less than 7% of global freshwater resources. China is 

one of the most water stressed countries in the world. Water consumption is surging in China, particularly 

in the urban and industrial sectors. Annually, almost half of China’s 650 largest cities suffer from water 

shortage. China suffers an estimated 40 billion m3 annual water shortfall; urban water shortage of 5-6 billion 

m3 and irrigation shortfall of 35 billion m3 per year (Kahrl and Roland-Holst, 2008; Hofstedt, 2010). China 
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is the world’s largest energy consumer; as water availability is decreasing, water demand for electricity 

generation is increasing. China is the largest producer and consumer of agricultural products in the world. 

In 2005, China ranked number one in the production and consumption of paddy rice, cotton, wheat, coarse 

grains, corn, pork, chicken (broiler), walnuts, peaches and nectarines, plums, apricots, pears, grapes, and 

apples (USDA 2006a-c, 2008a-b,  2009). As the middle class grows in China, their dietary and lifestyle 

patterns change (e.g. increase in meat and luxury products consumption), consuming more water. China’s 

annual per capita water requirement for food consumption increased from 255 m3 in 1961 to 860 m3 in 2003 

(Chang et al., 2016). China’s large urbanization (more than 100 cities have at least one million inhabitants) 

are also placing increased demands on water and electricity. The prioritization of water for energy 

generation or industrial use over water for agricultural irrigation is increasingly common (Cai, 2008; Biba, 

2016). According to FAO, China’s total water withdrawal in 2005 was an estimated 554.1 km3; comprised 

of 65% (358 km3) for irrigation, 12% (67.5 km3) for municipal use, and 23% (128.6 km3) for industry. In 

comparison, China’s total water withdrawal in 1993 was 525.5 km3; of which, 77% (407.7 km3) was for 

irrigation, 5% (25.2 km3) for municipal use, and 18% (92.6 km3) for industrial use (AQUASTAT, 2016). 

With the continuing growth of China’s economy and level of urbanization, China will require more 

resources to meet its growing domestic consumption, let alone sustain its national export strategy. 

Incorporating water scarcity into water consumption analysis permits a better understanding of the sectors 

causing water scarcity, the geographical distribution of regions suffering from water scarcity, and the 

impact of trade flows on both water-abundant and water-scarce regions. China’s substantial intra-regional 

virtual water flows from water scarce regions to other water scarce or water abundant regions does not 

mitigate the problem of local water shortage; it shifts the problem and increases the ecological inequality 

between China’s regions. China’s overall national level water problem remains the same. Beyond the 

limitation on the availability of freshwater for direct household consumption within regions, there may be 

restrictions from water scarcity on food production and energy development. Similarly, limited energy 

availability (or high energy costs) may constrain the ability to provide adequately clean water and sanitation 

services to population centers or produce food. These interlinkages make it increasingly crucial to account, 

quantify, and comprehend the cross-sectoral impacts and trade-offs in regional, national, and supra-national 
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economies and economic priorities. A government’s prioritization of economic growth and trade policies 

can result in water being diverted to industry and urban areas (over food production), and farm land 

appropriated for urban development. China’s major challenge will be efficiently managing and prioritizing 

its precious water-energy-land resources for domestic needs or export driven economic growth.   

The application and quantification of an environmental WEFN is important to advance our 

understanding of resource management across scales. As this research illustrates, drivers of water-energy-

food consumption can originate from beyond national and regional boundaries; as well as beyond natural 

ecosystem boundaries. Furthermore, there is a mismatch between regional resource availability and 

resource flows destinations, and the lack of consideration for environmental impact of trade policies. More 

often than not, resource scarce countries must make trade-offs decisions between pursuing national 

economic growth, diminishing environmental quality, food security, and trade policies. Trade can mitigate 

local scarcities, but it does so by externalizing resource extraction and pollution. With commodities and 

services being traded across economic and ecosystem boundaries, it is necessary for the management and 

governance of WEFN and the management of associated resources be driven to extend across scales as 

well. In the East Asia region, policy makers should integrate consideration of water, energy, and food 

resources into all aspects of planning and contribute to regional resilience. Building resilience into planning 

requires cooperation and coordinated decision making. Trade, regional integration, and domestic and 

foreign policy must comprehensively incorporate resilience, avoid sector and bureaucratic silos, and 

manage nexus trade-offs effectively. The results of this paper highlight the current WEFN and trade policy 

priorities of China, Japan, and South Korea in order to inform decisions to obtain sustainable solutions.  

As far as the authors are aware, this study is the first tele-connected Water-Energy-Food Nexus 

(WEFN) analysis. The model is set apart from earlier WEFN approaches in that it quantifies the inter-

linkages between all three water-energy-food subsystems and associated environmental impacts at various 

scales – i.e. regional, national, and supra-national – using the harmonized TIIOT. The model is a practical 

tool for decision makers employing a country’s or countries’ nationally published economic, 

environmental, and socio-economic data.  
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Supporting Information 

1. Sectoral Matrix 

15 Sector Classification 76 Sector Classification of the 2005 AIO Table 
Code Description Code Description 

Intermediate Sectors 

1 Agriculture, livestock, forestry and fishery 

001 Paddy 
002 Other grain 
003 Food crops 
004 Non-food crops 
005 Livestock and poultry 
006 Forestry 
007 Fishery 

2 Mining and quarrying 

008 Crude petroleum and natural gas 
009 Iron ore 
010 Other metallic ore 

011 Non-metallic ore and quarrying 

3 Wearing apparel and other made-up textile products 
020 Knitting 
021 Wearing apparel 
022 Other made-up textile products 

4 

Other non-electrical consumption products for daily-
use 

013 Fish products 
014 Slaughtering, meat products and dairy products 
015 Other food products 
016 Beverage 
017 Tobacco 

  
023 Leather and leather products 
025 Wooden furniture 

5 Basic industrial materials 

012 Milled grain and flour 
018 Spinning 
019 Weaving and dyeing 
024 Timber 
026 Other wooden products 
027 Pulp and paper 
028 Printing and publishing 
029 Synthetic resins and fiber 
030 Basic industrial chemicals 
031 Chemical fertilizers and pesticides 
032 Drugs and medicine 
033 Other chemical products 
034 Refined petroleum and its products 
035 Plastic products 
036 Tires and tubes 
037 Other rubber products 
038 Cement and cement products 
039 Glass and glass products 
040 Other non-metallic mineral products 
041 Iron and steel 
042 Non-ferrous metal 
043 Metal products 

6 Computers and electronic equipment 
050 Electronic computing equipment 
051 Semiconductors and integrated circuits 
052 Other electronics and electronic products 

7 Automobiles 
055 Motor vehicles 
056 Motor cycles 

8 Industrial machinery 
044 Boilers, engines and turbines 
045 General machinery 
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046 Metal working machinery 
047 Specialized machinery 

9 Household electrical appliance 
049 Television sets, radios, audios and communication 

equipment 
053 Household electrical equipment 

10 Other processed and assembled manufacturing 
products 

048 Heavy electrical equipment 
054 Lighting fixtures, batteries, wiring and others 
057 Shipbuilding 
058 Other transport equipment 
059 Precision machines 
060 Other manufacturing products 

11 Electricity, gas and water supply 
061 Electricity and gas 
062 Water supply 

12 Construction 
063 Building construction 
064 Other construction 

13 Trade 065 Wholesale and retail trade 
14 Transportation 066 Transportation 

15 Other services 

067 Telephone and telecommunication 
068 Finance and insurance 
069 Real estate 
070 Education and research 
071 Medical and health service 
072 Restaurant 
073 Hotel 
074 Other services 
075 Public administration 
076 Unclassified 

 

 


