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ABSTRACT

This paper presents an optimization framework for the
regionalization problem. Having a set of regions for which
an allocation problem is defined in the presence of nonlinear
spatial characteristics related to grouping of the regions,
one has to solve the allocation-and-grouping problem.

Indications are given as to the nature of nonlinear
spatial characteristics, making the grouping aspect of the
problem appear, together with an exemplary form of the model.

The complexity of a problem thus conceived makes the
direct application of complete enumeration, dynamic programming
and branch-and-bound impossible. Thus, an iterative scheme is
proposed in which the partial and simplified problems are solved
at each step of the iterative procedure.

In order to follow this procedure, a method was required
that would yield groupings or clusters optimizing a certain
objective function. A new, general, objective function for
clustering is formulated, providing both optimal partitions
and the number of clusters. It is presented along with the
method in the second part of the paper in which other methods
of solving the regionalization problem are also reviewed.
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REGIONALIZATION REVISITED: AN
EXPLICIT OPTIMIZATION APPROACH

Jan W. Owsinski

INTRODUCTION

Regionalization has long been treated as a mere statisti-
cal exercise, mainly with a cognitive purpose. 1In fact,
planning models with spatial dimensions usually take an
existing structure as given, or, if a choice can be made,
its--rarely explicit--criteria account for the data accuracy
and model size. On the output side, these models allocate
certain activity magnitudes to regions adopted at the outset.
Although it is recognized that the location/allocation proce-
dure is to a large extent recursive, existing multi-level
techniques also regard the hierarchical structure as given,
focussing on interaction and coordination processes. Methods
applied to decompose systems by such techniques use, again,

mainly numerical facility criteria.

Having said this, attention should be turned to the
theories and analyses which postulate that the existence of
non-trivial phenomena related to spatial structure requires
a normative analysis of this structure. These views have led
to spatial production complex approaches, based upon agglome-
ration and scale economies. The approaches mentioned have
as yet not found any modeling counterparts on the interregional
level. The present summary report shows an outline for a

framework of such a model and for the algorithmic solution

conditions.



PART I. THE REGIONALIZATION-AND-ALLOCATION PROBLEM*
1. Statement of the Problem

Suppose there is a set of basic spatial units to which
one has to allocate resources in such a way that a certain
oﬁtput function defined over possible allocation schemes attains
its maximum. Suppose also that the function to be maximized has
to account for the following items:

a. the units are physically located in geographical
and economic spaces so that besides the efficiency
paraﬁeters there are distances (or proximities)
defined for each pair of them;

b. transportation costs are nonlinear with regard to
distances among spatial units;

c. there are agglomeration economies, relating output
to allocation, .efficiency and distance:

d. agglomeration economies, from c., can only be
realized fully when appropriate administrative
divisions corresporid to them; and

e. the creation/modification of administrative divisions
mentioned in d. is connected with two types of
costs:

i. cost of running the structure; and
ii. cost incurred by moving away from optimality
when efficiencies and distances change, while

administrative divisions remain.

These issues will be commented upon in more detail in I.2.

Thus, an allocation/location problem was linked with
regionalization. The problem generally formulated above would,
even for a possibly simple form of the objective function, be

very complex. It is indeed quite unprecedented in its formulation

*This i1s a shortened summary of a more detailed report, to be
published at a later date, containing all necessary formal
considerations. The present report is meant to provide a general
idea of the problem formulation and methods of solution, to raise
doubts and discussion, and thereby contribute to further work.



since allocation models rarely account for agglomeration econo-
mies and it is unusual for regionalization analyses to apply
global objective functions, to say nothing of the joint conside-
ration of both.

Before proceeding to a more detailed consideration of the
elements of the problem, and therefore the possibilities of its
solution, one important remark is necessary: a set of elements,
together with their attributes and interrelations, can only be
viewed as a system when a goal or purpose has been defined for

it (whether within or outside the system).

This quasi-definition stipulates that a regionalization
procedure can be meaningful only when it has an explicit purpose

or goal.

2. Elements of the Problem

When defining distances among basic units, one should
consider the actual geographical situation (e.g. bordering)
and the socio-economic links (rather than similarities) such as
migratory flows and input/output relations, or simply transporta-
tion flows. This is necessitated by the normative and not the
descriptive nature of the model. It is therefore not useful to
employ a large number of spatial units' characteristics when
defining distances. However, the question of distance proper-
ties remains open since it is closely related to the objective

function formulation and to the solution algorithm.

Each basic spatial unit has an attribute of efficiency
parameter relating an output magnitude, say: net product
value of the unit, to an input magnitude, say: fixed assets

complemented with some current expenditures within the unit.

The transportation cost function is given in such a way that

it refers directly to distances appearing in this problem.

The agglomeration economies are basically given through the
relations of efficiency parameters to such agglomeration-based
magnitudes as, for example, population density, employment, global
product, and again, fixed assets. The fixed assets should not
entail any undue correlation, since the explicit dependence on it

can simply be a constant. Attention should, however, be paid
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to product dependence, insofar as distance and therefore also
the transportation cost function and the effect thereof, might

as well embody product interrelations among basic units.

The hypothesis behind this efficiency function is that it
preserves its validity over larger spatial entities and over
longer time horizons. Thus, on the inter-unit scale, efficien-
cies will change depending upon delimitations of multi-unit
regions. The problem is to determine the overall composition
of regions so as to maximize the global efficiency. This
could be done without reference to the actual allocation of
resources, were it not for two reasons: first, that any structu-
ralization incurs costs in terms of resources currently available,
and second, that actuél allocation changes (although to a
small degree) the parameters of the system. Of these two
questions, the first can be dealt with directly in the model by

means of appropriate modifications to the objective function.
The modifications would have to be left to the post-optimal

analysis phase, whence optima in a broader sense can be found.

3. A Formulation

The considerations presented earlier can now be exemplified
for a possibly simple case.

Assume there is just one type of resource to be distributed,
whose volume is denoted by x, among n basic spatial units, so
that unit i gets X; iex = {1,...,n}., of the resource.

(It would be simplest to take capital as x.) Distances among

units are denoted by dij'

The effect of the spatial organization appears in the
objective function through the efficiency functions based upon

agglomeration economies and the transportation cost functions.

In order to define the objective function dependent on
allocation and spatial structure, let us first introduce
hierarchy H, of the spatial units, i.e. the way in which
they will be organized. A hierarchy H is a subset of the
power set of I, HC2Y, of the form H = {P1,...,Pr}, where P = I,
PY = {1}, and Pk are partitions of the set I, i.e, pk - {Ak1,...,
Akl,.._,AkLk}’ t} Akl = I, AklnAkl' = ¢, 1 # 1'. Furthermore,
1=1



for each k «r and for each 1 such that Akl € Pk there exists

1" such that akl ¢ ak*1.1

such that Akl G AkH’l , where 1" is defined as before. *

kl

, and for each Pk there exists an 1

For any subset A of I, the partial objective function

q(Akl) is defined as:

1

fk(Akl) ] gk(Ak )

k-1,1"
k 1
qakly = Kt = la

akm 1,10kl

1 C A

which for k = 1 amounts to
1 1
. £ (1)-g (1)
q11 = (xl) .
Thus, independent activities are accounted for in every basic
unit and in every grouping of these units; the global output,

however, is determined by their overall structure:

r r
-1,1 £ (1) -g” (1)

Functions f and g correspond to efficiency and transporta-
tion costs, respectively. The illiustration of their presumed
shapes is shown in Figures 1, 2 and 3, together with appropriate
clarifications. These figures will not be commented upon, since
the assumptions behind them seem to be obvious. Forms of f and
g, such as those presented, can be used for a theoretical
analysis meant to show the general dependence of the features
of optimal hierarchy H and allocation X on parameters of these
functions. On the other hand, however, such functions are being
identified empirically as, e.g. in the studies of the optimal

urban size and can therefore be used in an optimal planning model.

This definition is more complicated than the gegeral one, stipu-
lating that for AleH, either alnal’ = ¢ or algal', 1 # 1', but it
is more suitable for the problem considered here.
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Figure 1. Basic spatial unit's efficiency.
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Figure 2. Formation of the aggregate efficiency functions.
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Figure 3. Efficiency decrease due to transportation costs.

The problem is therefore to find HOpt and X0pt such that

t
Q(u°Pt,x°PYy > o(m,x) VHX , K= (xeeeiXgseeeax

subject to

where the second set of constraints stipulates that the spatial
units be given at least some minimal (maintenance) level of the
resource, and that they cannot be given more than they can

consume.

The shapes of f and g, and especially of f depend strongly
on the type of output measure to be maximized. Thus, according
to various types of such measures, different optimal structures

H0pt and allocations XoPt will appear.



4. Computational Questions

The problem as outlined here cannot be solved by complete
enumeration with regard to H, even though for functions £ and
g independent of x one can obtain solutions for H and X separa-
tely. The number of possible hierarchies is absolutely inhibi-
tive for dynamic programming or branch-and-bound techniques,
when only the dimensions of the problem exceed those of
an academic example. This is caused primarily by the fact that
the search has to be performed in the space of hierarchies.
However, even when the problem is artificially constrained by
setting ¥ = 3, i.e. the minimal number of levels for this
formulation, for which just one non-trivial partition is sought,
Pz, the number of possibilities is still too large for any of
these techniques. 1In fact, even for quite simple objective
functions, the optimization methods were used only to find such
optimal partitions P2 which were composed of a given number L,
of subsets AZl.

That is why an approximate approach must be employed,
unless one assumes some very particular properties for the
pProblem.

It is proposed that the procedure would be based upon a
grouping (clustering) algorithm, which will optimize an objec-
tive function, so that its results can be controlled and
relations established with the overall problem. The algorithm
will first optimize the structure with regard to g through the
values dij and then modifications will be brought into dij
based upon values of f for groupings previously obtained. 1In
case of inseparability of H and X these modifications could
also account for the influence of allocated X, on both function

f and g.

It turns out however, that no explicit optimization approach
exists for grouping. Part II comprises a shortened overview of
the approaches available and the proposition of the global
objective function for grouping together with the optimization
algorithm.



PART II. THE GROUPING/CLUSTERING PROCEDURES:
A SEARCH FOR AN OBJECTIVE FUNCTION

1. The Nature of the Trouble

Mathematics is a tautological system. Hence, it is often
conjectured that when taking intuitively obvious elementary
assumptions and rules of reasoning one should reach equally
intuitively obvious results. Experience shows that this is
not true. The main reason is the incapacity of predicting the
far-off consequences of initial assumptions, especially when
there are a number of qualitatively similar assumptions, among
which a choice should be made. This is especially true when the

results have a highly complex and multidimensional nature.

However, for simple cases it is possible to formulate asses-
sments concerning the outlook of the results. When these asses-
sments take on a more precise and general form, i.e. they are
analytically expressed in appropriate formulae, they can be
utilized throughout the solution of the problem, together with
the initial elementary assumptions. Such is, for instance, the
correctional sense of some constraints in the economic problems

formulated as mathematical programming tasks.

The same applies to the clustering problems, encountered in
data analysis, taxonomy, classification, pattern recognition,
etc. There is a choice of elementary assumptions concerning
either local distance, or a similitude of elements in a popula-
tion, or more global in-group homogeneity versus inter-group
diversity criteria. The clustering methods in constructing _
their algorithms are based upon these criteria. Over larger and
complex populations it is difficult to assess the adequacy of the
methods applied, since the results are then by no means intuiti-
vely analyzable. When analyzing simple examples, one can
easily see the inherent biases of the algorithms. In order to
eliminate these biases, or to make them controllable, it is
necessary to impose an explicit global criterion. Furthermore,
it can be hoped that such a criterion could also help in solving
the problem of the optimal number of groups or even optimal hier-
archies in addition to the usually solved problems of group

composition.
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2. The Problem

Having n elements indexed i, 1€I = {1,...,n}, whose

mutual "distances" or "dissimilitudes" dij = dji > 0 define
the triangular matrix D, to find partition Pk of the set I,
Pk = (a®T, LAk, L aKEKy

to one group A#lare more "similar" than those belong to various

such that elements i belonging

other groups.

3. The Elementary Assumptions

These assumptions do in fact constitute an interpretation
of "similarity" or "likeness" mentioned in the problem formula-
tion.

A. The elements i,j are more similar than i,k iff dij < d,

ik*
. kl kl' ..
B. The elements belonging to groups A", A are more similar
than those belonging to A%, a¥'" iff q(1,1') <d(1,1"),

where [Duran and Odell (1974)]

a. d{(l1,1') = max dij
iea®?
)
jeAkl ;
b. d(1,1') = min dij
ieakl
1
ieAkl ;
N , .
c. d(1,1') = Kkl Akl' Zkl dij , [Diday and Simon
: ieAa (19771 ,
L
5eak?!
or any other distance-like function of 1i,j, ieAkl,
. okl
jea r €.9.:
zkl =k1' _ L _ L1
d. d(l,l') = éEI;éETT (Xkl_xkl )T(xkl_xkl ) ,
A T+A
-kl _ 1 _ .
where X'~ = —7 ) Xjr X3 = {xi1"“'xis} being
A L k1
i€A

the vector characterizing point i. Medians or centroids

can also be used;
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The elements i,Jj are similar iff dij < e, where

a. ¢ 1s arbitraily chosen [Bielecka et al. (1979),
Fortier and Solomon (1966), Tremolieres (1979) 1;

b. € is a function of dij' i,j€e1r, e.g., [Bielecka
et al. (1979)]

The elements i,j are more similar than i,k iff

< 6§,

Gij ik ¢ where for ¥(i,j,k), 1i,j,k€1 ,

S < sup (8 S

ij < ik’ and a éij can be outlined from

3K
dij through a simple algorithm given in Diday and
Simon (1977) or in Hartigan (1975).

The elements belonging to the same groups Akl are similar
while those belonging to various groups are dissimilar
[Diday and Simon (1977)1, iff

kl. k kl

YA TE€P Wi, jEA 1

k
, MEA : dij < dim A dij < djm ;
The elements belonging to a group Akl are similar, while
those belonging and not belonging to it are dissimilar

[Kacprzyk and Stanczak (1975, 1978), iff

wakl) = 7 w@d.) < 7 wd,.) =wakh
.kl 1] . -kl .
iea iea
sgak seak?

where w(dij) is a function of "similarity" or "linkage"

decreasing in Rl.
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4. Construction of a Procedure

The initial assumptions formulated here are for the most
part intuitively acceptable, if not obvious--with the exception
perhaps of assumption D. which refers to the notion of ultra-
metric. Having these assumptions, being in fact local similari-
ty/dissimilarity criteria, one can proceed to the construction

of groupings AklePk.

The groupings can be constructed directly on the basis of
assumptions A.B. The method is very simple; at each step two
elements or groupings are merged for which appropriate d is
minimal. Or those are separated for which appropriate d is
maximal (see Bielecka and Szczotka (1978), Byfuglien and Nordgard
(1973) for some such algorithms). In this way, hierarchies H are
obtained, although in no way can they be compared for their

"adequacy".

In the case of the direct pair-wise application of A.B

there is additionally in the definition of a hierarchy:

- [
vk 31 <1t P o (A, L AR T AR pRLY R
1 [
A A

. ]
where Pk is a partition of I containing Akl and Akl .
Obviously, it follows directly from the above definition
that for each AkleH there exists a partition Pk 3 Aki, PkCH.

This condition stipulates..a series {Pk}§=1 of partitions,

{Pk}}r{‘=1 =H, P = {1} , P = I.

Thus, for given I and D, for each of the local criteria B.
a different hierarchy H(B) is obtained. The methods, related to
assumptions B. are referred to as "complete linkage" (Ba),
"single linkage (Bb), "average linkage" (Bc) and the Ward tech-
nique (Bd). Their generalization was proposed in Lance and
Williams (1967) and broadened in Wishart (1971) to include the
Ward technique. Originally, the Ward technique proceeded by
joining these groups, for which the increase of
ikl)T

_zkl

S = z (xl_ ) ’

(xi
ieak!
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resulting from joining was minimal. By denoting the above

¥
value of the "error sum of squares" as Skl, analogous for Akl
kl!' kl k1! kll®
as S , the one for A" uA as S , and the one from Bd as
1
Skl/l it can be shown that
] ] 1
Skll - Skl + Skl + Skl/l .

Hence, the original Ward approach is equivalent to

sequential hierarchical grouping with Bd.

Still another hierarchy can be obtained for a given set of

elements and "distances" when using the ultrametric Gi as

jl
defined in assumption D. In fact, the ordering of Gij’ when

obtained already from dij’ yields directly a hierarchy.

The main advantage of the methods mentioned above is that
they are numerically very simple. However, they do not provide
any measure for determiniming the "best" k among keN [1,...,n],
for H = {Pk}?, neither for a choice of an H among a variety
of them. In establishing a hierarchy, these methods utilize the
wholly local criteria and therefore do not make it possible
to compare their Pk"sfor any k. Thus, in spite of the obvious
biases of some of these methods in terms of "propensities" to
form e.g. larger or smaller groups, only the intuitively tangible
comparisons could be made for simple, unrealistically small
examples. Furthermore, many of the sequential hierarchic
grouping methods cannot be easily used as classifying devices,
i.e. when after a{Pk}? had been found, to locate an n+1-st element

of I‘l = Iu{n+1}, and so on.

Some globality and intuitiveness, although at a loss of
numerical efficiency, is introduced by means of methods based on
assumptions C. These methods may utilize, in addition to Ca,b,
other particular assumptions in order to define operationally
appropriate algorithms. The most "conservative" assumption
following literally Ca would be that a group AEl can be consi-
dered as such iff

vi,jeat

1
, kga®* . dij < EA dik > € A‘djk > e, (1)
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i.e. all points in an Ael are similar and no point similar to
them belongs to an other group. Groups formed in this way can be
called e-homogeneous. Application of the criterion of e-homoge-
neity has the advantage of clear intuitive meaning for the
global saclution, and it also yields such unique global solution,
a partition P(e) composed of L(e) groups. There is, on the
other hand, the additionally important burden of computations.
Moreover, the criterion is rational for points i€I in a metric
space, while dij may not have anything to do with formal dis-
tances. The same can also be said of absolute homogeneity, i.e.
the criterion E.

In practice, both Ca with (1) and E are rarely used for
reasons mentioned above. The requirements of (1) and E can
again be relaxed if an ultrametric Gij is introduced to (1)

and E instead of dij'

Still, intuitive simplicity and obviousness of assumptions
C causes a number of applications based upon them to appear. To
make these elementary assumptions operational in the effective
algorithms some additional assumptions are introduced. Thué, in
the FARRELL and FARRELL-mod [Bielecka et al. (1979)] methods,
it is attempted to locate the spheres Akl of a given predefined
radius, so that

vier J a%t a1

kl kl'

cross sections AT NA + 1 #1' are possibly "small" in terms
k1 k1’ 1

of AT N A and the centers of Ak approximate local gravity

centers.

Another simple and intuitive method thus derived is the
"percolation method", of Tremoliéres (1979), which defines
for each i a set V(i,e),
V(i,e) = {jelldij < el , (2a)

and then a density coefficient v(i,e), e.g.

v(i,e) = V(i,e) . (2b)



The procedure chooses sequentially the maximal
v(i,e) and forms the AEleP(E) from the non-grouped i's
corresponding to these v(i,e). Again, special assumptions
are necessary for classification of boundary points.
Variable e is also utilized in the method proposed by Slater
(1976a). This method is used to analyze dij’ which are not nec-
cessarily symmetric. It requires however, that these values be
doubly standardized, i.e. row and column sums be equalized.
Thus defined, the distance matrix serves to develop the
hierarchy by sequentially analyzing links whose values are
i??zldij to zero. In this way

consecutive grouping patterns appear, analogously to "single

higher than the ¢, decreasing from

linkage" or "nearest neighbor" procedure. Soundness of indivi-
dual groups appearing in the hierarchy is checked via special

additional techniques.

The gravity method [Bielecka et al. (1979)] starts with
the assumption Cb, and groups the non-grouped i's which
fulfill it. Special classification assumptions for i's to be
added to existing Akl's are based upon either variance or

arithmetic average statistics.

The local criterion F does not yield, by itself, a unique
partition P, but rather a family of groups Akl which can be used
to form a hierarchy of partitions Pk. An additional criterion,
i.e. that a group AkL contains similar elements, [Kacprzyk and
Stanszak (1975, 1978)] 1iff

vaXl ¢ Akl, W(akl> > W(Akl) ' (3)

is used to make the minimally interconnected subnetworks tech-
nique operational. Criterion (3) can hardly be referred to as
intuitive. It yields, however, very good computational proper-
ties. A hierarchy H" = {Pk}f, obtained by using this method, is
much "flatter" than the "full" hierarchies obtained from assump-
tions B, i.e. r < n. The method, has in fact, a "bias" towards

"greater" groups.

In Slater (1976b), conditions similar to (3) serve to

define the so-called nodal regions-groups, i.e. such that they
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have weaker links (greater distances) with other regions than the
elements being the nodes of the groups. Because of the specific
formulation, this problem is approached in a manner similar to

that of Slater (1976a).

5. Objective Functions

The methods described above, were referred to as local
and this feature was said to be partly offset by the intuitively
obvious nature of most of the assumptions on which the appro-
priate procedure is based. This qualification of locality should
be commented upon. Since it is a partition P (or a hierarchy H)
that is being sought, the qualifications of locality or globality
should refer to a capacity of search in the space of P's (or H's).
From this point of view the methods mentioned could not even be
called local insofar as they do not offer any possibility of
comparison and choice among various P's (H's). They only deter-
mine one P (or one H), and those which determine an H usually do
not provide any possibility for choosing pX out of Pk{f}= H.
Certainly, each of these methods can be complemented with
measures of the (relative!) groups stability, as it was done by
Slater or Tremolieres. Thus, through the methodological back door
some possibility of comparison is introduced.

Obviously, the possibility of comparison can only be realized
through the simultaneous explicit consideration of all groupings
entering a P. Hence, an overall objective function or its proxy
should be constructed.

Another comment refers to the nature of the iterative
numerical processes leading to the establishment of a solution.
As we have seen in the example of assumptions B. and C., the
essential change in the character of the solution (H or P) does
not necessarily entail a change in the nature of the iterative
process (although it may). Thus, in assessing a method, more
attention should be paid to the uniqueness and comparativeness
of the final results rather than to the course of the procedure.

A number of objective functions have been proposed for
solving the grouping problem. Some of these are presented below
together with their "natural" extensions based upon previously

formulated initial assumptions.
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*
G. Partition Pk is better than partition Pk iff [Duran and
Odell (1974), Jensen (1969)]
%? _ z d2 < %? _1 X d2
el =kl l] & =k]1%* " ij 7
m=1 A i,jeAkl m=1 i,jeAkl
i< i< 3
s k . . k* .
H. Partition P 1is better than partition P iff
Lx Ly
! =k 25T ) dij ) *kl*z—kl* L
= A A - = A A - . . *
1=1 A7 (A 1) i,jeAkl L=1 A (A 1) 1,36Akl
i< 3 i <3
s k . s k* |,
I. Partition P is better than partition P iff [Duran and
Odell (1974)]
max (max dij) < max (max dij) :
*
1 i,jeakt 1 i,jeakt
s k . s k*
K. Partition P’ is better than partition P iff
Lx Ly
74,1 > o d(,1n*
1,1'=1 1,1'=1
1<1"

1<1'

where d(1,1'), and d(1,1')* are inter-group distances defined

in any of the ways given in assumption B., for partitions Pk
k* .

and P respectively.

L. Partition Pk

*
is better than partition Pk iff [Mulvey and
Crowder (1979)]

e
) yod..x.. < ) ) LLX.L*
i€1 jeg I I i€r jég I I
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where JCI is a set of eligible centers (usually J=I), and

z X.. = 1 ¥i
jeg 1
X. = L
xij < xjj vi,J

{0,1} Vi,j 14

()]

X -
1]
which indicatesa 0-1 programming problem. It is being solved

using a sub-gradient method applied to the relaxed Lagrangian

form of the initial problem.

*
M. Partition Pk is better than partition Pk iff [Bielecka and

Szczotka (1978)1],

2 *2
S0, 5o
2 *2
SI SI
L L
k k
where s? = y d2(1,1'), and s2 = y :l— ¥ a2,
o) . _ I &, =kl ij
1,1'=1 1=1 A . ...kl
L l,]eA
1l < .
<3

L
N. Partition Pk is better than partition Pk iff [Diday and
Simon (1977)]

* *
w(rE,p%) < wrr*,p*Y)
K K1 KLy
where R" is a set {r ',...,r }CI of the "representatives" of
k1 kLk KL kl . . =kl _
groups A ,...,A , such that r C A (in particular r = 1)

and the function W can, e.g. be defined by



All the objective functions presented provide a comparison
of "goodness" of partitions Pk, i.e. partitions of I, into a
given number of groups Lk' This is caused by the fact that the
functions G. through N. display similar characteristics as
the procedures built upon assumptions B. through F., i.e. they
refer to only one side of the initial grouping problem, either
internal homogeneity of groups or external dissimilarity. The
same applies to M. since the quotient imposed amplifies the one-
sided effect rather than balances the two. Thus, the values of

these objective functions for optimal Pk are monotonic with
regard to Lk'

A point which becomes increasingly important with the intro-
duction of the objective functions is the numerical efficiency of
algorithms. The merit of most of the procedures based upon the
local assumptions A. through F..lies in their simplicity. The same
can hardly be said of optimization procedures with regard to G.
through N. Some refer to the dynamic programming philosophy
[Jensen (1969)], others utilize special iterative algorithms
kL)
and global (with respect to P) optima [Diday and Simon (1977)].

The algorithm proposed by Diday has essential numerical advan-

based upon properties connecting local (with respect to A

tages, especially from the point of view of memory requirements.
However, it requires a good initial guess and does not safeguard
against cycling phenomena. Dynamic programming, although robust

in reaching solutions, is more cumbersome in calculations.

Thus, in order to solve the grouping problem in its absolute
form, i.e. together with Ly different objective functions have
to be developed. This, however, can make the computational pro-
blems even more difficult; therefore, very little effort has been
made to construct such global objective functions and the corres-
ponding algorithms. An example of such a function is verbally
cited in Fortier and Solomon (1966) after Holzinger and Tyron.

It can be formulated as:

c . *
O. Partition P is better than partition P iff

wl} |OUI
UllOU-lk

[
o
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where
- 2 L
D = D) I dis
(@] L -1 -1 l=1 . eAl ) eAl ) 1]
§ A (n-A") * ]
1=1 1'>1

is the inter-group average distance among pairs ij, and

7R (@E-1) i<j
1=1

is the intra-group average distance among pairs i,]J.

This global function has been abandoned because of the
computational difficulties resulting from its form which hardly
lends itself to algorithmic simplifications. Hence, Fortier and
Solomon have tried another approach, which consists in construc-
ting the objective function such that in some way it utilizes

assumption C. Thus,

P. Partition P is better than partition P* iff

C(P) > C(p*) ’

where C(P) = . Ze i and 954 = (dij-e) ©Yi§r with Yiy = +1
»JEL
i< 3
when i and j are in the same Al and Yij = -1 otherwise.

It can easily be shown that function C has the basic property
that ensures the existence of a non-trivial maximum over its

maximal values for various L, i.e.

LoPt # {1} and LOoPt # {n} '

opt _ opt max(

= max (C L)) = max (max C(PL))} .

L L PL

Furthermore, this function is very simple and can be construc-

where L {Lopt|c

ted for various e values directly from the appropriately modified
matrices D(e). Fortier and Solomon investigated the application
of this function for a relatively small example (n=19) and focussed
on € = 0.5. An extension provided in their study did not consider
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the elaboration of a more efficient algorithm for optimizing the
function proposed bur rather its application for a very specific

purpose, related to factor analysis.

Thus, the present author proposes another, g¢enreral, form of

the global objective function.

Q. Partition P is better than partition P* iff
Q(P) > Q(P*)

where Q(P) = (1-0) 7 w.. + le Zl d;j
i,jea A" iea";
i<] €A

i i L v »Rr1U{0}, such that
wij is a function w(dij)’ R+U{O; R+

o > .
1. dij < dik @w(dij) w(dlk)
2°. azj = Qij = 1, with bars denoting averages

*

dij obtained from the initial dij through

& 2% _nm-n o %ig

] i,jer *J
i<j

and ce(0,1).

The intuitive sense of this function is obvious - it

rejuires maximization of the intra-group "similarities"

together with maximization of inter-group "dissimilarities".

We can, for instance, set

*max *min *
di' . - d,.
w(d, ) = J 1] 17 ,
ij *max *min _ 1
ij ij
*max *min . .. , .
where dij and dij denote maximum and minimum distances in

D*, respectively.

It can easily be shown that for the non-trivial case, i.e.
when only dT3¥ > §, . > g™"¢
ij ij ij _ . _

a maximum for some LOPEteN(1,n), provided a certain simple condi-

, the objective function P(Q) reaches

tion on P holds. When p = % and w(dij) is defined as above,
1

Q(I) = Q({I}) = gn (n-1).
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6. The Algorithm

First, the triangular matrices D* and W are formed,
according to the averaging formula given earlier. Then
another triangular matrix is formed, WD*, composed of the
elements

: W, .
wd,, = — =3 -
ij wij + de

These elements are then ordered in the decreasing sequence,
so that

1
En(n—1)

1 _ .

wd = max wdij and wd min wdij
i,jer i,jer

Obviously, the sequencing thus obtained is identical with

that for wij‘

The algorithm consists in consecutive determination of
optimal P's for decreasing values of p. For p = 1, pOPt _ I.

At each consecutive p = wdk, the condition is checked

- *
(1-p) ) . Wig > P ) diy -
iea iea

jea™ jea™

1

where wd® = wd_,, aéA , beA™. When this condition is fulfilled,

’
the groupings AT, A™ are merged, when not, the check will

be repeated at every subsequent wdk, until it is fulfilled.
Note: in this way, the optimal partitions P°pt(p), which form
a hierarchy, but not an optimal hierarchy HoPt are obtained.
There is, indeed, no search in the space of H's. The simple
algorithm outlined here can, in fact, be easily adopted to the
search of HOPt provided the function Q(H) is defined, analo-
gous to Q(P), in which the distances on various hierarchy
levels are accounted for, or an ultrametric measure 6Ij is
used together with its counterpart wij’ defined as for de

and wij‘
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