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Abstract 

This paper introduces empirical relations between the death rate at a given age and the 
remaining life expectancy at that same age. The relations prove to be of prediction 
accuracy exceeding that of the common alternative, extrapolation of the death rates into 
older ages based on data at younger ages. Being close in accuracy to models by Horiuchi, 
Coale and Mitra, the proposed models may be of use in cases when the latter models may 
not be applied because of either lack of data on old-age mortality or violation of the 
underlying assumptions, such as population stability. Combining the proposed models 
with constrained extrapolations of old-age mortality will be a useful tool in estimating 
and projecting old-age mortality, completing life tables for young cohorts and extending 
model and empirical life tables to old age. 



 iv

Acknowledgments 

The research leading to these results has received funding from the European Research 
Council under the European Union's Seventh Framework Programme (FP7/2007-2013) / 
ERC grant agreement no ERC2012-AdG 323947-Re-Ageing. 



 v

About the Authors 

Dalkhat Ediev is a Research Scholar with the World Population (POP) Program at the 
Wittgenstein Centre (IIASA, VID/ÖAW, WU), International Institute for Applied 
Systems Analysis, Vice-Rector and Professor with the North-Caucasian State 
Humanitarian-Technological Academy, and Professor at the Lomonosov Moscow State 
University (Demography Chair, HSMSS).



 1

Expectation of life at old age predicted from a single death rate: 
Models and applications 

Dalkhat M. Ediev 

1. Introduction 

Estimating the length of life at old age is a particularly complicated issue for populations 
with limited and deficient data which include even some developed nations (Duthé et al. 
2010; Khlat & Courbage 1996; Kibele et al. 2008; Preston et al. 1996). Some of the 
problems with data quality at old age may be successfully addressed by pooling the 
problematic age groups into an extended open age interval and applying indirect methods 
to estimate the respective remaining life expectancy (Horiuchi & Coale 1982; Mitra 1985; 
Coale 1985). In many cases, however, the indirect methods are not efficient because of 
either violations of the underlying assumptions, such as stability of population age 
composition, or the lack of necessary data. They cannot be applied, for example, to 
construct life tables for birth cohorts with incomplete life histories. The only conventional 
method usable in such cases is extrapolation of the death rates from younger to elder ages 
using a mortality model. Extrapolation is a usual practice in extending empirical data to 
old age (Mathers & Ho 2014), building model life tables (UN DESA/Population Division 
2017) and correcting original data at old age (Wilmoth et al. 2007; Kontis et al. 2017). 
Accuracy of the extrapolation method, however, appears to be poorer than usually 
presumed (Ediev 2017). 

Here, we consider another method that surpasses in accuracy the current 
workhorse, the extrapolation of the death rates from younger ages, and is comparable in 
its accuracy to the indirect methods of Horiuchi-Coale and Mitra. The idea of the method 
is to make use of the tight empirical association between the death rate at given old age 
 ௔, and the remaining life expectancy at that same age, ݁௔. Figure 1 shows associationܯ ,ܽ
patterns of cohort remaining life expectancy at various old ages ܽ between ages 55 and 
95 years and three life table functions at the same age: The death rate ܯ௔ (logarithmic 
scale), the age ܽ itself, and the surviving probability from the cohort radix to age ܽ, ݈௔, 
for Swedish men and women using the entire data set contained in the Human Mortality 
Database (HMD 2017) and covering birth cohorts 1751 to 1923 (173 cohort life tables). 
Associations of the remaining life expectancy with the age or the survival proportion are 
of weak explanatory power, as expected for such a wide range of mortality profiles. Yet, 
the pair ሺ݁௔,ܯ௔ሻ is tightly correlated, even if with a small drift over time (calendar years 
are marked by shades in the figure). Our idea is to make practical use of the latter 
association. The work is organized as follows. In the next section, the data sources and 
methods are briefly characterized. In Section 3, we discuss model parameterizations and 
prediction accuracy on HMD data. Examples of the models’ applications are presented in 
Section 4 that is followed by a concluding discussion. 
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2. Data and methods 

This research relies on cohort and period data from the Human Mortality Database (HMD 
2017). We use the life tables from the HMD that are partly based on smoothing and 
extrapolating the raw death rates at ages above 80 years. The HMD data are used in fitting 
the regression models presented in the Section 3 and in some of the discussed 
applications. To eliminate less reliable historical entries and for a better comparability of 
period and cohort models, we restrict data to ages a=55 to 85 years and to calendar years 
1800 and later (years 1806 and later for birth cohorts). We have also excluded data for 
Iceland, Luxemburg, New Zealand-Maori, and Northern Ireland for their small 
population size. Estimating model parameters, we use the standard function lm() for linear 
regression analysis from R package (R Core Team 2016). 

3. Model specifications and fit 

Given the curvilinearity of the association between the death rates and the remaining life 
expectancy (Figure 1), we use the log-log regression model with additional terms 
accommodating for finer effects of the death rate, the age-sex effects and (optionally) the 
period effect1. Separately for cohort and period data, we consider two regression models 
explaining variations in remaining life expectancy at ages a=55 to 85 years, data 
pertaining to years 1800+ for period life tables and 1806+ for birth cohorts (1806 is the 
first year when an HMD cohort enters age 55 years). In the first, less detailed, model we 
drop the period effect and only examine effects of the death rate, age and sex: 

݈݊ሺ݁௔ሻ ൌ ܥ ൅ ݇ଵ݈݊ሺܯ௔ሻ ൅ ݇ଶܯ௔ ൅ ݇ଷܯ௔
ଶ ൅ ݇ସܽ ൅ ݇ହܽଶ ൅ ݇଺ܵ݁ݔ ൅  (1) ,ߝ

here, ܥ, ݇ଵ, ݇ଶ, … , ݇଺ are the model parameters (see Table 1 for estimates), ‘Sex’ is the 
categorical variable with the reference value ‘Total’, ߝ is the error term. In more detailed 
models, we also include the period effect: 

݈݊ሺ݁௔ሻ ൌ ܥ ൅ ݇ଵ݈݊ሺܯ௔ሻ ൅ ݇ଶܯ௔ ൅ ݇ଷܯ௔
ଶ ൅ ݇ସܽ ൅ ݇ହܽଶ ൅ ݇଺ܵ݁ݔ ൅

݇଻ܲ݁݀݋݅ݎ ൅  (2) ,ߝ
here, ܥ, ݇ଵ, ݇ଶ, … , ݇଻ are the model parameters (see Table 2 and Figure 2), ‘Sex’ and 
‘Period’ are the categorical variables with the reference values ‘Total’ and the first 
observation year (1806 for cohorts, 1800 for periods), ߝ is the error term. Altogether that 
makes four models: two cohort models and two period models. 

The non-linear terms, except for the log-death rate, are of less importance in all 
models and are dominated by the corresponding linear terms. 

                                                 

1 We have also examined alternative specifications including cohort, survival, country and interaction 
effects. Those alternatives did not yield substantially lower residual standard errors as compared to the 
models presented here. It is worthwhile noting that the remaining life expectancy is positively influenced 
by the survival proportion ݈௔ that may be related to a selection effect. A weaker association of the survival, 
as compared to the period effect, with the life expectancy and its correlation with the period suggest that 
the survival effect may channel the period effect when the latter is dropped from the model. This may also 
suggest that the death rate at single age, our main explanatory variable, may be less strongly associated 
with the current mortality conditions than when it is supplemented by the survival function. In any case, 
addition of the survival function only marginally improves the model fit (in the fourth digit of the residual 
standard error) and we exclude it from analysis, although further studies may reveal interesting selection 
effects. 
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Figure 1. Cohort remaining life expectancy ݁௔, vertical scale, years, at various ages ܽ 
between 55 and 95 years as function of the death rates ܯ௔ at age ܽ (upper panels, death 
rate in the log scale), age ܽ (middle panels) and cohort proportion ݈௔ survived to age ܽ 
(lower panels). Sweden, men and women, shades mark calendar years to which the data 
pertain. 
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Table 1. Estimates of regression model with no period effect. Reference category for the 
variable ‘Sex’: Total. 

Explanatory variable Coefficient Std.Error 
Cohort model  

Intercept 2.79E+00 1.50E-02 
݈݊ሺܯ௔ሻ -3.07E-01 8.96E-04 
 ௔ -4.56E+00 2.95E-02ܯ
௔ܯ

ଶ 7.12E+00 8.54E-02 
ܽ -2.56E-02 3.60E-04 
ܽଶ 1.24E-04 2.61E-06 

Sex: Females -1.52E-02 3.30E-04 
Sex: Males -6.80E-03 3.30E-04 

Period model  

Intercept 2.88e+00 6.86e-03 
݈݊ሺܯ௔ሻ -2.77e-01 3.29e-04 
 ௔ -4.32e+00 1.21e-02ܯ
௔ܯ

ଶ 6.65e+00 3.59e-02 
ܽ -2.39e-02 1.76e-04 
ܽଶ 9.47e-05 1.28e-06 

Sex: Females -1.79e-02 1.70e-04 
Sex: Males -4.19e-03 1.70e-04 

Note: All coefficients are significant at p-value <2e-16. Cohort model summary: Residual 
standard error: 0.03782 on 83684 degrees of freedom. Multiple R-squared: 0.9939, 
Adjusted R-squared: 0.9939. F-statistic: 1.954e+06 on 7 and 83684 DF, p-value: < 2.2e-
16. Period model summary: Residual standard error: 0.04002 on 358528 degrees of 
freedom. Multiple R-squared: 0.9938, Adjusted R-squared: 0.9938. F-statistic: 8.176e+06 
on 7 and 358528 DF, p-value: < 2.2e-16. 

 

The age effect is negative and may be related to the mortality compression 
(Kannisto 2000; Wilmoth and Horiuchi 1999). When examining the effect of age as a 
categorical variable (Figure 3), it largely remains linear in terms of age supporting the 
parametric form of the effect used in our models. One may also note in Figure 3 small 
regularities around ages 60, 70 and 80 that seem to be pointing to some age heaping 
problems in the HMD.  

The period effect does not add much to the model fit, especially in the period data. 
Yet, its evolution over time is an interesting reflection of mortality changes. The period 
effect has increased in the second half of the 20th century when adult and old-age mortality 
were markedly decreasing (hence, life expectancies were increasing). The stronger 
increase of the effect in cohort data is a clear reflection of the tempo effect: when mortality 
declines, period exposures to any given range of the death rate are compressed as 
compared to the cohort exposures (Ediev 2008b, 2013b). It may also be interpreted as a 
lag effect, because cohorts remaining lifespans, at any given point in time, cover some 
future calendar periods. The tempo effect seems to be the major driver here, however, 
because the period effect of the cohort model has substantially exceeded the maximum 
values of the period effect of the period model, although the two models started with 
similar levels of the effect.  
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Table 2. Estimates of regression model with period effect included (see Figure 2 for the 
period effect). Reference category for the variable ‘Sex’: Total. 

Explanatory variable Coefficient Std.Error 
Cohort model  

Intercept 2.90E+00 1.80E-02 
݈݊ሺܯ௔ሻ -2.37E-01 6.87E-04 
 ௔ -3.66E+00 2.12E-02ܯ
௔ܯ

ଶ 5.98E+00 5.88E-02 
ܽ -1.63E-02 2.67E-04 
ܽଶ -1.94E-05 2.05E-06 

Sex: Females 2.88E-03 2.34E-04 
Sex: Males -2.76E-02 2.39E-04 

Period model  

Intercept 2.94E+00 7.32E-03 
݈݊ሺܯ௔ሻ -2.39E-01 3.45E-04 
 ௔ -3.96E+00 1.11E-02ܯ
௔ܯ

ଶ 6.13E+00 3.27E-02 
ܽ -2.07E-02 1.61E-04 
ܽଶ 3.72E-05 1.20E-06 

Sex: Females -8.27E-03 1.60E-04 
Sex: Males -1.46E-02 1.62E-04 

Note: All coefficients are significant at p-value <2e-16. Cohort model summary: Residual 
standard error: 0.02526 on 83481 degrees of freedom. Multiple R-squared: 0.9973, 
Adjusted R-squared: 0.9973. F-statistic: 1.466e+05 on 210 and 83481 DF, p-value: < 
2.2e-16. Period model summary: Residual standard error: 0.03681 on 358313 degrees of 
freedom. Multiple R-squared: 0.9947, Adjusted R-squared: 0.9947. F-statistic: 3.049e+05 
on 222 and 358313 DF, p-value: < 2.2e-16. 

 

The gap between the period effects in cohort and period models is also indicative 
of the mortality inertia – a prospect of further mortality decline in a process when young 
cohorts with lower initial death rates replace the older cohorts of higher mortality and 
contribute to future mortality declines at older ages (Ediev 2011). These compositional 
dynamics – of younger cohorts of lower mortality replacing older cohorts with higher 
mortality – will only stop when the gap between the cohort and period remaining life 
expectancies diminish. 

We examine estimation errors of the regression models by comparing the 
estimated remaining life expectancies ݁௔ to the original HMD estimates. We also assess 
the estimation errors for the life expectancy at birth as error in the remaining life 
expectancy at age ܽ multiplied by the survival probability: 

ሺ݁଴ሻݎݎ݁ ൌ ሺ݁௔௘௦௧ െ ݁௔ሻ݈௔, (3) 
here, ݁௔௘௦௧ and ݁௔ are the model-based and original HMD estimates of the remaining life 
expectancy, ݈௔ is the survival function of the original HMD life table.  
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Figure 2. Period effects in the cohort and period models of the remaining life expectancy. 

 
 

Figure 3. Age effects in the cohort and period models of the remaining life expectancy 
(age 55 is the reference category). 
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For the cohort data, we also compare errors of the regression models to those of 
the common extrapolation method (errors of the latter method on period data are available 
elsewhere (Ediev 2016)). To this end, for any given age ܽ, we fit the Kannisto mortality 
model at ages ݔ ∈ ሾܽ െ 19, ܽሿ (20 years-long base) and use it to extrapolate the death 
rates to ages ݔ ൐ ܽ until age 110, with no jump at age ܽ. Extrapolated rates are used to 
build the life table and estimate the remaining life expectancy ݁ ௔ in the usual way (Preston 
et al. 2001). For the extrapolation, we use the Kannisto model (Doray 2008; Thatcher et 
al. 1998) with the background mortality term: 

௫ܯ ൌ ݉ ൅ ஼௘್ೣ

ଵା஼௘್ೣ
, (4) 

where ݉ is the background mortality, ܥ and ܾ are the model parameters.  

In Figures 4 and 5, we present estimation errors of the life expectancy at birth for 
the cohort and period models (2) at selected ages ܽ for which the remaining life 
expectancy was found from the model. Estimation errors of the extrapolation method are 
presented in Figure 6. Root mean square errors (RMSE) are summarized in Tables 3 and 
4 for selected ranges of the life expectancy at birth and modeled ages ܽ. 

Naturally for a log-linear model, estimation errors increased as life expectancy 
increased. Estimation errors of ݁଴ increase with life expectancy but decrease with model 
age ܽ, because of the modulation by the survival function in Equation (3). For the 
remaining life expectancy, RMSEs are highest at lower and higher ends for the cut age ܽ 
and reach a minimum at around age ܽ ൌ 65. 

On cohort data, model (1) without the period effect has considerably higher errors 
than model (2) with the period effect. The difference is especially large for female 
cohorts. For female cohorts with life expectancy 70-80 years, for example, at ܽ ൌ 85, 
RMSE of model (1) was 0.13 years against RMSE 0.07 years for model (2).  

For cohort data, for males and for the total population, choosing the model age at 
least ܽ ൌ 75 years guarantees RMSE of life expectancy at birth about 0.1 years or less in 
model (1). For female cohorts with life expectancy 60 years or larger, one should increase 
the model age to ܽ ൌ 85 years to produce RMSE 0.1 years or less (apparently, the same 
may apply to male cohorts, missing in our dataset, with ݁଴ above 70 years or both sexes 
combined with ݁଴ above 80 years). 

For the period model, inclusion of the period effect was not important, perhaps 
because the effect was already indirectly absorbed by grouping data into calendar years. 
This comes in strong support to our model showing that the effects of age and death rate 
on the remaining life expectancy do not change much over time. The period effect was 
more significant for the cohort data simply because it has captured year-to-year variations 
in mortality conditions along the lifespan of a birth cohort.  

The patterns of the errors of our method (increasing along with increasing life 
expectancy) are similar and of the same order of magnitude as the errors of the Horiuchi-
Coale and Mitra methods (Ediev 2016) and much lower as compared to the life table and 
extrapolation methods. In Table 3 we reprint selected root mean square errors from Ediev 
(2016) for the Mitra and extrapolation models and compare them to our results for the 
regression model (2) with the period effect, all applied to period female data of the HMD 
to obtain the remaining life expectancy at age 75. Although the Mitra (and, similarly, 
Horiuchi-Coale) methods produces more accurate estimates than our models, the 
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difference is small when compared to the extrapolation method. The extrapolation method 
seems to produce even larger errors on cohort data than it was reported to produce on 
period data. On both the cohort and period data, errors of the extrapolation method are 
several times larger as compared to the errors of either of the regression models proposed 
here. 

Before proceeding to the models’ applications, it is worthwhile discussing the 
parameter space where the models may safely be applied. As noted above, the age effect 
seems to be rather close to linear even when the age is treated as categorical variable 
(Figure 3) which suggests the regression models (1) and (2) may be extended somewhat 
beyond the age range 55 to 85 years that we examined. Nonetheless, it would be risky to 
extend the models to old ages where the terms quadratic in age start contributing 
substantially to the result. The models should also be used with caution at ages 
considerably younger than 55 years where the mortality curve may be substantially 
different. As a simplified rule of thumb, we would not recommend using the models 
beyond range 50 to 90 years. Extending the models beyond the ranges of the death rates 
in our data (1st and 99th percentiles of ܯ௫ were about 0.007 to 0.21 for the birth cohorts 
and 0.005 to 0.22 for the period life tables) should also be discouraged, because the death 
rate is the primary predictor in our models and the mortality curves’ behavior outside the 
observed ranges may differ from what our models predict.  

 

Table 3. Selected RMSEs for three model for the expectation of life at ages 75+. 
 

e0 range, 
years 

 RMSE in e0 by model (years) 

Sex a Regr. (1) Regr. (2) 
Mitra 
(regr.) 

Extrapol. 

Females 40...50 75 0.06 0.05 0.05 0.16 
Females 50...60 75 0.12 0.12 0.08 0.25 
Females 60...70 75 0.14 0.15 0.09 0.29 
Females 70...80 75 0.23 0.25 0.13 0.56 
Females 80...90 75 0.34 0.30 0.27 2.11 

Note: e0= life expectancy at birth; a= age at which the remaining life expectancy is 
estimated from the model; “Regr. (1)/(2)”=regression model (1) or (2) without/with the 
period effect; “Mitra (regr.)”=Mitra model with the mean population age indirectly 
estimated as in (Ediev 2016); “Extrap.”=extrapolation of the death rates using the 
Gompertz model; “RMSE” = root-mean squared estimation errors. 

Source: results for the regression model (2): own calculations; results for the Mitra and 
extrapolation models: (Ediev 2016). 
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Figure 4. Estimation errors of the life expectancy at birth based on remaining life 
expectancy at selected ages ܽ (shown to the right-hand side from the panels) obtained 
from model (2) with period effect on cohort data. Horizontal axis: Original HMD 
estimates of the life expectancy at birth. 
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Figure 5. Estimation errors of the life expectancy at birth based on remaining life 
expectancy at selected ages ܽ (shown to the right-hand side from the panels) obtained 
from model (2) with period effect on period data. Horizontal axis: Original HMD 
estimates of the life expectancy at birth. 

 

  



 11

Figure 6. Estimation errors of the life expectancy at birth based on remaining life 
expectancy at selected ages ܽ (shown to the right-hand side from the panels) obtained 
from extrapolations of the age-specific death rates using the Kannisto model (4) on 
cohort data. Horizontal axis: Original HMD estimates of the life expectancy at birth. 
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Table 3. Root-mean squared estimation errors (absolute and percentage values) of estimates of the life expectancy at birth and at given age 
a, cohort data 

 e0 
range, 
years 

 RMSE in e0 by model (years) RMSE in ea by model (years) Percentage RMSE in ea by model (%) 

Sex a Extrap. Regr. (1) Regr. (2) Extrap. Regr. (1) Regr. (2) Extrap. Regr. (1) Regr. (2) 
Females 40...50 55 10.62 0.35 0.25 29.44 0.69 0.50 99.75 3.45 2.50 
Females 40...50 65 1.65 0.21 0.15 7.95 0.49 0.36 27.98 3.69 2.72 
Females 40...50 75 0.20 0.08 0.06 6.70 0.30 0.20 9.26 3.81 2.62 
Females 40...50 85 0.02 0.01 0.01 9.42 0.16 0.12 5.80 3.78 2.86 
Females 50...60 55 16.94 0.48 0.42 38.69 0.78 0.69 117.59 3.32 2.96 
Females 50...60 65 2.62 0.22 0.18 10.42 0.40 0.33 30.14 2.47 2.10 
Females 50...60 75 0.32 0.10 0.07 6.04 0.25 0.18 8.22 2.60 1.91 
Females 50...60 85 0.04 0.03 0.02 8.63 0.17 0.13 4.24 3.21 2.47 
Females 60...70 55 17.53 0.78 0.61 35.98 1.05 0.81 92.18 3.91 3.03 
Females 60...70 65 2.63 0.45 0.27 11.70 0.66 0.40 20.52 3.62 2.12 
Females 60...70 75 0.80 0.20 0.14 5.90 0.35 0.25 11.62 3.08 2.15 
Females 60...70 85 0.12 0.07 0.05 7.80 0.21 0.17 6.07 3.38 2.78 
Females 70...80 55 3.40 0.92 0.99 21.04 1.11 1.19 14.48 3.93 4.22 
Females 70...80 65 3.86 0.33 0.29 14.17 0.42 0.37 24.61 2.17 1.85 
Females 70...80 75 1.39 0.31 0.20 6.35 0.47 0.31 16.44 3.77 2.45 
Females 70...80 85 0.23 0.13 0.07 7.42 0.31 0.17 8.29 4.73 2.59 
Males 40...50 55 6.63 0.42 0.39 19.92 0.82 0.76 70.15 4.29 3.93 
Males 40...50 65 1.00 0.17 0.14 6.55 0.43 0.35 20.08 3.30 2.67 
Males 40...50 75 0.17 0.07 0.05 6.97 0.31 0.19 9.39 4.15 2.62 
Males 40...50 85 0.02 0.01 0.01 9.55 0.13 0.10 5.28 3.25 2.41 
Males 50...60 55 8.21 0.79 0.63 21.06 1.22 0.97 61.95 5.77 4.73 
Males 50...60 65 1.10 0.36 0.20 6.72 0.68 0.39 15.22 4.71 2.71 
Males 50...60 75 0.21 0.11 0.05 6.55 0.33 0.15 6.71 3.89 1.79 
Males 50...60 85 0.03 0.02 0.01 8.91 0.12 0.10 5.13 2.52 2.12 
Males 60...70 55 4.25 0.82 0.85 14.47 1.11 1.13 26.92 4.99 5.15 
Males 60...70 65 0.58 0.46 0.26 6.35 0.73 0.41 6.14 4.67 2.65 
Males 60...70 75 0.27 0.14 0.09 6.14 0.31 0.20 5.79 3.22 2.06 
Males 60...70 85 0.08 0.02 0.02 8.48 0.11 0.10 7.04 2.18 2.01 
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 e0 
range, 
years 

 RMSE in e0 by model (years) RMSE in ea by model (years) Percentage RMSE in ea by model (%) 

Sex a Extrap. Regr. (1) Regr. (2) Extrap. Regr. (1) Regr. (2) Extrap. Regr. (1) Regr. (2) 
Total 40...50 55 8.38 0.33 0.23 23.76 0.66 0.46 77.55 3.34 2.32 
Total 40...50 65 1.28 0.18 0.12 7.23 0.45 0.29 23.80 3.38 2.19 
Total 40...50 75 0.18 0.08 0.05 6.79 0.31 0.19 9.00 4.07 2.47 
Total 40...50 85 0.02 0.01 0.01 9.44 0.13 0.10 5.40 3.25 2.49 
Total 50...60 55 9.96 0.61 0.45 26.24 0.96 0.71 73.45 4.13 3.16 
Total 50...60 65 1.50 0.38 0.22 8.05 0.69 0.39 19.23 4.27 2.42 
Total 50...60 75 0.31 0.12 0.06 6.18 0.33 0.17 7.51 3.49 1.76 
Total 50...60 85 0.05 0.02 0.02 8.58 0.13 0.09 5.08 2.55 1.81 
Total 60...70 55 9.39 0.78 0.69 21.99 1.05 0.91 54.06 4.21 3.71 
Total 60...70 65 0.65 0.55 0.28 7.91 0.84 0.43 5.66 4.82 2.36 
Total 60...70 75 0.52 0.15 0.10 5.81 0.30 0.20 8.46 2.83 1.78 
Total 60...70 85 0.11 0.05 0.04 7.95 0.18 0.14 6.72 2.98 2.36 
Total 70...80 55 0.85 0.30 0.48 15.65 0.36 0.57 3.93 1.35 2.22 
Total 70...80 65 0.79 0.47 0.19 9.39 0.63 0.25 5.80 3.44 1.38 
Total 70...80 75 0.92 0.09 0.09 5.86 0.16 0.15 13.19 1.40 1.31 
Total 70...80 85 0.24 0.08 0.02 7.51 0.24 0.07 10.93 3.84 1.13 

Note: e0= life expectancy at birth; a= age at which the remaining life expectancy is estimated from the model; “Extrap.”=extrapolation of the 
death rates using the Kannisto model (3) with background mortality term; “Regr. (1)/(2)”=regression model (1) without the period effect or 
(2) with the period effect; “RMSE” = root-mean squared estimation errors; “Percentage RMSE” = root-mean squared estimation errors as 
percent of original HMD values. 
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Table 4. Root-mean squared estimation errors (absolute and percentage values) of estimates of the life expectancy at birth and at given age 
a, period data 

 
e0 

range, 
years 

 RMSE in e0 by model (years) RMSE in ea by model (years) 
Percentage RMSE in ea by model 

(%) 
Sex a Regr. (1) Regr. (2) Regr. (1) Regr. (2) Regr. (1) Regr. (2) 

Females 40...50 55 0.34 0.29 0.67 0.58 3.80 3.28 
Females 40...50 65 0.16 0.15 0.42 0.39 3.69 3.52 
Females 40...50 75 0.06 0.05 0.27 0.24 4.02 3.59 
Females 40...50 85 0.01 0.01 0.24 0.24 5.77 5.84 
Females 50...60 55 0.48 0.50 0.77 0.81 3.90 4.03 
Females 50...60 65 0.25 0.26 0.49 0.50 3.84 3.83 
Females 50...60 75 0.12 0.12 0.37 0.36 4.96 4.80 
Females 50...60 85 0.02 0.02 0.23 0.24 5.11 5.34 
Females 60...70 55 0.67 0.56 0.83 0.71 3.92 3.33 
Females 60...70 65 0.33 0.34 0.49 0.51 3.57 3.64 
Females 60...70 75 0.14 0.15 0.32 0.33 3.89 4.04 
Females 60...70 85 0.03 0.03 0.20 0.22 4.22 4.64 
Females 70...80 55 1.10 0.93 1.20 1.02 5.00 4.24 
Females 70...80 65 0.58 0.54 0.70 0.66 4.20 3.98 
Females 70...80 75 0.23 0.25 0.36 0.39 3.63 3.97 
Females 70...80 85 0.07 0.07 0.23 0.24 4.19 4.38 
Females 80...90 55 1.09 1.00 1.14 1.04 3.91 3.57 
Females 80...90 65 0.62 0.54 0.69 0.60 3.41 2.96 
Females 80...90 75 0.34 0.30 0.42 0.37 3.35 2.99 
Females 80...90 85 0.10 0.10 0.19 0.20 2.98 3.11 
Males 40...50 55 0.27 0.28 0.54 0.56 3.14 3.19 
Males 40...50 65 0.14 0.13 0.38 0.35 3.54 3.19 
Males 40...50 75 0.05 0.04 0.27 0.24 4.49 3.94 
Males 40...50 85 0.01 0.01 0.18 0.18 5.28 5.30 
Males 50...60 55 0.42 0.42 0.66 0.67 3.69 3.53 
Males 50...60 65 0.21 0.21 0.43 0.41 3.76 3.35 
Males 50...60 75 0.08 0.07 0.28 0.23 4.13 3.38 
Males 50...60 85 0.01 0.02 0.20 0.19 5.40 5.09 
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e0 

range, 
years 

 RMSE in e0 by model (years) RMSE in ea by model (years) 
Percentage RMSE in ea by model 

(%) 
Sex a Regr. (1) Regr. (2) Regr. (1) Regr. (2) Regr. (1) Regr. (2) 

Males 60...70 55 0.76 0.62 0.95 0.76 4.96 3.93 
Males 60...70 65 0.36 0.33 0.57 0.51 4.42 3.87 
Males 60...70 75 0.12 0.12 0.30 0.29 3.84 3.72 
Males 60...70 85 0.03 0.03 0.19 0.20 4.21 4.49 
Males 70...80 55 0.91 0.82 1.00 0.90 4.36 3.93 
Males 70...80 65 0.45 0.36 0.57 0.45 3.54 2.83 
Males 70...80 75 0.14 0.13 0.24 0.23 2.57 2.38 
Males 70...80 85 0.04 0.04 0.15 0.15 2.90 2.94 
Males 80...90 55 0.87 0.83 0.91 0.87 3.33 3.18 
Males 80...90 65 0.68 0.61 0.78 0.69 4.04 3.61 
Males 80...90 75 0.23 0.20 0.31 0.27 2.69 2.30 
Males 80...90 85 0.10 0.10 0.23 0.24 3.89 4.00 
Total 40...50 55 0.28 0.25 0.56 0.50 3.18 2.85 
Total 40...50 65 0.15 0.14 0.40 0.38 3.69 3.49 
Total 40...50 75 0.05 0.05 0.26 0.24 4.08 3.79 
Total 40...50 85 0.01 0.01 0.18 0.19 4.77 5.03 
Total 50...60 55 0.40 0.41 0.63 0.67 3.31 3.38 
Total 50...60 65 0.22 0.20 0.42 0.40 3.51 3.22 
Total 50...60 75 0.09 0.08 0.30 0.27 4.24 3.78 
Total 50...60 85 0.02 0.02 0.19 0.19 4.64 4.62 
Total 60...70 55 0.80 0.56 0.99 0.69 4.83 3.35 
Total 60...70 65 0.35 0.31 0.53 0.45 3.84 3.31 
Total 60...70 75 0.12 0.12 0.27 0.27 3.42 3.45 
Total 60...70 85 0.03 0.03 0.17 0.19 3.59 4.06 
Total 70...80 55 0.88 0.72 1.00 0.80 4.32 3.47 
Total 70...80 65 0.55 0.46 0.70 0.58 4.29 3.62 
Total 70...80 75 0.18 0.18 0.31 0.31 3.20 3.29 
Total 70...80 85 0.05 0.05 0.18 0.20 3.27 3.66 
Total 80...90 55 0.94 0.86 0.99 0.91 3.47 3.20 
Total 80...90 65 0.71 0.63 0.81 0.71 4.01 3.49 
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e0 

range, 
years 

 RMSE in e0 by model (years) RMSE in ea by model (years) 
Percentage RMSE in ea by model 

(%) 
Sex a Regr. (1) Regr. (2) Regr. (1) Regr. (2) Regr. (1) Regr. (2) 

Total 80...90 75 0.21 0.22 0.27 0.29 2.20 2.29 
Total 80...90 85 0.09 0.10 0.19 0.20 3.05 3.19 

Note: e0= life expectancy at birth; a= age at which the remaining life expectancy is estimated from the model; “Regr. (1)/(2)”=regression 
model (1) without the period effect or (2) with the period effect; “RMSE” = root-mean squared estimation errors; “Percentage RMSE” = 
root-mean squared estimation errors as percent of original HMD values. 
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4. Selected applications 

Models linking the remaining life expectancy to the death rate at given age may be used 
to estimate expectation of life at old age when the Horiuchi-Coale or Mitra methods are 
not applicable either because of the absence of reliable mortality data or because of 
violations of the underlying assumptions of those methods such as stability of population 
age structure. In combination with the constrained extrapolation method (Ediev 2017), 
the models may be used to extend and complete life tables in the absence of mortality 
rates at older ages. This is particularly useful in cohort analysis where most of younger 
cohorts of interest have incomplete life history.  

This possibility is illustrated in Figures 7 and 8 where we present results of 
projecting death rates for HMD cohort populations whose life tables were completed 
using model (2) (the period effect was fixed constant at the level of the year 2000 for all 
the following years) and the constrained Kannisto model with the background mortality 
term. Kannisto model at ages ݔ ൐ ܽ was constrained to the remaining life expectancy ݁௔ 
estimated from the regression model, where model age ܽ, for each cohort, was set to the 
maximum age with available data (see Ediev 2017 for details of constrained 
extrapolation). The method was applied only to the cohorts with death rates available 
until, at least, age 65 years (i.e., for birth cohorts born around 1949 depending on data 
availability in the HMD). The cut age ܽ did not exceed 90 years, because the HMD 
provides its own extrapolations for cohorts with data up to age 90. The death rates were 
only extrapolated when the death rate at the eldest age with available data was in the range 
0.002 to 0.2 (see the above discussion of the ranges of applicability of the models).  

Figure 7 depicts results for cohort life expectancy at birth and Figure 8 depicts 
corresponding interquartile ranges (IQR, a measure of mortality compression or 
rectangularization Kannisto 2000; Wilmoth & Horiuchi 1999). Extrapolations suggest 
robust continuation of extension of cohort lifespans in developed countries. The life 
expectancy at birth for cohorts currently in their mid-60s may exceed 80 years for females 
and 77 years for males. These numbers are not all that unexpected given the already 
achieved levels of period life expectancy. Our results also indicate near end of the era of 
mortality compression and come in support to works describing mortality (especially the 
cohort mortality) as shifting along the age scale with only limited compression (Canudas-
Romo 2008; Ediev 2013b; Ediev 2013a; Sasson 2016). Cohort IQRs seem to stabilize 
around the level of 20 years, i.e., 50 percent of deaths in birth cohorts currently in their 
60s or younger, may be concentrated in ages spanning over 20 years only – as compared 
to 60-70 years in older generations. 
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Figure 7. Life expectancy at birth (vertical axis, years) for birth cohorts (horizontal axis): 
HMD estimates (black dots) and extrapolations based on completing cohort life tables for 
younger cohorts using model (2), selected HMD populations, males (blue crosses) and 
females (red crosses). Numbers to the left-up and right-down indicate, respectively, 
female and male life expectancy at birth for the youngest HMD cohorts having data for 
age 65 (the cohorts are shown next to their life expectancies); in the brackets: Maximum 
attained period life expectancy at birth for the given HMD population. 
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Figure 8. Inter-quartile ranges (IQR, vertical axis, years) of life table deaths distributions 
for birth cohorts (horizontal axis): HMD estimates (black dots) and extrapolations based 
on completing cohort life tables for younger cohorts using model (2), selected HMD 
populations, males (blue crosses) and females (red crosses). Numbers to the left-down 
and right-up indicate, respectively, female and male IQR for the youngest HMD cohorts 
having data for age 65 (the cohorts are shown next to IQRs); in the brackets: Minimum 
attained IQR in period life tables for the given HMD population. 
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In our next example, we apply our models to improve UN and Coale-Demeney 
families of model life tables (UN DESA/Population Division 1982; Coale et al. 1983) at 
advanced old age. We use the version of the model life tables extended by the UN 
Population Division to cover life expectancy at birth 20 to 100 years and single years of 
age 0 to 130 (UN DESA/Population Division 2017). The extension to age 130 involved 
a two-step procedure: Using the Gompertz model at ages 80-99 and then applying the 
Kannisto model from age 100 onwards. This extrapolation procedure, apparently, might 
have broken the relation between the death rate and the remaining life expectancy at age 
79. To reinstall this relation, we correct the model life tables above age 79 by applying 
the period data-based model (1) and – in order to retain the diversity of the model life 
table schedules – by supplementing the model by the effect of the model life table family. 
To this end, we run linear regression linking the life table family and the log-ratio of the 
original model life tables’ life expectancy ݁௔ to the life expectancy estimated from model 
(1). In doing so, we restricted the input data from the original model life tables to ages 50 
to 70 to limit the influence of originally extrapolated rates on our estimates. We have also 
restricted the inputs to the range of the life expectancy at birth levels 40 to 80 years to 
limit the influence of extrapolations used to extend the original dataset to life expectancies 
beyond the empirically observed ranges. Results of the estimation of life table family 
effects follow in Table 5. 

 

Table 5. Estimates of effects of model life table families on log-life expectancy. 
Model life table families Effect 

Coale-Demeny MLT:  
East -0.0379 
North 0.0071 
South -0.0587 
West -0.0079 

United Nations MLT:  
Chilean 0.0447 
Far_East_Asian 0.0238 
General 0.0235 
Latin 0.0391 
South_Asian 0.0128 
 

Note: Effects are obtained from linear model for the log-ratio of original model life tables’ 
remaining life expectancy at ages 50-70 to life expectancy predicted from model (1): 
ln(ex/ex.predicted) ~ 0 + MLT Effect. 

 

Supplementing model (1) by the life table family effects, we predicted remaining 
life expectancy at age 79 for each of the model life tables and used constrained 
extrapolations to fill the death rates at ages 80-130. For the extrapolation, we used the 
Kannisto model with the background term fit at ages 60-79, with no jump at age 79, whose 
growth parameter b was adjusted to meet the constraint in terms of the remaining life 
expectancy at age 79. Detailed tables of corrected model life tables are available from the 
author. Most substantial differences between the original and our corrected model life 
tables occur at high values of life expectancy at birth. Our corrected model life tables 
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produce somewhat a higher level of mortality compression at high values of life 
expectancy at birth, while the original model life tables (more so the UN families for 
females) produced patterns less compressed even as compared to the recent data on 
developed countries. This is illustrated in Figures 9 (females) and 10 (males) where we 
present Inter-Quratile Ranges (IQR) of the original and corrected distributions of deaths 
in model life tables as functions of life expectancy at birth. Another difference is that our 
correction suggests mortality compression levelling off, which is consistent with the 
above results for cohort life tables and with empirical evidence on populations advanced 
in lifespan extension (Canudas-Romo 2008; Ediev 2013b; Ediev 2013a; Sasson 2016). 
Meanwhile, the original model life tables, despite lack of compression as compared to the 
current experience of low-mortality countries, suggest an eventual acceleration of 
mortality compression. Notably, usual unconstrained extrapolations after age 79 would 
result in even faster acceleration of mortality compression than the two-step procedure 
used by the UN (detailed results not shown here). Ours is a one-step extrapolation that 
enables to produce results more consistent with the current experiences in developed 
countries and more plausible in the long run. Overall, our corrected life tables seem to 
evolve more regularly, as compared to the original model life tables, into the area of 
extended lifespans. 

 

Figure 9. Inter-quartile ranges (IQR, vertical axes) and life expectancy at birth (horizontal 
axes) in model life tables, females: Original (panel to the left) and corrected using the 
model (1) supplemented by the life table family effect (panel to the right). Correction 
applies to ages 80+. Blue triangles: UN life tables; red circles: Coale-Demeny life tables. 
Grey circles: HMD period life tables, females. 
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Figure 10. Inter-quartile ranges (IQR, vertical axes) and life expectancy at birth 
(horizontal axes) in model life tables, males: Original (panel to the left) and corrected 
using the model (1) supplemented by the life table family effect (panel to the right). 
Correction applies to ages 80+. Blue triangles: UN life tables; red circles: Coale-Demeny 
life tables. Grey circles: HMD period life tables, males. 

 

  

 

Indeed, the two examples presented above do not exhaust all the applications of 
the model. It may be applied to mortality projections. The idea is to combine models for 
the expectation of life and mortality at old age with the conventional extrapolative 
projection models at younger ages. Most conventional mortality projections assume a 
continuation of linear trends over time of log-death rates in each age (Carter & Lee 1992; 
Booth & Tickle 2008; Shang et al. 2011; Stoeldraijer et al. 2013; Ediev 2007; Ediev 
2008a; Waldron 2005; Li & Lee 2005). A problem of such methods appears at advanced 
old age where trends of mortality decline start, typically, with considerable time lag after 
the mortality decline has advanced at younger ages. In such situations, extrapolative 
projections being able to capture declining trends at young ages may fail to foresee onsets 
of mortality declines at older ages. As a result, all extrapolative projections of mortality, 
if not specially adjusted at old age, tend to produce levelling off improvements in life 
expectancy contrasting to long-term empirical trends showing no leveling off (White 
2002; Oeppen & Vaupel 2002; Stoeldraijer et al. 2013). Although more optimistic 
alternatives exist that employ lower death rates shifting from young to old age (Bongaarts 
2005; Ediev 2011), those alternatives appear to be overly optimistic and less stable at old 
age because of neglect of mortality compression. Our idea is to construct a middle 
approach where mortality at young and young adult age is extrapolated continuing the 
historical time trends, like in the conventional extrapolations, while mortality at older age 
is projected by combining the models of remaining life expectancy and the constrained 
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mortality extrapolation by age. Interestingly, such approach implemented cohort-wise is 
an improvement of the idea of mortality inertia. Mortality inertia implies that a birth 
cohort that reaches a certain age with a mortality level lower than that of elder cohorts in 
the same age, can keep the mortality advantage through the rest of its lifespan and reach 
an old age with mortality lower than in the current period life table even assuming 
constant mortality conditions (Ediev 2011). The method proposed here will do exactly 
that: Younger cohorts reaching the model age a with lower mortality will be predicted to 
have longer remaining lifespans which, in turn, will imply their lower death rates at older 
ages. 

5. Concluding discussion 

The association between the age-specific death rate and the remaining life expectancy at 
the same age appears to be strong enough to be practically useful. The regression models 
– with or without the period effect – outpace in prediction efficacy the common 
alternative for reconstructing the missing death rates at old age, the extrapolation method 
(on both cohort and period data). Our method is comparable in its accuracy to the 
Horiuchi-Coale and Mitra methods. This is remarkable given that the latter models use 
empirical data on deaths and population structure in the open age interval, while our 
method is based on a single death rate.  

Although our method only produces the estimate of the remaining life expectancy, 
not the death rates at old age, the latter may be efficiently reconstructed using the life 
expectancy estimate to constrain the extrapolation (Ediev 2017) as illustrated by the 
examples in the previous section. 

The ability to extend incomplete life tables and project mortality to old age is 
important for actuarial analyses, especially for cohorts and subpopulations without full 
life tables available. For many sub-populations, such as educational and occupational 
groups, specific populations targeted by businesses, or newly emerging and expanding 
social groups, there is, usually, no mortality data covering elder ages or elder cohorts – 
subject top stronger selection in the past – are not informative about expected old-age 
mortality for younger cohorts. Death rates at younger adult ages, however, are more 
readily available and of higher quality. In such cases, the models proposed here may be 
used to reconstruct the entire mortality schedules of the subpopulations of interest. 

Inclusion of the country effect did not improve performance of the models 
presented here. In cohort model (2), for example, inclusion of the categorical country 
variable reduced the residual standard error (r.s.e.) from 0.0253 to only 0.0248. Including 
interaction of period and country effects (both categorical) and restricting data to years 
1900+ has further reduced the r.s.e. to 0.0185. Nonetheless, considering country effects 
might be a useful strategy when the focus is on a specific country or a group of countries. 
When forecasting mortality in a specific country, for example, one may estimate 
parameters of the models presented here on data for a group of countries/regions with 
similar mortality dynamics and re-fit the period effect on data for the country of interest. 
Scenarios for the country-specific period effects may then be a part of more nuanced and 
accurate mortality forecasts. 

Data quality permitting, the models for the remaining life expectancy may be 
applied to data extending beyond the limiting age 85 used in this paper. Although this is 
not a simple task as yet (both the HMD and even the Kannisto-Thatcher database rely on 
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breaking down the open age intervals data using mortality models), increasing survival to 
old age may provide possibilities for further developing the models at advanced old ages. 

By and large, the cohort- and period-type models are consistent with each other 
and suggest model parameters of a similar magnitude. Yet, the two model types do differ 
from one another (cohort models suggest longer remaining lifespans and less mortality 
compression). This reflects the particular historical period, of epidemiological transition, 
to which the source data pertains. The cohort models suggest IQRs stabilizing for the 
currently young cohorts at levels around 20 years, while the period models suggest levels 
of about 12 years. This difference is consistent with the mortality tempo theory (Ryder 
1951; Bongaarts & Feeney 2002; Ediev 2008b) that suggests, roughly, that period life 
table deaths distributions should be compressed by about 1/(1-0.4)=1.67 times as 
compared to the cohort life tables when lifespan of birth cohorts increases by about 0.4 
years (as in Figure 7) from one cohort to the next one. These differences rise an interesting 
and practically important question about which of the two model types is better to be used 
in mortality forecasts. If lifespan developments are assumed to continue into the future 
without cooling off, both models should produce consistent results about future mortality. 
If one assumes sudden acceleration or, vice versa, slowing down of the pace of lifespan 
extensions, however, the two models may lead to different predictions about mortality 
developments. This matter deserves a separate study, in a context of application to the 
mortality forecasts.  
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