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A b s t r act

An experiment is defined as a random variable which may

take some posterior probability distributions according to a

marginal probability. Elementary properties of this definition

with respect to information value theory are derived as well

as their practical implications.



1. Introduction

The concept of the value of information is one of the

cornerstones of Decision Analysis [H, R]. It is ordinarily·

presented as a consequence of Bayes' theorem. Now, experiments

may indeed be presented in terms of conditional probabilities,

thus the use of Bayes' theorem, or directly as a random variable

which may take some posterior probability distributions according

to a marginal probability. Equivalence between the two approaches

have long been recognized in the statistics literature (see [B-G])

however the second approach does not seem to have attracted much

theoretical attention from decision analysts in spite of some

practical advantages (see example 1. 4.3 in [R.-SJ).

The objective of the paper is to investigate some elementary

properties of this second definition of experiments with respect

to information value theory. The practical significence of these

properties is also studied.



2. The Value of Information Revisited

2.1 Definitions

Let us first define what shall be referred to as the

classical decision problem.

Definition 2.1.1 The classical decision problem, consists

in the selection of an action among a set of feasible actions

A = {a} given a set of possible states of nature 3 = {s}, a

prior probability distribution on S,

and a utility function u Co,.) defined on Ax 3, with values on

the real line. CA and 3 are assumed finite).

Experiments with respect to this classical problem may now

be defined in two alternative ways.

Definition 2.1.2 An experiment E, defined ln normal form,

consists of a finite set of possible events E = {e} and a matrix

of conditional probabilities Q = {q = Prob {e/s}} E s£Ses e£ ,

Definition 2.1.3 An experiment E, defined ln extensive form,

consists of a finite set of possible events E = {e}, a set of

posterior probability distributions on 3,{Pe

a marginal probability distribution on E,

and

* * * *A = {Ae}e£E A > 0, ~ A = 1)e e ,
e£E

which satisfy for all s£3,

* s s
~ AePe = PO

e£E



-2-

Both definitions are equivalent in the sense that one may go

from one to the other by means of Bayes' theorem.

A classical decision problem and an experiment for this

problem generate what might be called a "derived problem"

(see Chapter 6 in [S]), in which one is interested in selecting

the best strategy, namely an action for each possible event.

Comparing certainty equivalents in both problems and the cost

of the experiment, one then decides whether or not to carry out

the experiment. These practical considerations lead to the

concept of the value of information.

P represents the set of all probability distributions on S.

For all PEP, let u* (0) be the maximal expected utility

associated with the classical decision problem, that is:

for all PEP, u*(p) = Max E
a£A seS

sp u(a,s)

Proposition 2.1.4 The expected value of information, EVI,

associated with an experiment E defined in extensive form may

be expressed as:

E
eEE

~ u*(p ) - u*(p )
e e 0

Proof: This is a standard result in Decision Analysis. I I



Assuming a linear utility for money, the EVI may be

interpreted as the maximal price at which one should be

willing to bUy the experiment.

2.2 Comparing Experiments Defined in Extensive Form

Denote by PE the smallest convex subset of P which contains

the vectors {Pe}e£E and for any real valued continuous function

f (0) on P, let Cav f (0) be the minimal concave function*
PE

greater or equal to f (0) on PE. Let EVI (polE) be the expected

value of information associated with the classical decision

problem and an experiment E defined in extensive form.

Proposition 2.2.1

EVI (polE) ~ Cav u*(p ) - u*(p )
P 0 0

E

Proof: Since u* (0) is a convex function on P as being the point

wise maximum of a set of hyperplanes, its concavification

depends only on the values taken on the boundary of PE' the

concavification of which in turns, depends only on the values

taken on {p } Denote bye e£E'

A = {A = {Ae}e£EIA e ~ 0, ~ Ae = 1,
e£E

then there exists some AO£A such that

,

* g( ) is a concave function on P if and only if for all

PI and P2 in P and all A£(O,l):

g(APl + (1 -A)P2) ~ Ag(Pl) + (1 -A)g(P2)



and for all A£A, L
e£E
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D
A u*(p ) >e e A u*(p )e e

By definition 2.1.3 tEA, hence the proposition holds. I I
We shall now characterize the experiments for which (2.2.1)

is in general an equality. Define the P-class of classical

decision problems as all problems for which S and PO in P

remain fixed whereas A and u(e:e) are allowed to vary.

Definition 2.2.2 The experiment E is said to be efficient

if and only if (2.2.1) is an equality for all problems in the

P-class.

Note that the definition is meaningfUl since in order to

define an experiment associated with a classical decision problem

we need only know S and PO that is, the P-class.

Proposition 2.2.3 An experiment E, defined in extensive

form, is efficient if and only if the vectors {Pe}etE are

linearily independent.

Proof: Assume that E is inefficient then there exists a class-

ical decision problem in the P-class such that (2.2.1) is a

strict inequality. Hence the particular AD in A defined in

proposition 2.2.1 and ~, which is also in A, are different.

SUbtracting L
etE

= Po and L
etE

~pe e = p o we obtain a linear

dependence relation between the {p} Ee e£ .

Reciprocally, since Po belongs to the convex hull of

{p} ~ it may be expressed as a convex combination of linearilye et~

independent vectors {p} E (using Caratheodory's theorem), soe e£

that ~f the set {Pe}e£E is linearily dependent A,contains at
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least two points. It is now a simple matter to construct a

classical decision problem for which (2.2.1) is a strict

inequality. II

Corollary 2.2.4 An experiment defined in extensive form,

is inefficient if and only if at least one of the following

conditions hold

(i)

(ii)

there exists some elEE such that p E PE _ {e }'
e l 1

there are more points in E than in S.

Proof: Th:is is an immediate equivalence of the linear dependency

of the vectors {p }e ee:E.

A typical illustration of the first condition is the

II

case in which for some e1e:E, Pe = PO. Then it lS intuitive
1

that the experiment is inefficient since we may very well end

up with the same posterior probability distribution as our

prior distribution. If p is not too different from PO thene l
the experiment will remain inefficient. How close it has to

be for inefficiency is made precise by the corollary.

The second condition is more difficult to interpret,

essentially it is a question of dimensionality brought in by

the finiteness of the set S.

Eventually, experiments should be compared in terms of

EVI's. This comparison is easily facilitated for efficient

experiments since then they may be partially ordered indepen-

dently of the particular decision problem in the P-class.



Definition 2.2.5
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An experiment El is said to be more

informative than an experiment E2 if and only if for all

problems in the P-class,

Proposition 2.2.6 For an efficient experiment El to

be more informative than an experiment E2 , a necessary and

sufficient condition is that PE C PE .
2 1

Proof: As a simple property of the Cav operator, PE~ PE2 1

is equivalent to

for all convex functions f(o) on P. Since (2.3.1) is an

equality for efficient experiments the proposition follows. I I

We shall conclude this section showing how the comparison

of experiments in extensive form 1S related to their comparison

in normal form. The parallel of this presentation with Blackwell

and Oirshick' s study on the subj ect [B-O] will become apparent.

Proposition 2.2.7 For any experiment E, the vectors

Proof:

{p} E are linearly independent if and only if the vectorse ee:
( I?! - (q ) ) are linearly independent.'"l,'e - es ee:S ee:E

Denote by R the matrix {ps}· and by T the matrixe ee:E,se:S

{t:}ee:E,se:s in which t: = P:/A e for all (e,s) in ExS.
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According to Bayes theorem q _ tS e Since for all (e,s)
es - ePa.

* s
{Pe}eE:E independentin ExS A > a and Pa > a, the vectors are

e

if and only if the vectors {te}eE:E are independent and the

vectors {t} E are independent if and only if the vectors
e eE:'

{qe}eE:E are independent.

may thus replace the set {p} E by the set {q} Ee eE: e eE:

II

in our development. In particular we obtain that an experiment

EI is more informative than an experiment E2 if the vectors

{q } are linearly dependent on the vectors {q} E'e eEE e eE:2 I

This result was derived directly by Blackwell and Girshick for

experiments in normal form, hence the equivalence of the two

approaches.

3. Practical Implications

The study of experiments in extensive fors lead us to the

derivation of some elementary properties. These properties

may now be used to somewhat simplify the decision analysis of

practical situations in the following way:

(i) if one has to select one and only one experiment

from a given set of equally costly experiments then

proposition 2.2.6 may be used as a dominance criterium

(see section 6-4 in [S] for general comments on the

sUbject) to delete less informative experiments,

(ii) if one has to design an experiment then efficient

experiments have clearly some advantages (in

principle one may "redesign" an inefficient ~xperiment

so as to obtain an efficient one by modifying the
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the marginal probabilities), then corollary 2.2.4

offers guidelines; moreover the marginal probability

distribution need not be specified for efficient

experiments since it is uniquely determined by the

requirement

A* Pe e ,

(iii) if one has to evaluate an inefficient experiment

then proposition 2.2.1 gives an upperbound for the

EVI (in this sense it is an improvement over the

well known inequality EVI < EVPI (perfect information),

this upperbound may be derived with less computation

than the EVI : the branches such that p EP
e E - {e}

J"

need not be evaluated, for instance in the example

1.4.3 in [R-S] the experiment is inefficient since

p EP{ }, it may be seen that
z2 zl,z3

Max L A u*(p ) =
AEA z z

~ u*(p ) + 1 u*(p ) =
o zl b z3

35.83

whereas the actual EVI is 25.25 and EVPI is 70); then

the knowledge of an upperbound for the EVI may

enable the analyst to cut off some branch in a

decision tree.
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