

IIASA's Water Futures and Solutions Initiative Opportunities for African Lake and River Basin Organisations

AMCOW, RECs and L/RBOs Workshop

Simon Langan, Director Robert Burtscher, Stakeholder Engagement and Liaison

Dar es Salaam, 26-27 July 2017

IIASA, International Institute for Applied Systems Analysis

Potential population exposed to severe water scarcity

Africa

Change:

2010: 11% of total population or 105 -108 m people 2050: 12% or 220 - 280 m people

Water scarcity Imbalance between supply and demand

Changes in cultivated land – Africa

- Cultivate land will increase by 20-50% till 2050
- Irrigated land will increase by 25-40% till 2050

 African cropland expansion is likely to come with significant deforestation (20-54 m hectares by 2050)

Water Futures and Solutions (WFaS) Initiative

Towards Innovative Solutions through Integrative Water Futures Analysis

Austrian Development Cooperation

Water Futures: Scenarios & Quantitative Assumptions

Socio-economic challenges for adaptation

SSP1: The world is moving toward sustainability

SSP characteristics

- Improved resource use efficiency
- More stringent environmental regulations
- Rapid technological change is directed toward environmentally friendly processes
- Management of global commons improves.

Implications for Manufacturing Water Use:

- Manufacturing industries with efficient water use and low environmental impacts are favored.
- Enhanced treatment, reuse of water, and water-saving technologies;
- Widespread application of water-saving technologies in industry

 Table 3 Qualitative technological changes on water use intensities in the domestic and industry sectors according to HE-regions.

			l		Ν	Λ	H	1	N	Λ
		socio-economic capacity	ро	or	ri	ch	Ri	ch	Po	or
		hydro-climatic complexity	lo	w	lo	w	hi	gh	hiį	gh
			HE	-1	HE-2		HE-3		HE-4	
>	SSP1	Sustainability Quest (SSP dominant)	HL	В	НМ	В	HH	Α	НМ	В
м	SSP2	Business as Usual (SSP as HE)	ML	D	MM	С	MH	В	MM	С
L	SSP3	Fragmentation (HE dominant)	LL	E	LM	D	LH	с	LM	D

Table 4 Applied annual efficiency change rates as derived for different classes.

Α	В	С	D	E			
1.2%	1.1%	1%	0.6%	0.3%			
highest lowest							

Why to engage stakeholders and experts?

Sustainability (Agenda 2030 and beyond) **Nexus Sustainability Pathways** 2 3 Today

Nested Approach: four tiers (case Africa)

solutions towards Water Security in 2050

Socio-economic change - Population

Lake Victoria basin

From 46 Mio. people in 2010 to 87 – 120 Mio. people in 2050 (+ 90% - 260% depending on scenario)

LVBC Strategy 2016 - 2021:

From 44,9 m people in 2015 to 59.5 m people in 2025

Change in built-up area in EAC

Socio-economic change - GDP

GDP(PPP) - Middle of the Road

Middle of the Road scenario:

From 1,275 US\$/year/cap in 2010 to 6,900 US\$/year/cap in 2050 (+550%!)

EAC Vision 2050:

From 1,014 US\$/year/cap in 2014 to 10,000 US\$/year/cap in 2050

Change in cultivated land Uganda & EAC

- Cultivate land will increase by 30-60% till 2050 for Uganda
- Cultivate land will increase by 20-40% till 2050 for EAC

Change cultivated land area in EAC

Change in irrigated land

Target based on different strategy documents:

Uganda Vision 2040 / National WR Strategy:

 more than 10 fold (>600.000 ha wetland und upland irrigation combined)

AMCOW Pan-African M&E System:

- Increase the size of irrigated areas by 100% from 2000 to 2025.
- Increase water productivity from irrigation and rainfed agriculture by 60% from 2000 to 2025
- Irrigated land will increase by 300-430% till 2050 for Uganda
- Irrigated land will increase by 60-200% till 2050 for EAC

Change irrigated land area in EAC

Water security and pathways to SOLUTIONS

- Water security depends on inter-relation of water resources availability (biophysical supply), societal and environmental water demand, and the potential to put dynamic response options in place.
- Water security results from a combination of both
 i) hydro-climatic challenges
 ii) socio-economic coping capacity

Hydro-Economic Classification

defines a risk-based approach towards water security

Economic-Institutional Capacity (Y-axes) → Coping capacity & Adaptation potential

Hydro-climatic complexity (X-axes) → Degree & type of water related challenges

capacity Economic-institutional NO

Solutions to water stress: Wedge approach

We present six strategies, or water-stress wedges, that collectively lead to a reduction in the population affected by water stress by 2050, despite an increasing population.

- Water productivity crop per drop
- Irrigation efficiency decrease losses
- Water use intensity industry and domestic
- Population
- Reservoir storage
- Desalination

5

ILASA

Soft path vs. Hard path

Wada et al. (2014), Nature Geoscience

More Crop Per Drop

Improvement in water productivity at 0.5% per year (20% by 2050)

Efficiency increase by 1% per year (40% by 2050)

Average Indoor Household Water Use

Toilet 20% Clothes Washer 19% Shower 19% Faucets 19%

> Improvement of 0.5% per year (20% by total)

How your world will change

Limit population growth by 0.5 billion (8.5 billion by 2050)

Additional 600 km³ reservoir storage (by 2050) US\$ 10 billion??

50 times increase in desalination capacity (by 2050) US\$ 20 billion??

0

From science to policy and practice

What for do we model hydrological processes and relating them to socio-economic developments and the environment?

- Building evidence base for solid policy, sustainable water management and investment decisions.
- Understanding synergies and trade-offs between sectors (users) and riparian countries.
- "water proofing" future development pathways and future solution options

Why to engage?

- Linking science with practitioners: Modelling based on robust but ambitious scenarios
- Co-create: thinking through possible development and solutions pathways and
- Co-design the models

- Benefit from robust water scenarios to support your decision making for SDG fit water resources planning in your water basin
- Deepening / strengthening capacities through partnerships
- Contact: wfas.info@iiasa.ac.at

http://www.iiasa.ac.at/web/home/research/researchPrograms/wat er/waterhome.html