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Abstract 

Genetic interaction between domesticated escapees and wild conspecifics represents a 

persistent challenge to an environmentally sustainable Atlantic salmon aquaculture industry. 

We used a recently developed eco-genetic model (IBSEM) to investigate potential changes in 

a wild salmon population subject to spawning intrusion from domesticated escapees. At low 

intrusion levels (5–10% escapees), phenotypic and demographic characteristics of the 

recipient wild population only displayed weak changes over 50 years, and only at high 

intrusion levels (30–50% escapees) were clear changes visible in this period. Our modelling 

also revealed that genetic changes in phenotypic and demographic characteristics were 

greater in situations where strayers originating from a neighboring wild population were 

domestication-admixed and changed in parallel with the focal wild population, as opposed to 

non-admixed. While recovery in the phenotypic and demographic characteristics was 

observed in many instances after domesticated salmon intrusion was halted, in the most 

extreme intrusion scenario, the population went extinct. Based upon results from these 

simulations, together with existing knowledge, we suggest that a combination of reduced 

spawning success of domesticated escapees, natural selection purging maladapted 

phenotypes/genotypes from the wild population, and phenotypic plasticity, buffer the rate and 

magnitude of change in phenotypic and demographic characteristics of wild populations 

subject to spawning intrusion of domesticated escapees. The results of our simulations also 

suggest that under specific conditions, natural straying among wild populations may buffer 

genetic changes in phenotypic and demographic characteristics resulting from introgression 

of domesticated escapees, and that variation in straying in time and space may contribute to 

observed differences in domestication-driven introgression among native populations.   
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Introduction 

Atlantic salmon (Salmo salar L.) aquaculture was initiated in the early 1970´s and has grown 

into an internationally significant industry with a world-wide production exceeding 2.3 

million tons in 2016 (FAO 2016). Thus, Atlantic salmon aquaculture contributes significantly 

to the global blue revolution. Nevertheless, the industry´s exponential growth in the past 

decades has not been without environmental challenges. Of these, farmed escapees and 

subsequent genetic interactions with wild conspecifics (Glover et al. 2017) represents one of 

the most persistent and significant issues (Taranger et al. 2015; Forseth et al. 2017).    

Each year, thousands or hundreds of thousands of domesticated salmon escape from 

farms into the wild (Skilbrei, Heino, and Svåsand 2015). While most of these escapees are 

never seen again, presumably falling foul to predation, starvation or similar, some enter rivers 

and find their way onto the spawning grounds of native populations. A significant proportion 

of the spawning population in some rivers in some years is made up of domesticated escapees 

(Saegrov et al. 1997; Fiske, Lund, and Hansen 2006; Morris et al. 2008), and as a result of 

introgression, molecular-genetic changes have been documented in native salmon populations 

in Ireland (Crozier 1993; Clifford, McGinnity, and Ferguson 1998, 1998; Crozier 2000), 

Norway (Skaala, Wennevik, and Glover 2006; Glover et al. 2012; Glover et al. 2013; 

Karlsson et al. 2016), Scotland (Verspoor, Knox, and Marshall 2016) and Canada (Bourret et 

al. 2011). Atlantic salmon have been subject to targeted breeding programs from the very 

beginning of the industry, including selection for a wide range of economically important 
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traits such as increased growth rates, delayed onset of maturation, and disease resistance 

(Gjedrem 2000, 2010). Consequently, Atlantic salmon is regarded as one of the most 

domesticated aquaculture species globally (Teletchea and Fontaine 2014), and displays 

genetic differences to wild salmon in a range of traits (Glover et al. 2017). Therefore, the 

widespread introgression of domesticated escapees in native populations is a cause of concern 

for the evolutionary trajectory and long-term viability of wild populations (McGinnity et al. 

2003).  

Field experiments have demonstrated that the offspring of domesticated salmon, and 

hybrids between domesticated and wild salmon, display reduced survival in the wild when 

compared to the offspring of pure wild salmon (McGinnity et al. 1997; Fleming et al. 2000; 

McGinnity et al. 2003; Skaala et al. 2012). Furthermore, differences in phenotypic 

characteristics such as size at maturation have been reported between admixed and non-

admixed salmon in Norwegian populations where introgression of domesticated fish has 

occurred (Bolstad et al. 2017). Nevertheless, in most regions outside Norway where 

domesticated and wild salmon also overlap, there are almost no estimates of gene-flow, and 

the resulting biological consequences have not been investigated (Glover et al. 2017). 

Therefore, the use of models that permit investigation and quantification of potential impacts 

on native populations, and at the same time open the possibility to examine various 

management and introgression scenarios, can help shed light on the potential outcomes of 

unilateral gene flow from domesticated escapees to native populations.  

A range of models and modelling scenarios have been published in the past decade or 

so for investigating genetic changes in salmon populations following gene-flow from mal-

adapted domesticated salmon, or similar evolutionary scenarios (Hindar et al. 2006; Besnier, 

Glover, and Skaala 2011; Huisman and Tufto 2012; Piou and Prevost 2012; Baskett, Burgess, 

and Waples 2013; Baskett and Waples 2013; Castellani et al. 2015; Tufto 2017). However, 
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no study has thus far modelled potential phenotypic changes in life-history traits (e.g., size at 

age and age of maturity) in wild populations that are subject to spawning intrusion from 

domesticated escapees. IBSEM, an Individual-Based Salmon Eco-genetic Model, was 

recently developed to investigate genetic changes in wild populations following intrusion of 

mal-adapted conspecifics (such as domesticated escapees), and includes extensive 

incorporation of the genetic parameters linked to the key fitness traits reported to diverge 

between domesticated and wild conspecifics (Glover et al. 2017). The model includes, among 

other key attributes, a quantitative genetic component and estimates phenotypic and 

demographic changes that are of relevance when considering gene-flow from domesticated to 

wild populations (Castellani et al. 2015).  

Presently, Norway is the only country where estimates of domesticated salmon 

introgression exist for a large number of wild populations (Glover et al. 2013; Karlsson et al. 

2016). Here, admixture levels ranging from ~0–50% have been reported in populations, 

sometimes varying considerably among rivers within regions. A range of factors may 

influence the level of domestic salmon introgression in native populations, such as the 

incidence of escapees (Glover et al. 2013; Heino et al. 2015; Karlsson et al. 2016), and the 

density or abundance of the recipient wild population (Glover et al. 2012; Heino et al. 2015). 

Other biological and physical factors, for example a difficult to pass waterfall in the lower 

stretches of the river, may hinder some escapees from getting onto the primary spawning 

grounds, and thereafter interbreeding. Variations in these and other unidentified factors 

contribute to the observed inter-population differences in introgression levels. Another 

possibility is that, given that not all wild salmon home back to their native rivers (Stabell 

1984), strayers from relatively unaffected wild populations could buffer genetic changes in 

close-by populations that are subject to spawning intrusion of domesticated escapees.      



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

The present study had three objectives. First, to gain a better understanding of the 

magnitude and time-scale of changes in a range of phenotypic traits (survival and life-history 

traits such as size at age and age of maturity), underlying genotypes, and resultant 

demographic trajectories (i.e., numbers of fish) in wild salmon populations faced with 

different levels of spawning intrusion from domesticated escapees and continual natural 

selection. Second, to investigate the potential for recovery in native populations following 

introgression of domesticated escapees. Third, to quantify the degree to which phenotypic 

and demographic changes in wild populations due to the introgression of domesticated 

escapees can be influenced by straying among wild populations and the genetic admixture 

characteristics of strayers.  

 

Methods 

Overall study design 

The study was divided into two parts. First, we conducted a sensitivity-analysis to investigate 

how straying (and thereafter gene-flow) from a neighboring wild population may potentially 

buffer domestication-driven genetic changes in a focal wild population subject to spawning 

intrusion of farmed escapees. We used a factorial design with the following three fully 

crossed binary factors (in total 8 combinations, corresponding to the scenarios 1–8 in Table 

1): (A) the number of domesticated escapees was either held stable (domesticated intruders = 

Fixed N equating to 50 % intrusion in the first year and steadily increasing as the wild 

population declined), or varied in tandem with the focal wild population (domesticated 

intruders = Fixed 50 %), (B) the number of strayers from a neighboring wild population was 

either held at a “Fixed N” or alternatively “Fixed % of the focal population” — thus declining 
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if the focal population declined, and (C) the strayers from a neighboring wild population were 

either “not admixed” or “domestication-admixed at the same degree as the focal population”.  

Second, we conducted an in-depth examination of the two most contrasting scenarios 

emerging from the sensitivity analysis (scenario 5—neighbor wild population is both 

domestication-admixed and declines in parallel with the focal wild population, and scenario 

8—neighbor wild population is not admixed and does not change in parallel with the focal 

wild population). Both these scenarios were tested under three levels of domesticated salmon 

intrusion (set at a fixed N for domesticated intruders that equates to 5, 10 and 30% intrusion 

in the first year of the model before any potential changes in the recipient wild population) 

and included a detailed examination of the outputs of IBSEM. These outputs included density 

of eggs deposited in the river, juvenile growth/size and density, smolt growth/size, age and 

density, number of returning adults, and their growth/size and age of maturation. 

 

Key attributes of IBSEM 

IBSEM has been extensively described (Castellani et al. 2015). However, some of the key 

attributes relevant for understanding outputs of the model and the underlying basis of the 

computations are also described here for clarity. The model splits the Atlantic salmon life 

cycle into the “embryo” (which includes egg to early parr in freshwater), “juvenile” (which 

includes parr to smolts in freshwater) and “adult” stages (which includes fish in the marine 

environment returning to their natal river as sexually mature spawners). It uses a set of fitness 

differentials sourced from published empirical data to describe the difference between 

domesticated and wild salmon during these various life-history stages. Growth and survival 

during each stage are influenced by individual genotypes as well as being size and density-

dependent. The model also distinguishes between the sexes. Female fertility is weight-
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dependent. Reproductive success of adult males increases with their length, but males can 

also reproduce as sexually mature parr during the juvenile stage. It is important to note that 

the spawning (reproductive) success of the domesticated escapees, relative to wild spawners, 

has been set to 30% and 5% for females and males respectively. This is based upon empirical 

knowledge from spawning experiments (Fleming et al. 1996; Fleming et al. 2000), and from 

an extensive summary of spawning success of domesticated and ranched salmon in the wild 

(Hindar et al. 2006). The consequence of the differential spawning success between 

domesticated escapees and wild salmon means that for any simulated intrusion level, 

domesticated gene-flow will be lower. That is, given equal sex ratios, 10% and 50% intrusion 

levels equate to 1.75% and 8.75% genetic contribution per year from the domesticated 

escapees in our model. This may of course vary in time and space, however, in the model it 

has been held stable.     

The underlying genetic architecture of the model is determined by three independent 

sets of genes (influencing embryo, juvenile and marine phase traits, respectively). Each of 

these sets of genes consist of 21 diploid and unlinked bi-allelic loci (alleles = 1 or 0, thus 

genotype combinations for each locus = 11, 10 or 00), with the ability for gamete 

recombination and random inheritance during sexual reproduction. Therefore, the random 

evolutionary force of genetic drift may play a role, especially when N is low. Loci 1–20 

display an exponentially declining degree of influence over the phenotype from 15% for the 

1
st
 locus to 1% for the 20

th
 locus. The 21

st
 locus has no phenotypic impact and is selectively 

neutral (Fig. A in Castellani et al., 2015). The scaled average allelic value across loci of an 

individual (  ) is the sum of “1” alleles in a certain gene, weighted by loci-specific degree of 

influence and scaled such that the minimum (    ) and the maximum (    ) are 

obtained for respectively “00” and “11” homozygotes for all 20 loci of that gene. An 

individual could be anywhere on the scale between these two extremal values, depending on 
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their genetic composition across these loci for each of the three independent sets of genes. 

The resultant genetic value, hereon referred to as the sum of the genetic effects, determines 

an individual’s phenotypic value in terms of growth and survival for the three life stages in 

the model (embryo, juvenile, and adult). The genotype-phenotype maps are linear (Fig. 1). 

For survival, this relationship is positive, i.e., large genotypic values (wild alleles) are 

associated with high survival. For growth and maturation probability, the relationship is the 

opposite: wild alleles confer lower growth and earlier maturation. The specific equations and 

parameters estimates are given in Appendix 2 in Castellani et al. (Castellani et al. 2015). 

The phenotypic differences between domesticated and wild salmon are expressed 

through their genotypes. Specifically, wild salmon in their native river were initiated with the 

allele frequency equal to 0.9 in all non-neutral loci, whereas the farmed salmon were initiated 

with frequency 0.1 in all non-neutral loci. The genotype-phenotype maps were tuned such 

that the average phenotype in wild salmon resulted in a population with demographic and 

life-history characteristics similar to Atlantic salmon from the river Os in Norway (Castellani 

et al. 2015). Straying wild salmon (i.e., from a neighboring wild population) were created 

with the allele frequency equal to 0.8 in all non-neutral loci. This gives slightly reduced 

fitness to wild strayers compared to wild salmon in their home river, as expected when 

individuals are locally adapted (see Appendix 2 in Castellani et al., 2015). 

Intrusion from domesticated spawners was simulated for 200 years, after which the 

focal wild population was permitted to recover for a further 200 years in their absence. For 

each scenario, ten independent runs were conducted and the results averaged. The simulations 

conducted are described in detail below and illustrated in Table 1.    
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The factorial design of intrusion scenarios 1-8 

The primary objective of scenarios 1-8 was to simultaneously investigate the influence of the 

following factors and their potential interaction in a factorial experiment design: A. Fixed N 

vs Fixed % domesticated intruders, B. Fixed N vs. Fixed % strayers from a neighbor wild 

population, C. Admixed vs. non-admixed strayers from a neighbor wild population (Table 1). 

The rationale behind these scenarios, and how they were included in the experimental design, 

is described in detail below.  

The first variable in the factorial setup was designed to investigate the influence that 

the number of intruding domesticated escapees had on the evolutionary trajectory of the focal 

wild population when held at a constant level (i.e., Fixed N) as opposed to varying in tandem 

with the focal wild population (i.e., Fixed %). In order to achieve this, intrusion of escapees 

was set at either 50% of the number of adults returning to the focal population each year 

(Fixed % scenarios 1-4), or set to a constant value of 250 for each year regardless of N-adults 

returning to the focal population which corresponds to 50% in the first year of intrusion 

(Fixed N scenarios 5-8) (Table 1). While this reflects a very high level of domesticated 

salmon intrusion, some Norwegian rivers in some years have experienced this (Fiske et al. 

2001; Fiske, Lund, and Hansen 2006; Anon. 2017), and based on earlier simulations 

(Castellani et al. 2015), this level of intrusion provides a response in the focal wild population 

thus making the potential influence of other parameters under investigation clearer on the 

simulated evolutionary time-line.  

The second variable in the factorial setup was designed to investigate the influence 

that the number of fish straying from a neighbor wild population had on the evolutionary 

trajectory of the focal wild population when held at a constant level (i.e., Fixed N) as opposed 

to varying in tandem with the focal wild population (i.e., Fixed %). In order to achieve this, 
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strayers were set at 5% of the N-adults returning to the focal population (scenarios 1, 2, 5, 6), 

or fixed to 25, corresponding to 5% of the N-adults returning to the focal population in the 

first year of intrusion (scenarios 3, 4, 7, 8). This level of straying is within the variation 

displayed between Atlantic salmon populations (Stabell 1984; Skilbrei and Holm 1998; 

Jonsson, Jonsson, and Hansen 2003; Pedersen et al. 2007; Jonsson and Jonsson 2017), and 

was designed to reflect situations where the neighbor population remained demographically 

stable over time and thus provided a constant number of strayers to the focal wild population, 

or alternatively, varied in tandem with the focal wild population, reflecting a situation where 

it is ecologically connected to the focal wild population.  

The third variable in the factorial setup was designed to investigate the influence that 

the genetic composition of the straying fish from a neighbor wild population had on the 

evolutionary trajectory of the focal wild population when they are admixed at the same level 

as the adults returning to the focal wild population each year (scenarios 1, 3, 5, 7), or 

alternatively, not admixed with domesticated escapees and thus set to a fixed value of 0.8 

(scenarios 2, 4, 6, 8). Both of these sets of scenarios, i.e., admixed vs non-admixed strayers, 

are realistic given that in the wild, populations displaying both different and similar 

admixture levels can be observed in the same region (Glover et al. 2013; Karlsson et al. 

2016).  

For the full factorial design, results were expressed as the sum of the genetic effects in 

the model for the embryo, juvenile and adult stages of the life cycle, and the demographic 

response of the adult spawning population, i.e., the number of adults returning from the sea to 

spawn.  

 

In-depth analysis of intrusion scenarios 5 and 8  
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Following the initial sensitivity analyses as described above, two contrasting scenarios were 

chosen for an in-depth analysis of the potential genetic changes in a wild population subject 

to spawning intrusion from domesticated escapees. These were scenario 5 whereby the 

neighbor population providing the strayers is ecologically linked and admixed at the same 

degree as the focal wild population itself (thus straying at 5% and admixed at the same degree 

as the wild population), and scenario 8, whereby the neighbor population providing the 

strayers is not ecologically linked nor admixed at the same degree as the focal wild 

population itself (thus straying at a fixed N of 25 per year and not admixed). These two 

scenarios reflect the contrasting situations where there is global introgression in a region and 

all rivers are simultaneously influenced by intrusion of domesticated escapees (hereon 

referred to as “global”), as opposed to where there is only introgression in the focal wild 

population and the neighboring rivers are not influenced by intrusion of domesticated 

escapees (hereon referred to as “local”). “Global” and “local” reflect the two extreme points 

and were thus chosen to illustrate the potential influence that straying elicits on changes in 

populations influenced by intrusion of domesticated escapees.  

 For scenarios 5 and 8, the following output parameters were investigated: density of 

eggs deposited in the river, juvenile size in May, parr density and size in October (split by 

age), smolt density and size in May prior to migration from the river (split by age), number of 

adult salmon returning to the river to spawn, and their size (split by age). Domesticated 

salmon intrusion levels were set to N=25, 50 and 150 reflecting 5, 10 and 30% intrusion of 

escapees in the first year of the model before any changes in the adult spawning population 

occurred. Pilot analyses using different intrusion levels revealed scaled effects of increasing 

intrusion levels and thus only results from these three levels of intrusion are presented.  
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Results 

Sensitivity testing (intrusion scenarios 1-8) 

In all scenarios investigated, intrusion of domesticated escapees led to changes in the sums of 

genetic effects (i.e., the scaled average allelic values) in the direction of the domesticated 

genotype, reflecting introgression in the focal wild population (Figs. 2, 3). These changes 

were accompanied by a decrease in the number of wild spawners returning to the focal 

population over time (Figs. 2, 3). When intrusion of domesticated escapees was stopped at 

year 200, the genotypic values started to recover again, except for the most extreme scenario 

5 leading to extinction of the focal population, and for next-worse scenario 7, where the 

population persisted but significant genetic recovery only occurred for the adult traits. 

The magnitude of change in the sums of genetic effects and the number of spawners 

returning to the focal population differed greatly between the intrusion scenarios. A clear split 

was observed between scenarios 1-4 vs. 5-8, simulating introgression of farmed escapees 

fixed as either 50% of the number of adults returning to the focal population (Fig. 2), or fixed 

at N=250 which is equal to 50% the number of wild spawners returning to the focal 

population in the first year of the simulation (Fig. 3). The explanation for this difference is 

the self-enforcing feedback loop coming from the negative effect that reduced-fitness 

escapees have on population abundance in the focal river: as the abundance of the population 

gradually declines, the fixed number of escapees entering the river each year make up an 

increasingly larger proportion of the remaining spawning population, leading to greater 

introgression and thereafter a further reduction in population abundance. 

As genetic and phenotypic change was greatest in the Fixed N scenarios, making the 

potential influence of the other two factors in the factorial design, i.e., straying rates from the 

neighboring wild population and their level of admixture, easier to detect, we hereon 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

concentrate on scenarios 5-8 (Fig. 3). Based upon these simulations, a clear difference in both 

the sums of genetic effects and the rate in decline of the number of wild spawners was 

observed between scenario 5 where strayers from the neighboring wild population occurred at 

5% of the focal wild population and were simultaneously domestication-admixed at the same 

level of the wild population (global introgression), vs scenario 8 where strayers from the 

neighboring wild population remained stable at 25 each year and were not admixed by 

domesticated escapees (local introgression). The difference between these scenarios was not 

distinct during the first ~60 years, where both resulted in a drop in the number of returning 

wild spawners to approximately 200. However, from ~60 years and onwards, the difference 

in the magnitude of effect between these scenarios was increasingly clear, resulting in a total 

collapse of the adult population in the global introgression scenario, while the local 

introgression scenario stabilised at 200 returning adults.  

The large difference between these scenarios was caused by the difference in the 

degree of buffering provided by the neighboring wild population when it was ecologically 

disconnected from the focal population and not admixed (i.e., local introgression: the 

neighboring wild population provides a distinct buffering effect against domestication-driven 

changes), compared to when it was ecologically connected to the focal wild population and 

equally admixed (i.e., global introgression: the neighboring wild population does not provide 

a distinct buffering effect against domestication-driven changes).      

  

In-depth analysis of introgression (scenario 5-global and 8-local intrusion) 

Two contrasting scenarios emerging from the sensitivity analyses described above (global 

and local intrusion) were chosen for an in-depth analysis of the phenotypic and demographic 

response of wild populations subject to spawning intrusion of domesticated escapees (Figs. 4, 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

5, 6). In both scenarios tested, and as expected, higher frequencies of intrusion from 

domesticated escapees (5%, 10% and 30%) led to a greater and more rapid response in the 

sums of the genetic effects (Fig. 4), the degree of change in the phenotypic traits studied (Fig. 

5), and population demography (Fig. 6). These changes were detected in both the local and 

global intrusion scenarios, but were greater in the global scenario due to the lack of buffering 

as described in the previous section. In most cases, spawning intrusion set at 5% and 10% 

domesticated individuals only led to small changes in the focal wild population, even over the 

200 year intrusion period, while the effect at 30% spawning intrusion was distinct for most of 

the traits, again, especially for the global intrusion scenario. Thus, for our study scenarios, 

natural selection was relatively effective in selectively removing low-fitness alleles coming 

from the escapees when intrusion was low to moderate, but was gradually overwhelmed for 

the high level of intrusion. 

Looking closer at the sums of the genetic effects (Fig. 4), it is possible to see that the 

average genotype of the focal wild population changed in the direction of the domesticated 

genotype (i.e., decreasing from 0.9 towards 0.1) in all four stages of the life cycle where this 

was measured (embryo, parr, smolt and adult). Turning attention to the phenotypic traits, 

most displayed a change over time (Fig. 5). However, these changes were subtle for 5% and 

10% intrusion of domesticated escapees. After 200 years, most of the changes in fish size at 

age were <10%, even for the strongest intrusion scenario run (30% intrusion). The greatest 

change was detected in the size of smolts exiting the river, especially for the older smolts 

(Fig. 5). Changes in the size of adults in the focal wild population were weak for all sea ages 

(1+, 2+, 3+).   

In part due to demographic stochasticity, the effects of the escapees on population 

demography were hardly discernible when intrusion was set at 5 and 10% (Fig. 6). 

Concentrating on 30% spawning intrusion of domesticated escapees in the global scenario, 
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the density and/or number of fish in the focal wild population showed a clear decrease with 

time in all stages measured (egg deposition, parr, smolts, adults returning to spawn), falling to 

less than half of the population´s initial numbers over a 200 year period.  

 

Discussion 

This is the first study to model a set of phenotypic and demographic characteristics in an 

Atlantic salmon population subject to spawning intrusion by maladapted domesticated 

escapees. The results of our simulations indicate that at domesticated salmon spawning 

intrusion levels of 5% and 10% (~1-2% gene-flow per year), most of the phenotypic and 

demographic traits measured in the recipient wild population only displayed weak changes on 

a relatively short time scale (i.e., 50 years). Only when the frequency of domesticated 

escapees on the spawning grounds was increased to 30% or 50% (~5-9% gene-flow per year) 

were phenotypic and demographic changes clearly visible in the recipient wild population on 

this time scale. Based upon results from these simulations, together with existing knowledge, 

we suggest that a combination of reduced spawning success of domesticated escapees, natural 

selection purging maladapted phenotypes/genotypes from the wild population, and 

phenotypic plasticity, buffer the rate and magnitude of change in phenotypic and 

demographic characteristics of wild populations subject to spawning intrusion of 

domesticated escapees. These suggestions are in line with empirical data demonstrating that 

domesticated escapees display reduced spawning success in comparison with wild salmon 

(Fleming et al. 1996; Fleming et al. 2000), the offspring of domesticated salmon display 

reduced survival in the wild when compared to wild fish (McGinnity et al. 1997; Fleming et 

al. 2000; McGinnity et al. 2003; Skaala et al. 2012), and that differences between 

domesticated and wild salmon in phenotypic traits, such as growth rate, are much less 
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pronounced in the wild than in the hatchery (Skaala et al. 2012; Besnier et al. 2015; Reed et 

al. 2015; Jonsson and Jonsson 2017).  

Our simulations also revealed that there is a difference in the rate of domestication-

driven genetic change in a wild population subject to escapees, when strayers arising from a 

neighboring wild population are simultaneously influenced by domesticated escapees (i.e., 

domestication-admixed and decline at the same trajectory as the focal population – reflecting 

a global introgression scenario), as opposed to uninfluenced (i.e., not admixed and remain 

stable over time – reflecting introgression only in the focal wild population). This result is 

intuitive, and suggests that unaffected (i.e., non-admixed) neighboring populations may 

provide a partial buffer against fitness changes in wild Atlantic salmon populations invaded 

by domesticated escapees. In turn, we suggest that variation in population connectivity in 

time and space, and regional differences in the degree to which introgression of domesticated 

salmon occurs globally or locally, may contribute to the overall picture of large inter-

population patterns of domestication-driven introgression that has been reported among wild 

Atlantic salmon populations (Glover et al. 2012; Glover et al. 2013; Karlsson et al. 2016). 

 

Can variation in straying (buffering) contribute to inter-population patterns in 

domestication-driven admixture?  

Connectivity among anadromous salmonid populations varies in time and space, and is 

modified by a wide range of biotic and abiotic factors (Dillane et al. 2007; Dionne et al. 

2008; Perrier et al. 2011; Glover et al. 2012). Within regions displaying a mosaic of small 

and large populations, straying and the degree of genetic-connectivity may be skewed, 

whereby large populations can act as net-exporters of strayers to smaller neighboring wild 

populations (Hansen et al. 2007). Straying of wild fish between rivers (Stabell 1984) also 
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varies in time and space for Atlantic salmon (Skilbrei and Holm 1998; Jonsson, Jonsson, and 

Hansen 2003; Pedersen et al. 2007; Jonsson and Jonsson 2017) and other salmonids (Ford, 

Murdoch, and Hughes 2015; King et al. 2016; Bett et al. 2017). Recent experimental work 

has also indicated that introgression of domesticated salmon may increase straying rates in 

impacted wild Atlantic salmon populations (Jonsson and Jonsson 2017). 

In Norway, which is the country that has by far the greatest level of documentation of 

genetic interactions between domesticated escapees and wild conspecifics (Glover et al. 

2017), estimates of domesticated salmon introgression levels now exist for nearly 200 

populations (Glover et al. 2013; Karlsson et al. 2016; Diserud et al. 2017). For many of these, 

estimates of the incidence of domesticated escapees are available for many years (Fiske, 

Lund, and Hansen 2006). Using these and other population-specific data, several authors 

have noted that both the magnitude of temporal genetic change (Glover et al. 2012), as well 

as the estimated level of cumulative introgression from domesticated escapees (Glover et al. 

2013; Heino et al. 2015; Karlsson et al. 2016) is associated with the observed incidence of 

domesticated escapees. Nevertheless, the analyses performed in those studies all revealed that 

other factors may account for up to ~50% of the variation in introgression levels observed 

among wild populations. While the density (Glover et al. 2012; Glover et al. 2013) and/or 

numerical size (Heino et al. 2015) of the native population has been suggested to be a factor 

influencing the relative success of domesticated escapees, presumably through variations in 

spawning and/or juvenile competition, other factors (including their interactions) must also 

play a role in shaping the inter-population differences observed in introgression levels.  

A range of population-biological and river-physical parameters can potentially 

contribute to the observed patterns among populations in domestication-driven admixture 

rates as discussed above. However, results from the modelling conducted here indicate that in 

cases where wild strayers are equally domestication-admixed as the focal wild population, the 
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degree of buffering against genetic changes in the direction of domesticated genome is much 

less than when the strayers are not admixed. In the wild, this could translate into regional 

“hot-spots” of introgression where escapees swamp most or all rivers in a region and thus 

reduce the potential buffering effect from straying between rivers. Analyses of introgression 

in Norway have revealed for example that many rivers in the Hardangerfjord, a region of 

intense aquaculture production and characterised by large numbers of escapees over a long 

period of time, are strongly admixed with farmed escapees (Glover et al. 2013; Karlsson et al. 

2016; Diserud et al. 2017). The fact that many of the rivers in that region are strongly 

affected by escapees means that there is very little potential for buffering from straying, and 

therefore could contribute to the large admixture levels observed in the rivers of this region.  

Atlantic salmon populations may display adaptations to the freshwater environments 

they inhabit in a process known as local adaptation (Taylor 1991; Garcia de Leaniz et al. 

2007). Reciprocal transplantation experiments conducted in the wild with Atlantic salmon 

have revealed differences in survival supporting this theory (McGinnity et al. 2004). In 

IBSEM, the potential for local adaptation is accounted for by coding the incoming strayers 

from the neighboring wild population as having a genetic value equal to 0.8 which equates to 

a slightly lower fitness of the incoming strayers than wild fish (0.9) in the focal population. 

We acknowledge that this is simplistic, and may not necessarily reflect the true variation in 

fitness differences between two wild populations, and how this may or may not vary in time 

and space.  

 

How do the model´s outputs compare to empirical data? 

Our modelling reported weak population-average changes in most of the traits studied in the 

first 50 years of simulated intrusion of domesticated escapees, especially at yearly 
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domesticated salmon intrusion levels of 5% to 10% (Fig. 5, 6). Only when intrusion levels 

were set to a relatively high level (30% or 50%), and/or the time-scale of investigation was 

extended to 200 years, were major changes in the focal wild population clearly evident. A 

similar pattern was also revealed in the validation scenarios presented earlier when the model 

was established (Castellani et al. 2015).  

At the present, there are very few empirical data from wild populations with which to 

compare the projected changes from the modelling here. Nevertheless, there are experimental 

data which may provide us with clues. Domesticated Atlantic salmon display a wide range of 

genetic differences to wild salmon, and of these, growth and size at age are the traits 

displaying the greatest difference detected thus far (Glover et al. 2017). However, while very 

large (several fold or more in many cases) differences in growth and size at age are detected 

among domesticated, hybrid and wild salmon under controlled hatchery conditions (Fleming 

et al. 2002; Glover et al. 2009; Solberg, Glover, et al. 2013; Solberg, Zhang, et al. 2013; 

Debes et al. 2014; Harvey et al. 2016), in the wild, growth rates and size at age differences 

between domesticated and wild salmon are much less distinct and overlap (Fleming et al. 

2000; Skaala et al. 2012; Besnier et al. 2015; Reed et al. 2015; Jonsson and Jonsson 2017). 

For example, size differences between domesticated and wild salmon in the river Burrishoole 

egg planting experiments conducted in Ireland in the late 1990´s and early 2000s were 

reported to range from 5-20% (Reed et al. 2015), and the smolt size at age differences 

between domesticated, hybrid and wild salmon from the egg planting experiments conducted 

in the river Guddal in Norway in the middle 2000s were typically only 0-10% (Skaala et al. 

2012). These estimates overlap with the relatively weak population-average changes reported 

by the model here (Fig. 5), and collectively indicate that at low to modest introgression rates, 

large differences in growth or size at age are not necessarily to be expected in wild 

populations. In addition to the lower spawning success of the farmed escapees (Fleming et al. 
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1996; Fleming et al. 2000) limiting gene-flow, we suggest that this is likely to be influenced 

by the generally higher mortality of the offspring of domesticated fish and hybrids in the wild 

(Fleming et al. 2000; McGinnity et al. 2003; Skaala et al. 2012). I.e., as domesticated and 

domestication-admixed fish hatched in the wild display higher mortality than wild fish, they 

will contribute less to the population-level phenotypic changes.      

A recent study reported phenotypic differences between domestication-admixed and 

non-admixed Atlantic salmon in populations where introgression of domesticated escapees 

had occurred (Bolstad et al. 2017). These authors investigated both age and size upon age at 

return to freshwater by categorizing fish within populations into domestication-admixed and 

wild components using diagnostic genetic markers and a statistical method for computing 

admixture (Karlsson et al. 2011; Karlsson et al. 2014). They generally observed higher sizes 

at age for fish classified as domestication-admixed as opposed to fish classified as non-

admixed (wild). However, differences between the domestication-admixed and wild salmon 

(both magnitude and direction) was dependent both upon the age category of the fish, and 

also, the geographic region in which admixture occurred (i.e., northern Norway contra 

middle/southern Norway). Others have concluded that growth differences between 

domesticated, hybrid and wild salmon in the marine phase are not necessarily very clear, with 

small differences in maximum size at age but significant differences in minimum size at age 

(Jonsson and Jonsson 2017). While the response in adult size in the IBSEM outputs reported 

here are low in comparison with the observations between domestication-admixed and non-

admixed salmon (Fig. 5 vs. results by Bolstad et al., 2017), it is pertinent to point out that the 

model outputs here reflect the population average. We did not separate out domestication-

admixed and non-admixed fish as was the case in the analysis by Bolstad and colleagues 

(Bolstad et al. 2017). It is therefore suggested that the response revealed here is not 
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necessarily very different to the observations made by Bolstad and colleagues, although this 

requires further investigation.  

One of the most distinctive changes reported by the present modelling work was the 

decline in the number of adult spawners returning to the focal population. This negative 

additive effect is consistent with the “extinction-vortex” theory as was first suggested 

following the two-generation study of domesticated, hybrid and wild salmon in the 

Burrishoole system in Ireland (McGinnity et al. 2003). Indeed, one of our most extreme 

intrusion scenarios tested also led to extinction (scenario 5, Fig. 3). Statistically examining 

demographic population changes in the large number of Norwegian populations that have 

been subject to varying degrees of admixture (Glover et al. 2013; Karlsson et al. 2016; 

Diserud et al. 2017) may provide further insights into this.   

In our model, we coded the spawning success of domesticated escapees as 30% and 

5% for females and males respectively in relation to wild spawners. This was based upon data 

from experimental studies (Fleming et al. 1996; Fleming et al. 2000), and overlaps with the 

values chosen in a model designed to investigate interbreeding between domesticated 

escapees and wild conspecifics (Hindar et al. 2006). However, it is pertinent to point out that 

the relative spawning success of domesticated escapees is likely to vary in time and space as 

introgression levels in wild populations have been suggested to be partially density dependent 

(Glover et al. 2012; Glover et al. 2013; Heino et al. 2015), and because their relative success 

is likely to be dependent on their time in the wild prior to spawning (Fleming, Lamberg, and 

Jonsson 1997).   

One of the most significant gaps in current knowledge, with respect to the genetic 

differences between domesticated and wild salmon in the wild, is their relative survival in the 

marine environment (Glover et al. 2017). The marine survival differential between offspring 
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of domesticated and wild salmon used in IBSEM, is based upon knowledge from the 

Burrishoole experiments in Ireland that compared hatchery-reared smolts of local Irish wild 

salmon and non-local Norwegian domesticated salmon (thus mixing domestication and 

phylogenetic differences) (McGinnity et al. 1997; McGinnity et al. 2003). Other studies using 

domesticated and wild salmon from the same phylogenetic region have not reported such 

large differences in marine survival, although this varies (Fleming et al. 2000; Jonsson and 

Jonsson 2017). Our modelling work indicates that the largest change to be expected in a wild 

population following spawning intrusion of domesticated escapees is in the number of adult 

spawners retuning to the river. Given that this is strongly influenced by the relative survival 

between offspring of domesticated and wild salmon, our work points to the need for further 

empirical data on this stage of the life cycle.      

 

Implications of these results for mitigation and management 

The results of the modelling described here have important implications for potential 

management strategies to mitigate the negative effects of domesticated-mediated changes in 

wild populations faced with introgression of farmed escapees. As discussed above, outputs of 

the model indicate that in low to moderate spawning intrusion cases, and on a relatively short 

evolutionary time scale (e.g., ~50 years), the resulting changes in native populations are not 

expected to be very large, potentially making them difficult to detect (Figs. 5, 6). 

Nevertheless, in the face of constant introgression, genetic changes are cumulative, and over 

time, significant demographic and fitness-linked genetic changes are expected. This has also 

been indicated by other models which have looked at potential changes in the genetic 

composition and/or fitness consequences of wild populations faced by domesticated salmon 

introgression (i.e., from wild to admixed) (Hindar et al. 2006; Baskett, Burgess, and Waples 
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2013). Clearly, managers and stakeholders need to be aware of the fact that genetic changes 

may accumulate over time, and that the lack of any distinct change in population averages in 

the short-term does not necessarily indicate that potentially negative fitness consequences on 

the wild population have not occurred.  

The ultimate approach to protect native populations from further genetic changes from 

interbreeding of farmed escaped salmon is a significant reduction in the number of 

domesticated escapees and/or sterilisation of farmed fish (Glover et al. 2017). The results of 

our modeling indicate that in regions where this is not immediately attainable, channeling 

efforts to protect large and regionally-significant rivers, which can thereafter act as “wild 

gene-banks” through natural straying and buffering as described here, may be worth 

considering. For example, in the Hardangerfjord, one of the regions in Norway most affected 

by introgression of farmed escapees, the largest population inhabits the river Etne. This 

population has been demonstrated to be admixed with farmed escapees at ~20% (Glover et al. 

2013; Karlsson et al. 2016). Recently, an upstream trapping system that permits removal of 

nearly all escapees trying to enter the river was installed (Quintela et al. 2016; Madhun et al. 

2017), thus offering the native population protection from further admixture and the ability to 

recover in a region where there are still persistently high numbers of farmed escapees. In the 

future, natural strayers from this recovering population may buffer domestication-driven 

introgression in close-by rivers.   

 Each year, the Institute of Marine Research conducts an environmental risk 

assessment of Norwegian aquaculture (Taranger et al. 2015). This exercise also includes 

escapees and genetic interactions with wild conspecifics. In the risk assessment, 10% 

incidence of farmed escapees has been set as the level which once exceeded, equates to a 

“large probability for genetic changes” in the native population. Here, we have demonstrated 

the ability of the recently developed model IBSEM (Castellani et al. 2015) to investigate the 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

fitness-related consequences of introgression in native populations. Future risk-assessment 

exercises could incorporate results from modelling with IBSEM in order to assist in setting 

threshold levels.     
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Table 1. Factorial design of intrusion scenarios tested for the sensitivity analyses.  

 

(A) Domesticated 

salmon intrusion level 

in the focal wild 

population 

(B) Number of wild 

strayers entering the 

focal wild population 

(C) Allele frequency of the 

wild strayers entering the 

focal wild population 

Scenario 

50% of wild salmon 

returners 

 

5% of wild salmon 

returners 

Same as focal population 1 

Fixed (0.8) 2 

Fixed at N= 25 

 

Same as focal population 3 

Fixed (0.8) 4 

Fixed at N= 250 5% of wild salmon 

returners 

Same as focal population 5 

Fixed (0.8) 6 

Fixed at N= 25 Same as focal population 7 

Fixed (0.8) 8 
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Figure 1. Genetic basis of the trait determination mechanism as implemented in the model IBSEM  

Figure 2. The Effect of different straying scenarios on the sums of genetic effects and demography 

of the focal wild population when the number of domesticated intruders is set to 50% of the focal 

population. Returning adults are broken down into their respective age groups. 

 

Figure 3. The Effect of different straying scenarios on the sums of genetic effects and demography 

of the focal wild population when the number of domesticated intruders is set to n=250 which 

equates to 50% of the focal population in the first year of simulation. Returning adults are broken 

down into their respective age groups. 

 

Figure 4. Sums of the genetic effects on the different life-stages when the numbers of domesticated 

intruders was fixed to 5%, 10% and 30% of the numbers of adults in the focal population under the global 

and local intrusion scenarios (scenarios 5 and 8). For the parr stage, the plots show the results for the 0+ age 

group (the largest in population size). Similar trends were found for the 1+ and 2+ age groups.  

 

Figure 5. Size of salmon in the focal wild population at the different life-stages when the number of 

domesticated intruders was fixed at 5%, 10% and 30% of the focal wild population, for the global and local 

intrusion scenarios (scenarios 5 and 8). For the parr and smolt stages, the plots show the results for the 0+ 

and 2+ age groups respectively (the largest in population size). Similar trends were found for the parr1+ and 

parr2+, and smolt1+ and smolt3+ age groups. 

 

Figure 6. Density and number of salmon in the focal wild population at the different life-stages, when the 

number of domesticated intruders was fixed at 5%, 10% and 30% of the focal wild population under the 

global and local intrusion scenarios (scenarios 5 and 8). For the parr and smolt stages, the plots show the 

results for the 0+ and 2+ age groups respectively (the largest in population size). Similar trends were found 

for the parr1+ and parr2+, and smolt1+ and smolt3+ age groups. 
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