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Abstract

A widespread tenet is that evolution of pathogens maximises their basic reproduction ratio,
R0. The breakdown of this principle is typically discussed as exception. We argue that a rad-
ically different stance is needed, based on ESS arguments that take account of the “dimension
of the environmental feedback loop”. The R0-maximisation paradigm requires this feedback loop
to be one-dimensional, which notably excludes pathogen diversification. In contrast, virtually all
realistic ecological ingredients of host-pathogen interactions (density-dependent mortality, multiple
infections, limited cross-immunity, multiple transmission routes, host heterogeneity, spatial struc-
ture) will lead to multi-dimensional feedbacks.

Highlights

• Contrary to established wisdom, selection in the long run rarely favours parasites that maximise
their epidemiological basic reproduction ratio, R0.

• R0 maximisation only occurs in models with simple forms of environmental feedback.

• In realistic hostparasite interactions, ecological processes will commonly preclude R0 maximisa-
tion.

• The dimension of the environmental feedback loop here emerges as a unifying concept.
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1 R0 maximisation and the adaptive theory of virulence

The idea of R0 maximisation is intimately linked with the development of the adaptive theory of
virulence (Anderson and May, 1982). Virulence has long been thought of as a transient state in
pathogen evolution, with avirulence being the expected long-term evolutionary endpoint (Smith, 1904,
Ball, 1943, Méthot, 2012), based on the rationale that harming the host would deplete the pathogen’s
resource. This ‘classical wisdom’ was challenged by modern adaptive explanations (Anderson and May,
1982, Ewald, 1983), according to which natural selection also can lead to an increase in virulence when
this confers an indirect benefit to the pathogen. This happens e.g. when increasing virulence goes
together with increasing transmission (the transmission-virulence trade-off hypothesis, see Alizon et al.
(2009) for a review). More generally, virulence may be connected to other disease parameters, such
as recovery, or within-host competitive ability. Virulence is predicted to evolve towards intermediate
values whenever such connections are sufficiently strong.

The textbook explanation for evolution towards intermediate virulence assumes that long-term
evolution results in maximising the following quantity,

R0 =
βS

µ+ α+ γ
, (1)

known as the basic reproduction ratio. In Equation (1), βS is the rate at which an infected host
produces new infections in a susceptible population of density S, α the virulence, equated to pathogen-
induced mortality, µ the mortality rate of uninfected hosts, and γ the recovery rate. Equation (1) has
great didactic power, as it immediately shows that, even though an increase in virulence has a direct
negative effect on R0, it can also have indirect positive effects if transmission increases with virulence,
or recovery decreases with virulence. The virulence that maximises R0 thus depends on the trade-off
between virulence and other disease parameters. This idea has been extremely influential and has
been shaping the theory of virulence evolution ever since (Ebert and Herre, 1996, Alizon et al., 2009,
Schmid-Hempel, 2011). However, the apparent simplicity of the argument obfuscates two caveats, as
we discuss below. First, the basic reproduction ratio R0 can only be written in the form (1) under
strong assumptions on the epidemiological dynamics (Diekmann et al., 1990). The transmission-
virulence trade-off hypothesis on the other hand fits a far larger class of epidemiological scenarios.
Second, there is absolutely no guarantee that evolution selects for trait combinations maximising the
R0 of such a scenario: virtually all realistic ecological ingredients of natural host-pathogen interactions
flout the R0-maximisation paradigm.

Although the theoretical literature has repeatedly emphasised these caveats (Bremermann and
Thieme, 1989, Dieckmann, 2002, Dieckmann and Metz, 2006, Thieme, 2007, Svennungsen and Kisdi,
2009, Ferdy and Gandon, 2012, Cortez, 2013), this has had less impact than deserved. The idea
that pathogens evolve to maximise their basic reproduction ratio is still a cornerstone of textbook
discussions of virulence evolution. This idea thus remains widespread in the community, despite
regular corroboration in discussions of the experimental evidence that this is far from general (e.g.
Ebert and Herre (1996)).

One possible explanation for this state of affairs is that empirical and theoretical examples where
R0 maximisation fails are typically discussed as exceptions, instead of from a general conceptual
perspective. Our aim in this paper is to provide such a perspective through the notion of environmental
feedback, i.e., the effect of a mutant substitution on the ecology and thereby on the fitness of subsequent
mutants. For example, the rise in frequency of a more virulent strain may cause the population density
to decrease; this in turn leads to lower density-dependent mortality, which feeds back positively on the
mutant fitness. We argue that a precise distinction between pathogen fitness and the epidemiological
basic reproduction ratio is a prerequisite for any discussion of the adaptive evolution of pathogens.
We then discuss the main theoretical result that R0 maximisation will only occur when the feedback
through the environment is of a very simple kind and illustrate this point by reviewing the evolutionary
consequences of several realistic features of host-pathogen interactions. Throughout, we emphasise
that, although R0 maximisation may once have been a useful paradigm and may still be a good
didactical tool, a more general conceptual framework based on ESS?1 arguments is needed for a

1Terms highlighted with a star are defined in the glossary.
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Glossary

ESS: A strategy that, if sufficiently common, creates an environment in which no alternative
strategy can invade.

(Invasion) fitness: Per-capita growth rate of a rare mutant strain in the environment created
by the resident population. This can be written as a function of the traits and of the
environment, ρ(Y |Ê), or as a function of the mutant and resident traits, s(Y |X).

Fitness proxy: Any function of the traits and the environment that has the same sign as invasion
fitness and therefore provides the same information about long-term evolution.

Fitness component: A property of the traits (and possibly the environment) that enters into
the calculation of, but is not on its own sufficient to compute a fitness proxy.

Optimisation principle: A function ψ(X) of the traits such that, for any constraint on the
traits, the ESSes can be calculated by maximising this function (for instance, R0 in the
classical SIR model).

Pessimisation principle: A function φ(E) of the environment which is minimised at an ESS,
for any constraint on the traits (for instance, the density of susceptibles in the classical SIR
model).

Effective dimension of the environmental feedback loop: The term dimension of the feed-
back loop refers to the number of environmental variables (like the density of susceptible
hosts) that are controlled by the population dynamics of the pathogen and influence R in
different manners. However, for ESS calculations, only the sign of R − 1 matters. The
term effective dimension refers to the number of variables that independently influence this
sign. In simple models, the effective dimension and the dimension are often equal but in
structured models exceptions where the effective dimension is lower are commonplace.

proper understanding of the evolution of infectious diseases.

2 R0 in epidemiological models

The general definition of R0 in life-history theory is “the average lifetime offspring number in a given
environment”. In epidemiology, R0 is typically defined as the average number of secondary infections
produced by a single infected host in an otherwise uninfected host population (Macdonald (1952),
Dietz (1975), Anderson and May (1982), Diekmann et al. (1990), Van den Driessche and Watmough
(2002); see Heesterbeek and Dietz (1996) for its historic roots). The emphasis on “uninfected hosts”
is crucial because R0 is not only a function of the pathogen traits, X, but also of the environment,
E, experienced by the pathogens. We may thus write R0(X|E), where in general X and E comprise
more than one variable. For instance, the environment could collect the densities of susceptible and
partially resistant hosts. The dependence on the environment reflects our intuition that pathogen
spread will be hindered if the environment is less favourable, for instance if the frequency of resistant
hosts is high.

For a pathogen to spread in an initially uninfected population, an infected individual must produce
more than one secondary infection. Hence, the following condition must hold:

R0(X|E0) > 1 (2)

where E0 is the environment produced by the dynamics of the host population in the absence of the
pathogen. In the epidemiological literature, R0(X|E0) is generally shortened as R0. We shall follow
this convention and write R0(X) for R0(X|E0). To distinguish this from the more general case, we

3



Box 1: The many guises of R0

The general argument we give in this article also extends to more general ecological scenarios.
Indeed, although R0 has become a cornerstone of epidemiological thinking, the historical roots of
the concept are in demography and life-history theory. Here, we give a brief historical perspective
to shed light on these connections.

R0 in demography In epidemiology, the “0” in R0 is often interpreted as referring to the
uninfected population, but the notation actually comes from human demography, where R0 was
first defined by Dublin and Lotka (1925) as the zeroth in a series of moments of the so-called
reproduction kernel, i.e., the mean rate of producing kids as a function of age.

R0 in life-history theory The R0 concept was put to good use in life-history theory, where it is
generally taken to be the life-time offspring production of ordinary individuals with a sequestered
germ line. For general ecological scenarios, R0 can be calculated as the dominant eigenvalue of
the so-called next-generation operator that, in the given environment, projects the state of the
population from one generation to the next (Diekmann et al., 1990).

R0 in epidemiology The calculation of R0 in epidemiology proceeds in the same manner as
in life history theory. However, although it is a pathogen property, it is defined at a higher
level, that of infected hosts. From a fundamental perspective a population of infected hosts is
a metapopulation of pathogens, and the epidemiological R0 thus corresponds with the R0-like
concepts for metapopulations, like Rm (Metz and Gyllenberg, 2001, Ajar, 2003, Massol et al.,
2009) in evolutionary ecology.

On notation In the main text, we use different notations for the basic reproduction ratios
computed in the pathogen-free population, R0(X), and in another environment where the host
population is already infected by resident pathogen strains, R(X|E). This is done for clarity, but
the common conceptual underpinning should be kept in mind.

use R(X|E) to represent the basic reproduction ratio calculated in another environment E (see also
Box 1).

In practice, the calculation of R0(X) as a function of pathogen parameters will lead to different
expressions depending on the life cycle of the host-pathogen interaction one considers. For instance,
R0(X) does not take the same form for directly transmitted and vector-borne pathogens (Diekmann
et al., 1990, Van den Driessche and Watmough, 2002). However, most discussions on pathogen evolu-
tion start with expression (1), which is obtained in the classical Susceptible-Infected-Recovered (SIR)
epidemiological model (Box 2).

Let us assume that the traits of the pathogen may affect transmission (β), virulence (α), and
recovery (γ), reflecting potential trade-offs between life-history traits (Anderson and May, 1982, Alizon
et al., 2009). Then, in the SIR model, R0(X) can be written as

R0(X) =
β(X)

µ+ α(X) + γ(X)
S0. (3)

where S0 is the equilibrium density of susceptible hosts in the absence of the pathogen (Box 2).
Equation (3) shows that, for the SIR model, the basic reproduction ratio equals the lifetime

”infection pressure” by an infected individual (β(X)/(µ+ α(X) + γ(X)), which is an individual-level
property), times a single environmental variable, S0 (the density of susceptible hosts in a pathogen-free
population, which is a population-level property). This distinction between individual and population-
level properties will prove essential in the next sections.
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Box 2: The standard SIR model

The standard SIR model divides the host population into three compartments: susceptible (S),
infected (I) and recovered (R) hosts. The model assumes that the disease is only transmitted
horizontally through direct contacts with an infected host. Transitions between compartments
are due to transmission and recovery events. Hosts can be removed from the population through
mortality, while new susceptible hosts are created through reproduction. This is depicted in the
following diagram

S I R
βI γ

ν

µ

†

µ+ α

†

µ

†

b(S, I, R)

The dynamics of each class of hosts can then be captured by the following system of differential
equations

dS

dt
= b(S, I,R)− µS − βSI + νR (a)

dI

dt
= βSI − (µ+ α+ γ)I (b)

dR

dt
= γI − (µ+ ν)R (c)

where b(S, I,R) is the birth rate into the population, µ is the natural mortality, α represents
pathogen-induced mortality (often equated to virulence in the theoretical literature), γ is the per-
capita recovery rate, ν is the per-capita rate of immunity loss, and β is the transmissibility of the
pathogen.

In a pathogen-free population, the demography of hosts will bring the host population to
an equilibrium S0. From equation (b), an initially rare infection will grow if

βS0 − (µ+ α+ γ) > 0,

which can be rewritten as the condition R0 > 1 with R0 = βS0/(µ+ α+ γ).
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3 The epidemiological R0 is not pathogen fitness

Evolution results from the competition between different strains, generally one or more resident strains
and the mutants that they produce. This process is endlessly repeated as new mutants keep coming
and are either expelled or become new residents. Fitness is a measure of competitive prowess. In the
pathogen-free environment, there is no competition among pathogens, and therefore R0(X) cannot be
expected to stand as a proxy for pathogen fitness without a multitude of other assumptions. To study
long-term evolution, we should rather use invasion fitness?, defined as the per capita growth rate
of the mutant population in a resident population that has reached its epidemiological attractor (Box
3). Alternatively, we can use a fitness proxy? like R(Y |Ê)− 1, which has the same sign as invasion
fitness. This fitness proxy also relies on a basic reproduction ratio, R(Y |Ê), but one that is measured
in the environment determined by the resident pathogen strains, Ê, instead of the pathogen-free
environment, E0.

In the simple SIR model discussed above, a mutant pathogen strain with traits Y will invade if

R(Y |Ê) =
β(Y )

µ+ α(Y ) + γ(Y )
Ŝ > 1. (4)

(Box 3). Equations (3) and (4) are misleadingly similar. The critical difference is that R is calculated
in an environment characterised by the resident community of pathogen strains, Ê, instead of the
pathogen-free environment E0. A crucial property of this specific model is, moreover, that the effect
of the environment is captured by a single variable coming in multiplicatively, the equilibrium density
of susceptible hosts, Ŝ. Unfortunately this property, on which the R0 maximisation paradigm hinges,
is far from general.

4 Evolution will maximise R0 only in very simple environments

The natural stops of evolution through repeated mutant substitutions are ESSes, that is, trait com-
binations making it impossible for alternative feasible combinations to invade. By definition, an ESS
corresponds to a maximum of pathogen fitness in the corresponding environment. This implication ex-
tends to any fitness proxy like R(Y |Ê) when Ê is chosen to be the environment generated by the ESS.
However, the statement “evolution maximises R0” is generally taken to mean that one can calculate
the evolutionary endpoint by maximising R0(X), which is simply a function of X, the environment
being fixed at its disease-free value E0. It is thus taken for granted that the environment experienced
by the mutant pathogen does not matter, and that there exists a single type of pathogen that has
maximal lifetime production of new infections per infected host in all possible environments. The
examples in Section 5 show that we cannot in general expect the same pathogen type to perform best
in both disease-free and already infected populations.

A necessary and sufficient condition for evolution to maximise R0

To elucidate under which conditions the outcome of pathogen evolution can be determined by max-
imising the epidemiological R0, it is helpful to turn to more general results on the conditions for the
existence of an optimisation principle?. The latter simply means a function of the traits, ψ(X),
such that that we can find potential ESSs by maximising this function. The question “when does
evolution maximises R0?” then becomes “when is R0(X) an optimisation principle”? It turns out
that this occurs if and only if the pathogen fitness can be written as

R(Y |Ê) =
[
R0(Y )φ(Ê)

]q(Y,X)
(5)

with q a positive function of the traits (Metz and Geritz, 2016). That is, the effect of the environ-
ment can be summarised by a function φ(Ê) that multiplicatively affects the epidemiological basic
reproduction ratio R0(Y ). For instance, in the SIR model, we can simply obtain the fitness proxy R
(equation 4) by multiplying R0 (equation 3) with a function of the environment φ(Ê) = Ŝ/S0, so that
condition (5) is satisfied with q(Y,X) = 1.
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Box 3: How should we define pathogen fitness?

To make prediction about long-term evolution, the adaptive dynamics (Geritz et al., 1998, Metz,
2012) framework provides us with a standardised procedure to calculate the fitness of pathogens.
If the mutation rate is low, we may assume a separation of time scales between epidemiological
and evolutionary dynamics. In other words, we may assume that the environment reaches an
epidemiological attractor Ê(X) before a new mutation with trait value, say, Y occurs. With
this assumption, the relevant measure of pathogen fitness is the invasion fitness, ρ(Y |Ê), which
measures the growth of the mutant population in a resident population that has reached its
epidemiological attractor. Alternatively, we can use any fitness proxy that has the same sign as
ρ(Y |Ê). For instance, we can measure population increase in generation time and use lnR(Y |Ê)
or R(Y |Ê)− 1 as a fitness proxy.

Pathogen fitness in the SIR model To fix ideas, let us return to the simple SIR model
discussed above. The epidemiological attractor is an endemic equilibrium (Ŝ, Î, R̂). From the
dynamics of the density of hosts infected by the mutant parasite, we have, if we make the usual
assumption that recovery from any strain confers immunity to all,

ρ(Y, Ê) = β(Y )Ŝ − (µ+ α(Y ) + γ(Y )).

The mutant strain invades if ρ(Y, Ê) > 0. Alternatively, this condition can be rewritten as
R(Y |Ê) > 1, where

R(Y |Ê) =
β(Y )

µ+ α(Y ) + γ(Y )
Ŝ. (a)

Although in the SIR model, there is no real practical benefit in using R instead of ρ, fitness proxies
can often considerably simplify the calculations in more complicated ecological scenarios. (A fur-
ther fitness proxy that in complicated situations is algebraically far simpler, but less interpretable,
than R0 can be found in Metz and Leimar (2011).)

One thousand and one expressions for pathogen fitness Equation (a) is only one of the
many expressions for pathogen fitness derived in the theoretical literature when the simplistic
assumptions underpinning the SIR model are relaxed. For instance, minor extensions of the SIR
model often lead to expressions of the form

R(Y |Ê) =
β(Y )Ŝ + τ(Ê)

µ+ α(Y ) + γ(Y ) + δ(Ê)
, (b)

where the environmental feedback affects both pathogen transmission (through the term τ(Ê)) and
the average lifetime of hosts infected by the mutant pathogen (through the term δ(Ê)). Examples
include models with density-dependent mortality (equation (7)), superinfection (equation (8)),
limited cross-immunity (equation (9)) or vertical transmission (equation (10)).
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If condition (5) holds, the full ESS calculation is mathematically equivalent to maximising R0(X)
(Mylius and Diekmann, 1995, Metz et al., 2008). To see this, note that at the resident equilibrium,
we have R(X|Ê) = 1, which implies φ(Ê) = 1/R0(X). Thus, R(Y |Ê) is greater than 1 if and only if
R0(Y ) > R0(X), which leads to the maximisation of R0. In Section 5, we shall see that condition (5)
can be used to quickly judge whether a given epidemiological model supports an optimisation principle
or not.

Consequence 1: The evolutionary maximisation of R0 is equivalent to the minimi-
sation of the susceptible density

The grand idea of R0 maximisation has a more downbeat counterpart. Instead of looking at whether
evolution maximises a function of the trait, ψ(X), one may look at the impact of trait evolution on
the environment, φ(Ê). For our baseline SIR model, we have φ(Ê) = Ŝ/S0 = 1/R0(X). Hence,
maximising R0(X) is equivalent to minimising the equilibrium density of susceptible hosts

Ŝ =
µ+ α(X) + γ(X)

β(X)
. (6)

Any mutant that is favoured by evolution has a higher R0(X), but makes for a lower density of its
resource. The process ends when the density of susceptible hosts is so low that no other mutant
pathogen can invade. From the pathogen’s view evolution thus leads to the worst attainable world, a
result dubbed pessimisation principle? (Mylius and Diekmann, 1995, Metz et al., 2008). Pessimi-
sation principles occur in all models with an optimisation principle. In a purely ecological context,
they appear as the principle that among species competing for a single resource only the type sur-
vives that tolerates the lowest resource density. Similarly, SIR-type epidemiological models tell that
a community of parasites will ultimately be dominated by the strain with the highest R0 (Anderson
and May, 1982), which also results in the lowest susceptible density that allows the disease to persist.

The dimension of the environmental feedback loop

A crucial feature of equation (5) is that the effect of the environment can be summed up by a single
number, φ(Ê), such that increasing φ can only change the sign of R − 1 from negative to positive
(Metz et al., 2008). An environmental feedback of this form is said to be effectively one-dimensional,
because only one variable is needed to describe the effect of the environment on the fitness sign. For
instance, in the SIR model, increasing the density of susceptible hosts can only cause R to go from
below 1 to above 1. In such simple environments, selection maximises a model-dependent function of
the traits, ψ(X), which only in the simplest scenarios will be R0(X) (Metz et al., 2008).

Conversely, any model for which the environmental feedback cannot be effectively summed up by
only one variable does not allow for the ESS to be calculated through maximising R0 (Metz et al.,
2008). Which is the case can be decided by checking whether the pathogen fitness R(Y |Ê) satisfies
condition (5). In Section 5, we review a diversity of biological mechanisms that generically give rise to
multi-dimensional environmental feedback loops and thereby cause R0 maximisation to break down.
The long-term evolutionary outcome then can only be found from a full ESS calculation.

Consequence 2: R0 maximisation excludes diversification

If an optimisation principle exists (in particular if evolution maximises R0), the evolutionary process
is of the simplest kind: any mutant that increases the optimisation criterion goes to fixation, until an
ESS is reached, so that any ESS is an evolutionary attractor and vice versa (Metz et al., 2008). This
has one important corollary: polymorphisms are impossible. Thus, a prerequisite for the evolutionary
diversification of pathogen populations is that evolution does not maximise anything, and does not
maximise R0 in particular. The R0 maximisation paradigm thus faces an immediate empirical chal-
lenge, because it is incompatible with any longer term coexistence of different pathogen strategies in
nature.
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Consequence 3: ESS trait values often differ from those obtained from R0 maximi-
sation

When the environmental feedback loop is not conducive to diversification, using R0 maximisation to
predict the endpoint of evolution usually leads to quantitative errors. In principle, the magnitude
of such errors can be inferred from the structure of the model. Figure 1 shows a graphical tool for
deducing what kind of influence the environmental feedback loop may exert. We start by noting
that, under a trade-off between transmission and virulence, R0 maximisation can be cast in a form
corresponding to the so-called Marginal Value Theorem (Charnov, 1976), which allows the ESS to be
found graphically, as depicted in Figure 1a. Suppose for instance that the effect of the environmental
feedback loop affects the average time a mutant pathogen hangs on to an infected host (an effect
captured in equation (b) in Box 3 by the term δ(Ê)). This would happen for instance when a more
virulent resident strain causes a decline in population density, which in turn decreases the density-
dependent mortality rate experienced by a mutant parasite. In this case, the graphics tells that this
feedback increases or decreases the ESS relative to the outcome of R0 maximisation depending on
whether in the example under consideration the added term is positive or negative (Figure 1b,c). The
size of the error made by using R0 maximisation instead of the full ESS calculation depends on the
curvature of the trade-off (Appendix S8). If the value of virulence α∗O that maximises R0 lies on
a fairly straight section of the trade-off, as in Figure 1b, any small shift from O to A will cause a
large deviation of the ESS compared to α∗O. In contrast, in Figure 1d, where the trade-off has a high
curvature around α∗O, the same shift from O to A will have negligible effect.

5 Most biological scenarios jar with the R0 maximisation paradigm

The preceding discussion gives a general argument for why the principle of R0 maximisation can be
expected to be misleading, either qualitatively or quantitatively, for the majority of epidemiological
scenarios. We will now illustrate this general argument for a selection of more realistic biological
scenarios. Using the SIR model as baseline, we highlight salient biological factors causing ESS pre-
dictions to deviate from the purported predictions coming from an R0 maximisation (see e.g. Ebert
and Herre (1996), Schmid-Hempel (2011) for reviews in the non-theoretical literature). The aim of
our non-exhaustive review is to emphasise the unifying principle connecting these different scenarios,
which is to be found in the dimension of the environmental feedback loop. To keep things simple, we
use the classical assumption of a trade-off between transmission and virulence (see Alizon et al. (2009)
for a review) and focus on populations at endemic equilibrium (but see Appendix S7 for a discussion
of non-equilibrium epidemiological attractors).

5.1 Density-dependent mortality

The classical SIR model assumes that density-dependence only affects fecundity. However, density-
dependent mortality has for example been identified as a key factor of the evolutionary dynamics of
Marek’s disease in poultry farms (Rozins and Day, 2017). To take this into account, suppose now
that µ is a function of the host densities, say µ = µ0 + κN , where N = S + I + R is the total host
density. Indicating the mutant properties with a prime, so that e.g. R′ = R(α′, β′|S, I,R), we obtain
the following fitness proxy

R′ = β′Ŝ

µ0 + κN̂ + α′ + γ
. (7)

With this simple increment in ecological realism, the environmental feedback affects pathogen fitness
in two contrasting ways: as before, pathogen transmission is proportional to the density of susceptible
hosts, Ŝ, but, in addition, the duration of infection also decreases with the total population density
of the residents, N̂ , allowing the residents trait to exert an additional influence on the fitnesses of
mutants. Thus, unless very stringent assumptions are made, the effective dimension of the feedback
loop is two, i.e., there is no way we can sum up the effect of the environment by a single number as in
condition (5). As a result, evolution does not maximise any purported environment-independent fitness
proxy. This may notably lead to evolutionary branching (Andreasen and Pugliese, 1995, Dieckmann
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Figure 1: A graphical derivation of quantitative consequences of R0 (non-)maximisation.
– (a) Assuming a simple trade-off between transmission (β) and virulence (α), R0 maximisation in the
SIR model implies that the ESS (α∗O) can be found graphically by drawing the tangent at the trade-off
curve that goes trough the point O = (−µ−γ, 0). (b) With slightly different expressions for pathogen
fitness, for instance as given by equation (b) in Box 3, the ESS α∗A will deviate from the prediction
of R0 maximisation due to the additional effect of the environmental feedback loop captured by the
term δ(Ê). The tangent at the ESS then goes through the point A = (−µ − γ − δ(Ê), 0). If δ(Ê) is
positive, the point A is to the left of point O and selection favours higher virulence than predicted by
R0 maximisation. (c) In contrast, a negative value of δ(Ê) leads to lower virulence at ESS. (d) The
size of the discrepancy α∗A − α∗O is inversely proportional to the curvature of the trade-off around the
value of virulence α∗O that maximises R0 (compare with panel (b)).
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and Metz, 2006, Svennungsen and Kisdi, 2009), but even when long-term evolution converges to a
monomorphic ESS (Dieckmann, 2002, Pugliese, 2002), the ESS will deviate from the value predicted
by R0 maximisation. Figure 1c graphically depicts this deviation. In this model, the effect of the
environment is κ(N̂ − S0) (Appendix S1). If, as expected, the presence of the pathogens leads to a
decrease in the total population size, N̂ , compared to the density of hosts in an uninfected population,
S0, the point A will be to the right of O and the evolutionarily stable (ES) virulence will be lower
than the value that maximises R0.

5.2 Multiple infections

In nature, hosts are typically infected by several pathogen strains or species (Petney and Andrews,
1998, Balmer and Tanner, 2011). When different pathogen strains compete for within-host resources,
higher levels of virulence can be selected for (van Baalen and Sabelis, 1995, Frank, 1996, Gandon
et al., 2001a), a prediction backed up by some experimental results in malaria (de Roode et al., 2005).
As an illustration, assume that hosts infected by strain i, if additionally infected by strain j, are then
taken over with probability σji following rapid within-host competition (so-called superinfection May
and Nowak (1994)). For a monomorphic resident population, we only need to consider the resident
(r) and mutant (m) strains. We then have the following fitness proxy (Appendix S2; Gandon et al.
(2001a))

R′ = β′(Ŝ + σmr Î)

µ+ α′ + γ + σrmβÎ
. (8)

The feedback of the environment acts through the densities of both susceptible and infected hosts.
The total density of hosts that can be infected by a mutant pathogen, Ŝ+σmr Î, acts as a first feedback
variable, with a positive effect on the transmission of all mutant pathogens, the more so for mutants
that are better at taking over a resident-infected host (high σmr). However, a high density of resident-
infected hosts, Î, will also increase the risk of a resident take-over (through the term σrmβÎ) for mutant-
infected hosts, resulting in a reduced infection duration, the more so the better the resident is at such a
take-over (high σrm). The presence of two independent feedback variables implies that the long-term
evolutionary outcome cannot be predicted by a simple R0 maximisation. Many theoretical studies
have investigated the evolutionary consequences, with three main conclusions: First, superinfection
models readily produce evolutionary branching leading to the coexistence of strains with different host
exploitation strategies (Boldin and Diekmann, 2008, Boldin et al., 2009, May and Nowak, 1994, Adler
and Mosquera Losada, 2002). Second, even when diversification is impossible, the ES virulence will be
typically higher than the value that maximises R0, as captured by figure 1b (point A is to the left of
O). Third, the precise evolutionary outcome will generally be due to both the direct effect of within-
host competitiveness and the indirect effect of the environmental feedback loop that comes from the
take-over pressure by resident pathogens on mutant-infected hosts (see Appendix S2 for details).

5.3 Limited cross-immunity

The classical SIR model assumes full cross-immunity, so that recovered hosts are equally immune to
all pathogen strains. However, if mutant pathogens can also infect hosts that have recovered from the
resident infection, we obtain the following fitness proxy:

R′ = β′

µ+ α′ + γ
(Ŝ + (1− c(α′, α))R̂) (9)

where c(α′, α) measures cross-immunity. Full cross-immunity implies c = 1, in which case equation
(9) satisfies condition (5). A reasonable assumption is that cross-immunity is less for more dissimilar
trait values. A detailed analysis (Appendix S3) then shows that the evolutionary dynamics will
converge towards the value of virulence that maximises R0, as in the SIR model with full cross-
immunity. However, because c acts similar to a trait-dependent competition coefficient, this value can
be a branching point at which the evolutionary path starts to diversify, leading to the coexistence
of virulent and prudent pathogens. Several models incorporating limited cross-immunity have indeed
demonstrated such diversification (e.g. Adams and Sasaki (2007), Alizon and van Baalen (2008), Best
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and Hoyle (2013)). Hence, although the initial evolutionary dynamics may give the impression that
R0 is maximised, this is not predictive of long-term evolution.

5.4 Multiple transmission routes

So far, we have only considered pathogens with direct horizontal transmission. Multiple transmission
routes are another ubiquitous factor causing an increase in the dimension of the environmental feedback
loop. In pathogens with both horizontal and vertical transmission, selection has been found to favour
pathogens with suboptimal values of R0 (Nowak, 1991, Lipsitch et al., 1996, Messenger et al., 1999,
Ferdy and Godelle, 2005, Cortez, 2013). To understand why, extend the SIR model by allowing the
pathogen to be transmitted vertically with probability ε. If b′I(N) denotes the density-dependent
fecundity of hosts infected by the mutant strain, where N is the total population size, this leads to

R′ =
β′Ŝ + εb′I(N̂)

µ+ α′ + γ
(10)

(see Appendix S4 for details). Vertical transmission thus introduces a dependence of fitness on the total
population density, in addition to the density of susceptible hosts, and we now have two independent
feedback variables. Therefore, according to our general criterion, looking for an optimisation criterion
is bound to fail. The key point is not the distinction between horizontal and vertical transmission
but the different forms of density dependence introduced by each transmission route. In general, mul-
tiple transmission pathways (e.g. sexual vs. non-sexual transmission Thrall and Antonovics (1997),
direct vs. environmental transmission Day (2002), Boldin and Kisdi (2012)) introduce separate en-
vironmental feedback variables. This may lead to diversification of the pathogen population (Thrall
and Antonovics, 1997, Boldin and Kisdi, 2012, Bernhauerová and Berec, 2015, Hamelin et al., 2016).
When there is no diversification, arguments similar to those of Figure 1 show that the ESS value
of α is smaller than that coming from R0 maximisation, with the size of the error again inversely
proportional to the trade-off curvature (Appendix S4).

5.5 Host heterogeneity

Most host populations exhibit among-host variation in quality or immune status. This heterogeneity
can reflect genetic variation in host resistance or tolerance (Dwyer et al., 1997, R̊aberg et al., 2007,
Keith and Mitchell-Olds, 2013), sex-based dimorphism (Nunn et al., 2009), nutritional status, infection
history, senescence, environmental factors (Sorci et al., 2013b,a), different coinfections (van Baalen
and Sabelis, 1995, Gandon, 2004, Lion, 2013), or just different host species. Because the reproductive
potential of the pathogen is likely to differ between host classes, host heterogeneity will generally affect
pathogen evolution (Gandon, 2004), as shown in host populations with sexual dimorphism (Cousineau
and Alizon, 2014, Úbeda and Jansen, 2016) or intermediate vaccination coverage (Gandon et al.,
2001b, 2003). Because each class of host potentially produces a separate environmental feedback
variable, evolution will optimise some function of the traits only under very specific assumptions
on the patterns of infection across classes (see Box 4). In principle, host heterogeneity can favour
evolutionary branching, because each host class may act as a potential niche for the pathogen. This
effect is particularly strong when hosts and pathogens coevolve, in which case diversification in one
species can readily lead to the co-diversification of the other species (Pugliese, 2011, Best et al., 2009,
2010).

5.6 Spatial structure

In nature, patterns of local host and pathogen dispersal lead to the build-up of genetic and epidemi-
ological structure, with deep implications for the evolutionary ecology of host-pathogen interactions
(Greischar and Koskella, 2007, Jousimo et al., 2014, Tack and Laine, 2014, Lion and Gandon, 2015,
Parratt et al., 2016). Consider for instance that infectivity decreases with distance. Then, the effec-
tive density of susceptible hosts that can be infected by a focal host infected by a mutant pathogen,
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Box 4: Some evolutionary consequences of host heterogeneity

Pathogen evolution in heterogeneous host populations strongly depend on the pattern of infection
across host classes. For a pathogen that can infect two classes of hosts (A and B), different cases
can be distinguished.

Unbiased transmission Denoting τij the transmission rate from class i to class j, this occurs
if τAAτBB = τABτBA. This property is satisfied in many models that assume that transmission
is the product of infectivity and susceptibility, i.e. τij = βiσj , where σj is the susceptibility of
host class j. Biologically, this means that pathogen propagules all pass through a common pool
(cf Rueffler and Metz (2013)). Then, pathogen fitness can be written as the sum of the basic
reproduction ratios in each class of hosts (Gandon et al., 2001b, Gandon, 2004)

R′ =
β′A

µ+ α′A + γ′A
σAŜA +

β′B
µ+ α′B + γ′B

σBŜB.

The fitness proxy depends on two environmental variables, which are the equilibrium densities of
susceptible hosts in each class, ŜA and ŜB. These are given by

ŜA =
µ+ αA + γA

σAh/ÎA
and ŜB =

µ+ αB + γB

σBh/ÎB
.

where h = βAÎA + βBÎB is the force of infection. We may then distinguish two cases.

• If the two host classes only differ by their susceptibility to the disease, then pathogen fitness
simplifies to the lifetime infectivity times the total density of susceptibles, σAŜA + σBŜB
(Gandon et al., 2001a). If the susceptibilities are independent of the evolving traits, condi-
tion (5) holds true. The ESS is thus unaffected by host heterogeneity and is predicted from
simple R0 maximisation using the unstructured SIR model.

• If virulence is different in the two classes, the ESS is intermediate between the optimal
virulences predicted from R0 maximisation in each class in isolation (Gandon et al., 2001b,
2003). However, there may still exist an optimisation principle if both ŜA and ŜB are
decreasing functions of a single environmental variable, such as the force of infection h
(Svennungsen and Kisdi, 2009).

Biased transmission The above analysis breaks down if τAAτBB 6= τABτBA. Then, pathogen
fitness cannot be written as the sum of the contributions of each class (Gandon, 2004). This
generically results in two-dimensional feedback loops, in which case there is no hope of finding a
fitness proxy that is maximised by evolution.

Vector-borne diseases A special case where R0 maximisation can nevertheless do the job is
when the two host classes are two host species that need to be exploited in strict alternation, so
that τAA = τBB = 0. Then, we have

R′ = R′0(Y )

√
ŜAŜB
S0,AS0,B

where R′0(Y ) is the basic reproduction ratio for a mutant vector-borne pathogen in the two-host
population in the absence of the disease (see Appendix S5 for details). Hence, condition (5) holds
true, and R0 maximisation works, although the expression for R0 is not the same as in the SIR
model with direct transmission (Van den Driessche and Watmough, 2002, Cortez, 2013). However,
the existence of an additional transmission route will cause deviations from the predictions of R0

maximisation. For instance, several vector-transmitted pathogens have also been shown to be
transmitted vertically (Ebert, 2013), either in the vertebrate host (e.g. Plasmodium falciparum)
or in the vector (e.g. several arboviruses, Lequime et al. (2016)).
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[S|I ′], will be lower than the overall density of susceptible hosts in the population, S. This yields the
following fitness proxy:

R′ = β′[S|I ′]
µ+ α′ + γ

. (11)

Although superficially similar to the non-spatial expression, equation (11) hides a further complication.
Because transmission is mostly local, a mutant pathogen with a higher lifetime infection pressure will
on average experience a lower density of susceptibles around it. [S|I ′] thus depends on how the
mutant’s traits influence the local epidemiological structure experienced by the carriers of the mutant
pathogen. As a consequence the environmental feedback loop generally can only be fully characterised
by a large number of variables. However, not all is lost. If we further assume that the resident
population is at equilibrium, the invasion condition can be written as(

1

RNS
0

− 1

R
′NS
0

)
+
(

[S|I ′]− [S|I]
)
> 0 (12)

where RNS
0 (resp. R

′NS
0 ) denotes the lifetime infection pressure exerted by resident (resp. mutant)

pathogens in the corresponding non-spatial model (Lion and Gandon, 2015). The first term between
brackets on its own would lead to the maximisation of the lifetime infection pressure predicted by
the non-spatial model. The second term occurs since different pathogen strains experience different
densities of susceptible hosts. Therefore spatial structure is expected to affect the evolutionary outcome
(Boots and Sasaki, 1999, Lion and Boots, 2010, Lion and Gandon, 2015). Further developments of
inequality (12) indicate that the deviation from R0 maximisation is determined by the balance between
genetic structure (local relatedness between pathogens infecting different hosts) and a measure of
epidemiological structure for evolutionarily neutral mutants (Lion and Boots (2010), Lion and Gandon
(2015); see Appendix S6 for details).

6 Lessons for the future

The R0 maximisation principle is one of many examples in science where a specific result derived for
a simple model, or under a particular simplifying assumption, has been promoted to canon status.
In epidemiology, other examples include the transmission-virulence trade-off and the representation
of virulence as disease-induced mortality, assumptions that underpin many theoretical models. One
of our messages is that irreverence for tradition is a key element of scientific progress: we should not
let habits or history stifle the development of new ideas. Further progress in the study of pathogen
evolution requires explicitly accounting for environmental feedbacks. In this section, we discuss the
implications for empirical studies and potential applications.

6.1 Should we attempt to measure pathogen fitness?

The conclusion that selection will only rarely maximise a “measure of absolute fitness” such as R0(X) is
not only of interest to theoretical biologists. Many empirical studies rely on the presumed measurement
of some fitness proxy expected to be maximised by selection. This activity is seldomly informative.
First, as we have seen, evolution only rarely satisfies an optimisation principle. Second, empirical
measurements of fitness proxys are generally hard to come by. This is even the case for R0 and R
since we have to take account of the demography of the full life cycle, which often includes parts that
are hard to observe. Third, even if we know how to measure a valid fitness proxy, it is rarely possible
to do more than measuring it in the current environment. Then, if the population mean does not sit
close to the proxy’s maximum, either something went wrong or we stumbled on a case of fast ongoing
evolution, and the result will probably not get reported. If the population mean does sit close to the
proxy’s maximum, this tells only that the population has roughly equilibrated to an ESS, but gives
little information on the processes that have brought the population to this point, or where evolution
will take the population after an imposed environmental change.

One could object that there is some experimental evidence of R0 maximisation. However, only a
relatively small number of experimental studies appear to support this paradigm. The myxomatosis
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epidemic in Australian rabbits has been used as such an example (Anderson and May, 1982, Fenner
and Fantini, 1999, Mackinnon et al., 2008). It is true that, initially, the population quickly settled
to a virulence level that was relatively close to the value maximising the classical expression of R0

(Massad, 1987, Mackinnon et al., 2008). However, the subsequent rise of resistance in Australian
rabbits then selected for increased virulence (Fenner and Fantini, 1999). These two phases of the
epidemic are characterised by two different environmental feedbacks: in the early years, selection was
mostly driven by a strongly curved transmission-virulence trade-off (Massad, 1987), while in the later
years, host heterogeneity led to a two-dimensional feedback loop which precludes R0 maximisation
(Appendix S9; see also Dieckmann (2002)). The apparent maximisation of R0 is thus only a transient
state in the coevolution of the myxoma virus and its host. In a similar vein, Fraser et al. (2007)
have shown the average set-point viral load of HIV in two human cohorts to be close to the value that
maximises R0, calculated through an extension of formula (1) to age-structured populations. However,
because the data from which the authors estimated the basic reproductive ratio incorporated the
effect of environmental feedbacks, the authors probably estimated the fitness proxy R rather than the
epidemiological R0. An alternative interpretation of this result is thus that its fast evolution causes
the HIV population to track a moving optimum of R(Y |E(t)), with E(t) the current environment
(Appendix S10). To predict the outcome of interventions, what really matters is how a large treatment
roll-out would impact the environmental feedback on HIV dynamics. This can only be achieved by
combining careful empirical studies, as in Fraser et al. (2007), with the insights of more general
ecological theory.

Rather than empirical support for the R0-maximisation principle, we see these studies as an op-
portunity to infer conclusions about the form of the environmental feedback in these systems. In
some cases, such studies may also help to identify approximate optimisation principles, which can be
empirically useful when they exist. An interesting challenge for future theoretical research would be
providing empiricists with a theoretical overview of the systems for which simple optimisation princi-
ples can be used, together with keys for their empirical identification (see Box Outstanding Questions).
In general, however, trying to measure fitness will not necessarily be the best way to study the adap-
tive evolution of pathogens. Not only is it a difficult task, the eventual benefit to our understanding
may often be disappointing. An alternative approach is to use simple models and ESS considerations
to generate, and subsequently test, predictions phrased in terms of readily observable quantities such
as the average value of a trait or the frequency of an allele. In this perspective, fitness is best viewed
as a theoretical device which can be used to make predictions on more directly measurable properties
of biological systems.

6.2 Applications and generalisations

Although for the sake of simplicity we focussed on the evolution of virulence, there is more to host-
pathogen evolution than just virulence. Our main message applies generally to life-history traits
affecting the dynamics of host-pathogen interactions, and thus pertains equally to other problems such
as the evolution of drug resistance or vaccine escape. All this has obvious practical implications for the
short- and long-term management of infectious diseases, where one is interested in the evolutionary
consequences of some external interference, such as treatments or control measures. For long-term
predictions, we have to think beyond adaptations to observed circumstances and consider evolutionary
changes of trait values in concert with the environmental changes induced by them. As we have shown,
the principle of R0 maximisation is then of limited use, and we need a more predictive theory, for
which we gave some conceptual foundations. At the other extreme, it has long been known that, for
short-term predictions, R0 maximisation is misleading, because strains with higher per-capita growth
rates but lower R0 can be favoured transiently (Lenski and May, 1994, Frank, 1996, Day and Gandon,
2007, Bull and Ebert, 2008). Hence, if we want to make predictions about the immediate consequences
of a therapeutic intervention, we need to think carefully about how environmental feedbacks play out
during transient epidemiological dynamics (see Box Outstanding Questions).

The message of this article is also relevant for more general problems in evolutionary biology.
In fact, the line of argument that we followed here was developed for the evolution of life-history
traits in general ecological systems (Metz et al., 2008). The many pressing challenges facing today’s
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Box 5: Outstanding Questions

• How can we identify biological systems supporting approximate optimisation
principles? For some systems, approximate optimisation principles may be sufcient to
predict long-term evolution. Finding guidelines for identifying such systems could prove
useful for empirical and experimental studies.

• Can we construct useful fitness proxies from simple considerations of the life-
cycle of hostparasite interactions? Finding good measures of fitness is a challenge for
many empiricists. While the epidemiological R0 cannot in general be expected to be a valid
fitness proxy, a key motivation for further theoretical research is to provide disease ecologists
with recipes to build fitness proxies from simple biological observations.

• How important are host and parasite population structures in shaping selection
on parasite traits? Given that population structure (such as age or spatial structure)
can be expected to lead to higher-dimensional environmental feedbacks, we need to better
understand to what extent and in which manner such structures influence the outcomes of
evolution.

• How do environmental feedbacks shape pathogen evolution during transient
dynamics? We have assumed here that evolution is slow compared with ecology but,
for many host-pathogen systems, evolution may be faster, or unfold on similar timescales.
Disease management calls for theory of pathogen evolution during transient epidemiological
dynamics.

evolutionary biologists are all characterised by multi-dimensional feedbacks between ecological and
evolutionary dynamics. To understand the consequences of climate change, habitat fragmentation, or
the harvesting of natural resources, an approach based on optimisation does not suffice.

7 Concluding remarks

What should a first-principles-based view on the rationale of evolutionary epidemiology look like?
For long-term predictions, we see ESS theory and its dynamic counterpart adaptive dynamics, both
anchored in the concepts of invasion fitness and dynamical fitness landscapes, as its main pillars. R0

optimisation did a great job in the early days, but should no longer keep its primacy in teaching
and presumed applications since it only finds ESSes under very restrictive conditions. Emphasising
it therefore puts new generations of researchers in the wrong starting block. The challenges raised by
emergent infectious diseases, to name but one of the many modern predicaments, require that we give
our students the best possible conceptual starting point for tackling the world, and R0 optimisation
fails to fit that bill. The time is ripe for more accurate (and exciting!) approaches to pathogen
evolution.
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van den Berg, F., Bacaër, N., Metz, J. A. J., Lannou, C., and van den Bosch, F. 2011. Periodic
host absence can select for higher or lower parasite transmission rates. Evol. Ecol. 25:121–137.
http://dx.doi.org/10.1007/s10682-010-9387-0.

Van den Driessche, P. and Watmough, J. 2002. Reproduction numbers and sub-threshold endemic
equilibria for compartmental models of disease transmission. Mathematical biosciences 180:29–48.
http://dx.doi.org/10.1016/S0025-5564(02)00108-6.

22

http://dx.doi.org/10.1016/j.jtbi.2008.11.014
http://dx.doi.org/10.1007/s10658-013-0353-x
http://dx.doi.org/10.1007/s10658-013-0353-x
https://doi.org/10.1007/978-3-540-34426-1_6
http://dx.doi.org/10.1038/ncomms13849
http://dx.doi.org/10.1006/jtbi.1998.0730
http://dx.doi.org/10.1007/s10682-010-9387-0
http://dx.doi.org/10.1016/S0025-5564(02)00108-6


Supplementary Online Material

In this appendix, we present a more detailed analysis of the various special cases discussed in the
main text. Of course, a full study is beyond the scope of this paper (and besides, the literature already
provides much better and complete analyses). Our more modest aim is to collect here some technical
justifications that we could not give in the main text without disrupting the flow of the argument.

S.0 Calculating ESSes

We recall here the recipe for calculating ESSes; it derives from the idea that an ESS sits at the top of its
self-created fitness landscape: Maximise R(Y |Ê(X)) over Y to end up with a function Yopt of X, and
then solve Yopt(X

∗) = X∗. The maximisation can be done numerically or sometimes analytically by
setting the derivative ofR(Y |Ê(X)) for Y equal to zero. In the latter case the equation Yopt(X

∗) = X∗

may be solved again either analytically or numerically. In the first case all equations have to be solved
numerically. This is done by first writing a function routine that accepts X to return Yopt, which then
is called in the routine for iteratively solving Yopt(X

∗) = X∗.

S.1 Density-dependent mortality

One of the easiest twist to the SIR model is to assume that the background mortality rate, µ, is a
function µ(N) of the total population size N = S+ I+R. For instance, one may choose µ = µ0 +κN ,
where κ measures the strength of density-dependence. In an uninfected population, we have N = S0,
the density of susceptible individuals in the absence of disease, and therefore the basic reproduction
ratio of a pathogen with traits X arising in the uninfected population is

R0(X) =
β(X)

µ0 + κS0 + α(X) + γ
S0 (S1)

(where for simplicity only transmission and virulence are assumed to depend on the traits X). In
contrast, the basic reproduction ratio of a mutant pathogen with traits Y in the environment produced
by a resident pathogen strain with traits X is

R(Y |Ê(X)) =
β(Y )

µ0 + κN̂(X) + α(Y ) + γ
Ŝ(X) =

β(Y )

µ0 + κN0 + α(Y ) + γ + δ(Ê)
Ŝ(X) (S2)

with N0 = S0 and δ(Ê) = κ
(
N̂(X) − S0

)
the additional effect of the environmental feedback loop

on mortality compared to the mortality term in R0. For a concave transmission-virulence trade-off
β(α), a graphical construction allows us to visualise the effect of the environmental feedback on the
ESS compared to the prediction of R0 maximisation. To see how, note that, by differentiating R with
respect to Y and evaluating the result at Y = X, potential ESS’s must satisfy the following equation

dβ

dα
(α∗) =

β(α∗)

µ0 + κS0 + α∗ + γ + δ(Ê(α∗))
(S3)

The tangent at the ESS to the trade-off curve must thus go through the point A (−µ0 − κS0 − γ −
δ(Ê), 0), whereas for R0 maximisation the tangent goes through the point (−µ0 − κS0 − γ, 0). Then,
δ(Ê) is the length of the OA segment in figure 1C in the main text. If the presence of the parasite
leads to a decrease in the density of hosts (such that N̂(X) − S0 < 0), the point A is to the right of
O, and the ES virulence is lower than the value that maximises R0.

Deeper analyses of this scenario can be found in the literature (Andreasen and Pugliese, 1995,
Pugliese, 2002, Dieckmann and Metz, 2006, Svennungsen and Kisdi, 2009).
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S.2 Superinfection models

Superinfection models May and Nowak (1994), Adler and Mosquera Losada (2002) assume that a host
infected by a pathogen strain can be infected by another strain, which, with a certain probability, can
oust the resident strain on a fast time scale compared to the time scale of transmission. The baseline
SIR model can be extended to include superinfection, in which case the density of hosts infected by
a mutant strain m satisfies the following differential equation (under the assumption that only one
other strain, r, is present in the population):

dIm
dt

= (βmIm)S − (µ+ αm + γ)Im − (σrmβrIr)︸ ︷︷ ︸
hr

Im + (σmrβmIm)︸ ︷︷ ︸
hm

Ir. (S4)

The first term represents the production of new hosts infected by the mutant strain from uninfected
hosts; the second term represents the removal of Im hosts due to mortality and recovery; the third term
gives the loss of Im hosts due to superinfection by the resident strain (with superinfection probability
σrm); and the fourth term gives the production of new Im hosts due to the superinfection of hosts
infected by the resident strain. The quantities hr and hm are the forces of infection by resident and
mutant strains respectively.

Note that superinfection is a meaningful process only if the pathogen population is dimorphic. If
only a single pathogen is present, the model collapses to the baseline SIR model (and therefore the
epidemiological R0 for the superinfection model is the same as in the SIR model).

Assuming that the resident population is at the equilibrium (Ŝ, Îr) and that the mutant strain
is rare, the mutant strain will invade if (1/Im)dIm/dt > 0, which can be cast in the form of a basic
reproduction ratio (Gandon et al., 2001a):

R′ = βm

µ+ αm + γ + σrmβr Îr
(Ŝ + σmrβr Îr) > 1 (S5)

In the following, we assume that βm = β(αm) and βr = β(αr). Under the (rather unrealistic)
assumption that the probabilities of superinfection are independent of the traits, differentiating with
respect to αm leads to the following condition at the ESS:

dβ

dα
(α∗) =

β(α∗)

µ+ α∗ + γ + σrmβ(α∗)Îr(α∗)
(S6)

in accordance with the Marginal Value Theorem (Charnov, 1976). When σrm = 0, the right-hand
side is the basic reproduction ratio R0 divided by S0 and, for a concave trade-off β(α), the model
admits an ESS which coincides with the value of virulence that maximises R0. When σmr > 0, the
additional term in the denominator, which is simply the force of infection exerted by resident parasites
on hosts infected by the mutant strain, gives the length of the OA segment in figure 1B in the main
text. Because the force of infection is positive, the ESS virulence is predicted to be higher than the
value that maximises R0.

The assumption of trait-independent take-over probabilities may make little biological sense, but
has the didactical value of showing that superinfection can affect the ESS purely through the indirect
effects of the environmental feedback loop, without any within-host competitive asymmetries! More
realistically, the superinfection probabilities σrm and σmr will be function of the traits. A common
assumption in the literature is that σij = s(αi−αj), that is the probability of superinfection depends
on the difference in virulence between the two strains. In that case, differentiating R′ with respect
to αm leads to another condition than equation (S6) (see e.g. Gandon et al. (2001a), Boldin and
Diekmann (2008), Boldin et al. (2009)). We obtain

dβ

dα
(α∗) =

β(α∗)(1− 2h∗s′(0))

µ+ α∗ + γ + h∗s(0)
(S7)

where h∗ = β(α∗)Î(α∗) is the force of infection due to resident parasites (Gandon et al., 2001a). A
graphical representation can be found by noting that the tangent line at the ESS goes through a point
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Figure S2: Graphical representation of the effect of within-host competitiveness in the superinfection
model

B that is obtained by raising point A vertically by 2h∗s′(0) (figure S2, Gandon et al. (2001a)). It can
then be seen that, when superinfection depends on a within-host competitiveness that increases with
virulence, selection favours even higher virulence (compare α∗B and α∗A).

S.3 Limited cross-immunity

The baseline SIR model assumes that recovery to one strain confers immunity to all other strains.
However, cross-immunity is far from perfect in nature. Limited cross-immunity makes the recovered
class vulnerable to new infections. We assume that the susceptibility of the R class to new infections
is a function of the virulence. Specifically, we suppose that a mutant pathogen with virulence α′ will
be able to infect hosts that have recovered from an infection by a resident pathogen with virulence
α with probability 1 − c(α′, α), where c(α′, α) is a measure of cross-immunity. Full cross-immunity
is equivalent to c = 1. We also assume that c(α, α) = 1 and that the derivative of c with respect
to its first argument is zero, which follows from the reasonable assumptions that the cross-immunity
decreases with increased dissimilarity between the traits.

With these assumptions, we have the following fitness proxy

R′ = β′

µ+ α′ + γ′
(Ŝ + (1− c(α′, α))R̂) (S8)

The full analysis of this model is still a work in progress (Metz & Boldin, in prep) but we give here
a rough sketch of one of the most salient results. We first make some notational changes to simplify
the argument, and write α, β, γ as α(x), β(x), γ(x), α′, β′, γ′ as α(y), β(y), γ(y), R′ = R(y, x), and
c(α′, α) as c(y, x). In the case of functions of more variables like c we indicate the position at which
we differentiate with an index, e.g. c′1 for partial differentiation for the first argument, etc.

The condition R(y, x) := R(y|Ê(x)) > 1 is equivalent to s(y, x) > 0 with

s(y, x) = β(y)[Ŝ(x) + (1− c(y, x))R̂(x)]− (µ+ α(y) + γ(y)) = (µ+ α(y) + γ(y))[R(y, x)− 1] (S9)

Differentiating s(y, x) with respect to y, and evaluating the result at y = x, we obtain the following
expression for the selection gradient

s′1(x, x) =β′(x)[Ŝ(x) + (1− c(x, x))R̂(x)]− β(x)c′1(x, x)R̂(x)− (α′(x) + γ′(x))

=β′(x)Ŝ(x)− (α′(x) + γ′(x))
(S10)

25



where the second line follows from the assumptions c(x, x) = 1 and c′1(x, x) = 0. The zeros of s′1(x, x)
are the evolutionary singularities. Since (S10) has exactly the same form as in the ordinary SIR model,
under the usual trade-off assumptions the evolutionarily singular point x∗ maximises R0. If we assume
x to be a scalar such that β, α and γ increase in x, the sign structure of the selection gradient around
zero shows that x∗ attracts. The only difference with the SIR model is that x∗ need not maximise
R(y, x∗) for y. In other words, the singular point may also be a branching point, depending on the
values of the parameters that are not under evolutionary control.

S.4 Vertical vs horizontal transmission

For a parasite with both vertical and horizontal transmission, a slight modification of the SIR model
(Ferdy and Godelle, 2005) leads to the following equation for the dynamics of hosts infected by a rare
mutant pathogen in a resident population at equilibrium:

dI ′

dt
= β′ŜI ′ + εb′I(N̂)I ′ − (µ+ α′ + γ)I ′ (S11)

The second-term gives the contribution of infected offspring to the dynamics of I ′. This contribution
is equal to the probability of vertical transmission, ε, times the birth rate of hosts infected by the
mutant pathogen, b′I(N̂), which is assumed to be a function of the total host density, N̂ , times the
density of hosts infected by the mutant pathogen, I ′. The invasion condition can then be cast into
the form

R′ =
β′Ŝ + εb′I(N̂)

µ+ α′ + γ
. (S12)

A similar reasoning for a pathogen in an uninfected population leads to the expression of R0

R0 =
βS0 + εbI(S0)

µ+ α+ γ
. (S13)

For a transmission-virulence trade-off β(α), the value of α that maximises R0 satisfies

dβ

dα
(α) =

β(α) + ε bI(S0)
S0

µ+ α+ γ
. (S14)

A graphical construction can be obtained by noting that this means that the tangent at the ESS goes
through a point O’ obtained from O by a vertical translation of −εbI(S0)/S0 (figure S3).

The ESS can be calculated from the expression of R′. Writing β′ = β(α′) and writing R′ as a
function R(α′, α), we can differentiate R(α′, α) with respect to α′ and evaluate the result at α′ = α.
Potential ESS will be zeros of the resulting function of α and will therefore satisfy the following
condition

dβ

dα
(α) =

β(α) + ε bI(N̂(α))

Ŝ(α)

µ+ α+ γ
(S15)

which shows that the picture for the determination of the ESS differs from that for R0 maximisation
by a change in the amount that O is lowered, ε(bI(N̂(α))/Ŝ(α) − bI(S0)/S0). In general, both N̂(α)
and Ŝ(α) will be lower than S0. However, we may expect bI to be a decreasing function of density, so
that in the ESS case the point where the tangent line touches the trade-off curve will come out lower,
and hence the ESS value of α will be lower than the value obtained from R0 maximisation. As in the
other cases, the magnitude of the effect will be inverserly proportional to the curvature of β.

Note that, in this model, the ESS condition can be simplified further by using the fact that
R(α, α) = (β(α)Ŝ(α)+ εbI(N̂(α)))/(µ+α+γ) = 1, which leads to dβ/dα = 1/Ŝ(α). This is the same
condition as the SIR model with only horizontal transmission, but the expression for Ŝ(α) is different
due to the effect of vertical transmission.
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Figure S3: Graphical representation of R0 maximisation in the model with both vertical and horizontal
transmission, compared with the case with only horizontal transmission.

S.5 Multi-host parasites

We return to our baseline SIR model, but now assume that the host populations consists of two types
(or classes, or species), labelled 1 and 2. Consider first that the host population is infected by a
single resident parasite strain. At endemic equilibrium, the population is characterised by equilibrium
densities Ŝ1 and Ŝ2 for uninfected hosts, and Î1 and Î2 for infected hosts. In this resident population,
hosts infected by a new mutant parasite (with densities I ′1 and I ′2) will have the following dynamics
when the mutant strain is rare:

dI ′1
dt

= β′11Ŝ1I
′
1 + β′21Ŝ1I

′
2 − (µ+ α′1 + γ)I ′1, (S16)

dI ′2
dt

= β′22Ŝ2I
′
2 + β′12Ŝ2I

′
1 − (µ+ α′2 + γ)I ′2, (S17)

where β′ij is the transmission rate of the mutant parasite from host type i to host type j, and α′i is
the virulence of the mutant parasite in host type i (the resident strain similarly has parameters βij
and αi). The equations for I ′1 and I ′2 can also be written in matrix form

d

dt

(
I ′1
I ′2

)
=

(
β′11Ŝ1 − (µ+ α′1 + γ) β′21Ŝ1

β′12Ŝ2 β′22Ŝ2 − (µ+ α′2 + γ)

)(
I ′1
I ′2

)
(S18)

The Next-Generation Theorem (Diekmann et al., 1990, Hurford et al., 2010) can be used to compute
the invasion fitness of the mutant strain in such structured populations. Doing so leads to the following
expression for the pathogen fitness (Gandon, 2004),

R′ = β′11Ŝ1
2(µ+ α′1 + γ)

+
β′22Ŝ2

2(µ+ α′2 + γ)

+

√√√√( β′11Ŝ1
2(µ+ α′1 + γ)

+
β′22Ŝ2

2(µ+ α′2 + γ)

)2

+
β′12β

′
21 − β′11β′22

(µ+ α′1 + γ)(µ+ α′2 + γ)
Ŝ1Ŝ2

(S19)

Two extreme cases can be deduced from this general formula. First, when there is no transmission
bias between host types, such that β′12β

′
21−β′22β′11 = 0, the invasion fitness reduces to (Gandon, 2004)

R′ = β′11Ŝ1
µ+ α′1 + γ

+
β′22Ŝ2

µ+ α′2 + γ
. (S20)
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This is the case discussed in Box 4 in the main text. Each host can then be viewed as a separate
transmission pathway for the parasite.

Second, when the pathogen has to alternately exploit the two host types, as in vector-borne
diseases, we have β′11 = β′22 = 0, and the invasion fitness takes the following form (Gandon, 2004)

R′ =

√
β′12β

′
21

(µ+ α′1 + γ)(µ+ α′2 + γ)
Ŝ1Ŝ2 (S21)

Note that, by a similar reasoning, the basic reproduction ratio of the mutant parasite in an uninfected
host population will be

R′0 =

√
β′12β

′
21

(µ+ α′1 + γ)(µ+ α′2 + γ)
Ŝ0,1Ŝ0,2 =

√
R′0,1R

′
0,2 (S22)

where S0,i is the density of type-i hosts in the population in the absence of parasites, R0,1 =
β12S0,2/(µ+ α1 + γ) is the “basic reproduction ratio” in host 1, and R0,2 has a similar interpretation
and expression after permutation of the indices 1 and 2.

It follows that

R′ = R′0

√
Ŝ1Ŝ2
S0,1S0,2

. (S23)

Hence, condition (5) in the main text is satisfied, and R0 is an optimisation principle, with φ =√
(Ŝ1Ŝ2)/(S0,1S0,2) as a matching pessimisation principle.

S.6 Spatially structured populations

We now turn to a spatial extension of the SIR model, where transmission takes place according to a spe-
cific infection kernel (for instance, one may consider infection to nearest neighbours in network-based
models, or a distance-dependent kernel in spatially explicit models). In a pathogen-free population,
we can calculate R0(X) as

R0(X) =
β[S|I]0
µ+ α+ γ

where [S|I]0 can be calculated during the initial invasion phase using a quasi-equilibrium assumption
for the local infection patterns, following Keeling (1999). In general, R0(X) is reduced in spatial
models compared to non-spatial models, because pathogens tend to have access to a reduced number
of susceptible contacts (Keeling, 1999).

In a resident population at equilibrium, the invasion fitness of a rare mutant strain is ρ(Y |Ê) =
β′[S|I ′]− (µ+α′+γ), where [S|I ′] is also calculated at quasi-equilibrum (van Baalen and Rand, 1998,
Ferrière and Le Galliard, 2001, Lion, 2016). It follows that the mutant invades if

[S|I ′]− µ+ α′ + γ

β′
> 0

and because at resident equilibrium we have [̂S|I] = (µ + α + γ)/β, the invasion condition can be
written as

[S|I ′]− µ+α′+γ
β′

[S|I ′]0
>

[̂S|I]− µ+α+γ
β

[S|I]0

or equivalently as (
1

R0(X)
− 1

R0(Y )

)
+

(
[S|I ′]
[S|I ′]0

− [̂S|I]

[S|I]0

)
> 0. (S24)

This shows that only if the second term is proportional to the first can the outcome of evolution be
predicted by maximising R0(X). The difference with inequality (12) in the main text is that the first
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term depends on the spatial basic reproduction ratios, which are lower than the non-spatial ones,
while the second term measures the difference in the access to susceptible hosts between the mutant
and resident strains, measured relative to the initial structure of an invading pathogen population in
an otherwise pathogen-free population.

Analysing the effect of the mutation on this second term has been the focus of many works (reviewed
in Lion and Gandon (2015); see e.g. Boots and Sasaki (1999), Lion and Boots (2010) for a sample
of primary analyses). To make a long story short, it can be shown in network-based models that
this term depends on the balance between genetic structure (measured by the genetic relatedness r
between neighbouring parasites) and some measure of the epidemiological structure of the resident
host population, e. This observation provides another intuition for why R0(X) cannot be maximised
by selection in spatially structured populations: Because R0(X) by definition cannot take into account
the between-host genetic structure of the pathogen population, it cannot properly serve as a measure
of inclusive fitness, as needed for computing the effect of selection in space (Lion and Boots, 2010).

As shown in Lion and Boots (2010), condition (S24) can then be cast in a Marginal Value form,
which leads to a graphical representation similar to figure 1C in the main text. The key result is
then that, provided that r > e, selection will favour less virulent parasites in spatially structured host
populations. Note however that the model may yield the opposite prediction if a mixture of long-range
and short-range transmission is allowed (Kamo et al., 2007, Lion and Boots, 2010).

S.7 Non-equilibrium dynamics

Traditionally, R0 is only considered for non-fluctuating environments. However, over the past ten years
the concept has been extended to ever more complicatedly fluctuating environments such as periodic
(Bacaër and Guernaoui, 2006, Bacaër and Ait Daids, 2012) or random ones (Bacaër and Khaladi,
2013). Unfortunately, these general R0’s are difficult to calculate except for unstructured populations,
in which case they just equal the ratio of the time averages of the birth and death rates (Bacaër and
Guernaoui, 2006, Bacaër and Khaladi, 2013).

For periodically fluctuating environments, superficially similar models have been found to make
different predictions for the evolution of pathogen life-history traits. For instance, van den Berg et al.
(2011) considered a model such that pathogen evolution could be predicted by maximising R0(X),
while a similar model by Hamelin et al. (2011) predicts evolutionary diversification of the pathogen
population. This shows that even in complicated models sometimes R0 maximisation can do the job,
but that one should not uncritically rely on this being the case.

S.8 Sensitivity of the ESS virulence to environmental feedbacks

Till now we for didactical reasons looked at the models with a more complicated environmental
feedback loop as modifications of the simple SIR model. For the same reason we looked at the
quantitative effects of the added complication by gauging the outcome of a full ESS calculation against
the outcome of the more familiar and mathematically simpler R0 maximisation. Below we will take
a methodological more correct perspective and ask ourselves how large the error is that we make if
we instead of doing an ESS calculation would naively maximise R0. The additional advantage of this
perspective is that the outcome of the ESS calculation, and with that Ê in δ(Ê), can be considered
as known, whereas in the earlier naive perspective we still have to take account of the fact that the
quantity Ê itself still depends on the value of α∗A that we seek to determine. In the new perspective

we thus start from a known α∗A and δ(Ê) and compare this with the α∗O that we get when we set

δ(Ê) = 0. This does not change any of the graphs, but it leads to different, easier, calculations.
A suitable reinterpretation of the graphical argument from the main text heuristically indicates

that the effect of removing the term δ(Ê) is in some way inversely proportional to the curvature of the
trade-off. Here we give a formal mathematical argument. In order to do calculations we have to keep
our analysis local. (In this context it should be noted that the rigorous concept of curvature is also
local. The seemingly global character of our graphical argument comes from the suggestion that we

29



can use the term in a larger scale averaged sense. This suggestion may feel right but so-far is without
a rigorous underpinning.)

We focus on the case where R(α|Ê) can be written as β(α)
µ∗+γ+α Ŝ, with µ∗ = µ(E0) + ∆µ, and

blandly assume ∆µ to be small. The corresponding α∗A, which from now on shall just call α∗, satisfies:

d

dα
R(α|Ê)

∣∣
α=α∗

=
β′(α∗)(µ∗ + γ + α∗)− β(α∗)

(µ∗ + γ + α∗)2
Ŝ = 0 ⇔ β(α∗) = β′(α∗)(µ∗ + γ + α∗)

with a prime now indicating differentiation. Differentiating the right equality for µ∗ gives

β′(α∗)
dα∗

dµ∗
= β′′(α∗)

dα∗

dµ∗
(µ∗ + γ + α∗) + β′(α∗)

(
1 +

dα∗

dµ∗

)
.

Solving for dα∗/dµ∗ gives

dα∗

dµ∗
=

−β′(α∗)
β′′(α∗)(µ∗ + γ + α∗)

=
−β(α∗)

β′′(α∗)(µ∗ + γ + α∗)2
.

So, the sensitivity to an additional term in the numerator is inversely proportional to the curvature of
the trade-off at α∗, with a proportionality constant that does depend on the trade-off only in so far as
the latter co-determines α∗ and β(α∗). The dependence on the curvature of the trade-off we already
knew from Figure 1 in the main text. The precise form of the proportionality constant is new.

Note that for small ∆µ the difference between the curvature of the trade-off at α∗A and α∗O is only
O(∆µ), so that to the considered order of approximation they are interchangeable.

The graphical constructions tell that similar arguments should apply to the superinfection models
in S2 and the mixed transmission model in S4.

S.9 On myxomatosis

After introduction of a virulent (Grade I) strain of the myxoma virus in Australia, virulence quickly
dropped and settled to a value corresponding approximately to the Grade III strain from 1958 to 1980
(although with an increasing trend). During that period of time, resistance in the rabbit population
rose, and this led to a further increase in virulence from 1980 onwards (figure S4a; Fenner and Fantini
(1999)).

When Anderson and May (1982) analysed this data, they computed R0 as βS0/(µ+ α+ γ) using
an empirically established trade-off between virulence and recovery (γ(α) = −0.032 − 0.0129 ln(α)),
but kept the transmission rate constant (arbitrarily assuming βS0 = 0.2 day−1). The resulting R0 is
plotted as the red dashed curve in figure S4c. Compared to the distribution of virulence for the period
1975-1981, the value of virulence that maximises R0 is too low. Massad (1987) refined Anderson and
May (1982)’s analysis using an empirical relationship between transmission and virulence (plotted in
figure S4b). Using both the transmission-virulence and virulence-recovery trade-off, he showed that R0

maximisation then provided a better fit to the observed distribution of virulence (figure S4c, plain blue
curve). Interestingly, while reanalysing this data, we also found that removing the recovery-virulence
trade-off had little effect on the prediction (figure S4c, dashed blue curve, where the constant value
γ = 0.02 is used), which suggests that the transmission-virulence trade-off is the main force shaping
R0 maximisation.

Assuming that the classical expression of R0 is indeed suitable to describe the epidemiological
dynamics of the myxoma virus-rabbit system, this example shows that the evolutionary dynamics of
the myxoma virus in Australia is characterised by two phases. In a first phase, evolution appears to
drive the population close to the value that maximises R0. This seems consistent with our analysis in
Appendix S.8, which shows that the ESS will not deviate much from the value maximising R0 for a
highly concave transmission-virulence trade-off as depicted in figure S4b, provided the environmental
feedbacks only affect the duration of the infection. In a second phase, however, host heterogeneity
due to the rise of resistance led to a more complex environmental feedback loop and caused virulence
to increase. If R0 maximisation occurs in this system, it is thus only transiently.
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Figure S4: (a) Mean virulence as a function of time during the myxomatosis epidemic in Australia.
(b) Transmission-virulence trade-off (fit vs data), redrawn from Massad (1987). (c) Strain distribution
between 1975 and 1981 (the bars indicate the frequencies of the five virulence grades I to V), and R0

computed for various assumptions on the transmission-virulence and recovery-virulence trade-offs (see
text for more details). Note that the vertical scale is arbitrary for R0, since what matters here is the
predicted value of virulence that maximises the function.

S.10 On HIV

There are two points in our discussion of Fraser et al. (2007)’s work that may require some explanation.
The first, rather finicky, point is that the data on which the estimation of R0 in Fraser et al. (2007)

were based came from 1982-1993. At that time the main behavioural changes in the wake of HIV
awareness had already occurred. Since these changes are not under the parasite’s hereditary control,
in our set-up they by definition count as changes in its environment caused by the disease. So what
Fraser et al. (2007) calculated strictly speaking was not the expected number of secondary infections
caused by a single freshly infected in an as yet uninfected population. From the point of view of the
environment created by it the epidemic was already well under way.

The second point concerns the various time scales. The HIV epidemic at that time and even now
clearly is still in a transient stage, instead of in an endemic equilibrium. However, as epidemics go, the
HIV one unfolds very slow, whereas the HIV virus evolves very fast, due to the virus’ highly unfaithful
reproduction, and thus may be expected evolutionarily to keep up well with any further environmental
changes caused by the epidemic.

A confounding point here is that the arguments underlying the ESS calculations as put forward by
us (and therefore also the derived R0 maximisation paradigm in the cases where it is justified by the
nature of the environmental feedback loop) consider only one mutant at a time, that is, are implicitly
based on an assumption of mutation limitation. However, ESS calculations are generally very robust
against deviations from this assumption. What really matters is that the mutants have positive
(negative) fitness whenever they would have that in a homogeneous population of a representative
mutant in the mutant swarm.

We thus guess that these are the actual reasons why the measured “R0” was found to be op-
timal: the HIV population closely tracks a moving optimum of R(Y |E(t)), with E(t) the current
environment.

31


