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Abstract
Understanding the interplay between multiple climate change risks and socioeconomic development
is increasingly required to inform effective actions to manage these risks and pursue sustainable
development. We calculate a set of 14 impact indicators at different levels of global mean temperature
(GMT) change and socioeconomic development covering water, energy and land sectors from an
ensemble of global climate, integrated assessment and impact models. The analysis includes changes
in drought intensity and water stress index, cooling demand change and heat event exposure, habitat
degradation and crop yield, amongst others. To investigate exposure to multi-sector climate impacts,
these are combined with gridded socioeconomic projections of population and those ‘vulnerable to
poverty’ from three Shared Socioeconomic Pathways (SSP) (income <$10/day, currently 4.2 billion
people). We show that global exposure to multi-sector risks approximately doubles between 1.5 ◦C
and 2 ◦C GMT change, doubles again with 3 ◦C GMT change and is ∼6x between the best and worst
cases (SSP1/1.5 ◦C vs SSP3/3 ◦C, 0.8–4.7bi). For populations vulnerable to poverty, the exposure is an
order of magnitude greater (8–32x) in the high poverty and inequality scenarios (SSP3) compared to
sustainable socioeconomic development (SSP1). Whilst 85%–95% of global exposure falls to Asian
and African regions, they have 91%–98% of the exposed and vulnerable population (depending on
SSP/GMT combination), approximately half of which in South Asia. In higher warming scenarios,
African regions have growing proportion of the global exposed and vulnerable population, ranging
from 7%–17% at 1.5 ◦C, doubling to 14%–30% at 2 ◦C and again to 27%–51% at 3 ◦C. Finally,
beyond 2 ◦C and at higher risk thresholds, the world’s poorest are disproportionately impacted,
particularly in cases (SSP3) of high inequality in Africa and southern Asia. Sustainable development
that reduces poverty, mitigates emissions and meets targets in the water, energy and land sectors has
the potential for order-of-magnitude scale reductions in multi-sector climate risk for the most
vulnerable.

1. Introduction

The 21st century will see the global population increase
from 7.5 billion in 2017 to an expected 8.5–10

billion in 2050 [1], with much of this growth in low-
and middle-income regions. Future populations will
be exposed to a range of climate change-related haz-
ards of varying intensities and locations, with some
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‘hotspots’ exposed to more risks than others, com-
pounding the challenges [2–4]. Risks are not just
dependent on the severity of climate change and subse-
quent hazards but critically depend on the population’s
spatial distribution (exposure) and their vulnerabil-
ity and capacity to prepare for and manage changing
risks [5]. Increasingly studies are showing that the
world’s poorest are disproportionately exposed to
changes in temperature extremes [6, 7] and challenging
hydro-climatic complexity [8–10]. In the water sec-
tor, between 8%–14% of the global population are
expected to face severe reductions in available water
resources between 1.7 ◦C–2.7 ◦C [11] and in the energy
sector, more than 70% of a ‘business as usual’ 2050s
population could expect climate sensitive changes in
energy demand of+/− 5%, with negative impacts over-
whelmingly in low and middle income countries [12].
Following ratification of the 2015 Paris Agreement,
more work is required to understand the potential
range of benefits of a 1.5 ◦C climate, what higher
degrees of warming are projected to entail for differ-
ent sectors [13] and to what extent people of different
vulnerabilities will be impacted.

Along with other factors such as institutional gov-
ernance, education, social structures and safety nets
[14], vulnerability is strongly associated with wealth,
although the wealthy in volatile climates are not
immune [2]. Accounting for those that are ‘vulnerable
to poverty’ were they to suffer a shock, like loss of
employment or a climate hazard, is critical because
much larger fractions of society exist in this pre-
carious and transient state. In 2011, there were an
estimated 767 million people living in extreme poverty
with incomes of less than $1.9 USD/day, with a total of
4.2 billion (bi) classified as vulnerable to poverty liv-
ing on $1.9–10 USD/day [15]. Escaping (or not falling
back into) poverty, can be particularly difficult as the
frequency of natural and climate hazards prevents asset
accumulation [16] and impacts negatively on health,
prices, productivity and opportunities [17]. The most
optimistic scenarios, for example, project up to an 85%
reduction in this vulnerable population to 616 million
by 2050, with very good and sustained progress on
the Sustainable Development Goals (SDGs).However
in a high inequality scenario, the vulnerable population
could remain as high as 4.0 billion in 2050 [18].

To understand the scale of this problem in the
future, our objective is to assess the potential exposure
of global and vulnerable populations to overlapping
multi-sectoral hotspots. This work investigates how
multi-sector risk changes with higher levels of warming
and to what extent climate mitigation, socioeconomic
development and poverty reduction can reduce risks.
We use established methods [2, 4, 19] for aggre-
gating climate risks, using 14 indicators across the
water, energy, and land sectors (table 1, figure 1).
We combine these indicators to produce multi-sector
risk hotspot maps, compared for 1.5◦, 2.0◦ and 3.0◦

changes in Global Meant Temperature (GMT) above

pre-industrial conditions (figure 2). Critically, we
investigate the exposure of the global and vulnera-
ble population (income <$10USD/day) using three
socioeconomic projections from the Shared Socioeco-
nomic Pathways (SSPs 1–3) [20]. Our central scenario
of sectoral risks is based on a 2 ◦C climate with 2050
population from SSP2. For the multi-sector hotspots,
we assess the global and vulnerable exposure across
SSPs and GMT change dimensions for 2050, to present
insights in to the dynamics between socioeconomic
development and risks at different levels of warming
and to better understand the uncertainties.

1.1. Background on previous methods and assess-
ments
Integrated assessment and impacts models use physi-
cal output variables from General Circulation Models
(GCMs) to study specific sectors in more detail,
for example in hydrology, land use and vegetation,
energy and fisheries. [11, 12] GCMs and impacts
models are frequently and consistently compared in
model inter-comparison exercises, such as the Coupled
Model Intercomparison Project (CMIP) [21] and the
Inter-Sectoral Impact Model Intercomparison Project
(ISIMIP) [22, 23]). Growing sectoral coordination
means that model performance, results and uncertainty
are more easily assessed within sectors, however there
have been few multi-sectoral assessments to date [4,
24]. Research has brought together multiple indica-
tors at different levels of GMT change, assessing the
fraction of global land area impacted, for extremes of
physical impacts [25] and for a wider range of impacts
for multiple sectors [26]. Others have [27–29] simi-
larly assessed risks, over various sectors with multiple
indicators, but with little explicit analysis of where risks
are projected to overlap.

To assess the severity of overlapping climate change
risks, climate change indices and metrics on regional
and national and gridded scales have been used using
GCM variables such as precipitation, air temperature
and sea-level rise [2, 19, 30–32]. And increasingly
studies frame their results in terms of global mean
temperature change as opposed to emissions scenar-
ios. For example, Sedláček and Knutti [33] assessed
6 CMIP5 seasonal variables of the hydrological cycle
for robust change [34], over 1 ◦C, 2 ◦C and 3 ◦C of
GMT change, finding that over half of the world’s
current population will experience robust changes in
precipitation, evaporation and relative humidity in
a 2 ◦C climate. Similarly, Piontek et al [4] identi-
fied geographical overlaps of multisectoral exposure
hotspots using single representative indicators for
water, agriculture (four crop yields), ecosystems and
malaria using sectoral thresholds to identify locations
of ‘severe’ change.

Including different socioeconomic development
pathways, which may be co-dependent on cli-
mate change mitigation, adds additional insight to
future societal exposure and vulnerability. The Shared
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Table 1. Water, energy and land indicators and associated model combinations used in the study. GCMs are general circulation models,
GHMs are global hydrological models. See Methods and supporting information (SI) for full details and references.

Indicator Description and methods Models

Water

Water stress index Water stress index (w1) as a fraction of net annual human-economic water demands

(irrigation, industry, households) relative to available renewable surface water supply

[42], as derived in the Water Futures and Solutions initiative [43].

GCMs, GHMs

Non-renewable
groundwater stress
index

Non-renewable groundwater stress index (w2) is calculated as the fraction of total

annual groundwater abstraction that is non-renewable (abstraction in excess of

recharge) using data from Wada and Bierkens [44].

HadGEM2-ES,

PCR-GLOBWB

Drought intensity Drought intensity (w3) change is calculated using daily river discharge deficit volume

below Q90 over drought event duration, as derived in Wanders and Wada [45].

5 GCMs, 5 GHMs

Peak flows risk Peak flows risk (w4) index is derived as locations where there is significant (50%+)

ensemble agreement of a doubling or halving of the 20 year return period for river

discharge, calculated using Generalized Extreme Value distribution fitting with a

block-maxima approach as in Dankers, Arnell [46].

5 GCMs, 4 GHMs

Seasonality Mean seasonality (w5) is the change in discharge seasonality index. Calculated as the

coefficient of variation (standard deviation divided by the mean) of mean monthly

discharge, it represents the variability of mean monthly discharge.

5 GCMs, 5 GHMs

Inter-annual
variability

Mean inter-annual variability (w6), is the change in discharge inter-annual variability

index, calculated as the coefficient of variation of mean annual discharges, it represents

the variability of mean annual discharge.

5 GCMs, 5 GHMs

Energy

Lack of access to clean
cooking

Lack of access to clean cooking (e1) fraction is projected from the reference energy

scenarios for each SSP on a regional basis [47, 48], then downscaled using projected SSP

Salamanca income distribution projections [18] by selecting the poorest population first

within each country.

MESSAGE, SSPs,

Salamanca

Heat event exposure Heat event exposure (e2) is calculated as the sum of days from heat events lasting 3 or

more consecutive days above the historical 99th percentile daily mean wet bulb air

temperature. Only assessed at locations where Tmean p99 > 26 ◦C and population

density > 10 persons km−2.

5 GCMs

Cooling demand Measure of the absolute growth in annual cooling degree days (CDD) (e3) with a set

point temperature of 26 ◦C and population density > 10 persons km−2 .

5 GCMs

Hydroclimate risk to
power production

Hydroclimate risk to power production (e4) index aggregates the combined hazard of

four hydrological indicators, peak flows risk, drought intensity change, seasonality and

inter-annual variability to a continuous hazard scale (as used with other indicators). This

is multiplied by a capacity score according to the installed capacity in each grid square,

using a global dataset of water-dependent thermal and hydro power plant capacity

[49–51].

5 GCMs

Food and environment (land)

Crop yield change Climate change impact on crop yield (l1) is estimated by the EPIC crop model under for

ISIMIP future climate change scenarios [52] for 18 crops and 4 crop managements

systems and overlaid with the distribution of crops and systems estimated by GLOBIOM

land use model [53] for year 2000 [54] and aggregated across crops and crop

management pixels (using calorie content).

5 GCMs, EPIC +
GLOBIOM

Agricultural water
stress index

Agricultural water stress index (l2) indicates agriculturally-driven environmental water

stress. By identifying locations where the monthly irrigated water demand are in excess

of sustainable supply, it measures the fraction of environmental flow requirement (EFR)

required to meet the agricultural demands [55–57].

GLOBIOM +
HadGEM2-ES +
LPJmL

Habitat degradation Habitat degradation (l3) is estimated as a % change from the share of land area within a

pixel being converted from natural land to agricultural land (cropland and grassland) in

the future as simulated by the GLOBIOM model [53, 58] and further downscaled to 0.5◦

[59].

GLOBIOM +
downscaling

Nitrogen leaching Nitrate leaching from mineral fertilizer application over cropland (l4) is the flux of

nitrate resulting from mineral fertilizer application to cropland and lost to surface water

streams as simulated by EPIC [60] for 18 crops and crop management systems, and

overlaid with GLOBIOM assumptions on future changes in crop yield and crop input

use efficiency [61, 62] and downscaled GLOBIOM distribution projections of crop and

crop management systems.

GLOBIOM +
downscaling + EPIC
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Socioeconomic Pathways [35–37] offer a com-
prehensive framework for joint consideration of
socioeconomic development and climate change
mitigation and adaptation challenges. New, socioe-
conomic projections with consistent 21st Century
narratives are available for the SSPs for population
[38], urbanization [39] and gross domestic prod-
uct [40]. Additionally downscaled spatial population
projections [41] and recent income distributionprojec-
tions [18] enable new angles of climate impacts analysis
that better represent exposure and vulnerability.

2. Methods

2.1. Framework overview
Buildingon theaforementionedapproaches, this study:
(i) developed indicator datasets at transient levels of
GMT; (ii) applied score ranges to transform indi-
cators onto common scoring scales; (iii) aggregated
sectoral indicators to make sectoral score maps for
water, energy and land; (iv) aggregated sectoral score
maps to make multi-sector risk maps; and (v) com-
bined multi-sector risk maps with population and
vulnerable population projections to assess exposure
and vulnerability to multi-sector risks.

We aim to examine simultaneously the change
in physical exposures with projected evolution of
population distribution and vulnerability to identify
multi-sector vulnerability hotspots. This allows some
evaluation of the three components of risk: hazards,
exposure, and vulnerability [63].

The indicators are assessed across a range of global
mean temperature rise relative to pre-industrial levels
(1.5 ◦C, 2 ◦C and 3 ◦C), and population and eco-
nomic activity trajectories consistent with the Shared
Socioeconomic Pathways (SSP1, 2 and 3). The nine
combinations thus span a wide range of potential out-
comes but should not be viewed as equally likely or
compatible. For example, it will be more difficult to
reach ambitious climate targets in SSP3 as opposed to
SSP1 and 2 because increased mitigation challenges are
expected to accompany the slower development nar-
rative of SSP3 [36, 64]. Thus, the sectoral results are
mostly presented using the central scenario of 2 ◦C
GMT with SSP2 in 2050, whilst sensitivities of GMT
and SSP are explored in the multi-sector exposure
results.

2.2. Selection of indicators and subsectors
Water, energy and land sectors were assessed
across a set (S𝑖) of 4–6 representative indica-
tors (SI table S1 available at stacks.iop.org/ERL/
13/055012/mmedia). Each indicator was processed to
represent the change in hazard between future cli-
matic conditions and the historical baseline (section
2.3). An exception is for the lack of clean cook-
ing access indicator, as the availability of traditional

biomass is not expected to change with climate
change and any changes would be insignificant
compared to the potential socioeconomic changes
across SSPs. It is included as a key indicator of
vulnerability (see SI table S2). Although not demon-
strated in this study, the framework allows for
the substitution and weighting of indicators, both
within and between sectors, according to preferences
of the analyst.

2.3. Climate forcing
Most indicator datasets in this analysis use as inputs
the ISIMIP ‘Fast Track’ model database ensemble of
five general circulation models (GCMs) from CMIP5
[21]: GFDL-ESM2M; HadGEM2-ES; IPSL-CM5A-
LR; MIROC-ESM-CHEM; NorESM1-M. The GCMs
were consistently downscaled to spatial resolution
of 0.5◦, bias-corrected [65] to observed data [66],
and were selected for coverage of the uncertainty
range in temperature and precipitation variables from
the CMIP5 models [23].

We assess the climate hazards at three levels
of global mean surface temperature (GMT) change:
1.5 ◦C, 2 ◦C and 3◦C above the pre-industrial con-
ditions (PiC), compared to a baseline period of
1971–2000, of ∼0.6 ◦C above PiC (and acknowledg-
ing the importance of the PiC temperature choice
[67]).These temperatures, possible at multiple time-
frames within this century [68], do not represent
climate stabilization scenarios, but are used to rep-
resent the risks at different levels of warming in a
transient climate.

We follow the established time-sampling approach
[4, 26, 69] of selecting a 30 year temperature times-
lice, centred on the year at which the GCM passes the
relevant GMT. GCM model runs are forced by the
greenhouse gas and radiative forcing trajectories from
the Representative ConcentrationPathways (RCP) [70,
71], using RCP8.5 in the majority of cases and RCP4.5
and RCP6.0 in a few cases where the SSP-RCP com-
bination is endogenous to the impact model (see SI
table S1 for exact details). For example, HadGEM2-
ES RCP8.5 passes 2 ◦C in 2028, so the 30 years
selected to represent a 2 ◦C climate, were 2014–2043
inclusive.

To make meaningful and consistent comparison
between the three GMT scenarios and three SSP
socioeconomic projections, the year 2050 was cho-
sen for the SSPs for scenario comparison. In this
year, the three levels of GMT change (which are not
stabilization scenarios) are all possible with varying
probability, due to the range of emissions scenarios
and geophysical response uncertainty [72, 73]. This
was verified for consistency using the IPCC Work-
ing Group III scenario database (available online at:
https://secure.iiasa.ac.at/web-apps/ene/AR5DB/) [74]
(SI 1.2). This allows for a more consistent com-
parison of exposure, than a time-varying alternative,
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for example, which would be comparing 1.5 ◦C GMT
change with a 2040s population and 3 ◦C with a 2080s
population.

2.4. Indicator and sectoral aggregation
The indicatorsarecombined inaconsistentway to facil-
itate comparisons, impacts aggregation and to identify
overlapping locations of risk. Whilst some studies use
a single thresholds or discrete intervals [2, 4, 19, 30]
for each sector, this binary approach potentially misses
at-risk areas that may fall just under the threshold.
Other studies used discrete intervals.

Our approach maps the sectoral impact indica-
tors onto a continuous risk-indicator scale, ranging
between no negative impact to high negative impacts
and scored between 0 and 3. Intervals on the scale are
specified by the sectoral modelling teams at [0, 1, 2, 3]
to represent no, low, moderate and high levels of risk,
as judged through interrogation of the original data,
incorporating expert judgement, for which we test
the sensitivity (section 2.5). The continuum between
0 and 3 can be linear or any other line (SI fig-
ures S4–5). Every gridsquare in each spatial indicator
dataset is subsequently scored, S𝑖, using the continu-
ous scale. The scores are then aggregated to quantify
a sectoral score, 𝜃𝑠, for water, energy, and land,
respectively.

For example, for the water stress index, it is
commonly agreed that an index of between 0.2–0.4
represents water stress [42]. Thus, our central estimate
uses 0.4 for a score of 3 (high risk), 0.3 for a score of 2
(moderate risk), 0.2 for a score of 1 (low risk) and 0.1
as threshold to get a score above 0.

For the aggregation of sectoral and multi-sector
scores, in principle, either averaging or summation can
be used. We use averaging for the calculation of the
sectoral scores such that different numbers of indi-
cators can be combined. Summation is applied then
to the multi-sector risk calculation because using this
aggregation to represent cumulative of risk is more
intuitive.

Sectoral scores are defined following two rules:
first, the average score of all indicators per sector,
�̄�𝑖, is calculated. Second, in grid squares where a
minimum number of sectoral indicators present at
least a moderate or high risk, sectoral scores are
assigned a minimum value. This is done to avoid
the problem whereby moderate and high risk indi-
cator scores get lost through averaging over multiple
indicators.

Let 𝛾 be an operator that sums the number of
indicators in the indicator function 𝟙 with a score
S𝑖> 𝜏 .

𝛾(𝑠, 𝜏) =
∑

𝑠𝑖∈𝑆
𝟙𝑠𝑖⩾𝜏 (1)

The sectoral score 𝜃 is adjusted following:

𝜃 =

⎧⎪⎪⎨⎪⎪⎩

2 if 𝛾(s, 2) = 2 and s < 2
2.5 if 𝛾(s, 2) > 2 and s < 2
2 if 𝛾(s, 3) = 2 and s < 2
3 if 𝛾(s, 3) > 2 and s < 2
𝑠 otherwise

. (2)

To calculate the aggregation of risk over multiple sec-
tors, the sectoral scores (figure 1, central column) are
summed (

∑
𝜃) to give the multi-sectoral risk score (M)

that combines all indicators on a scale of 0–9. In this
way, we assess the aggregation of risk over multiple
sectors.

2.5. Indicator score ranges and uncertainty
Given disagreement and uncertainty on how to
determine the score scales, score ranges specify low
(precautionary), central and high (conservative) esti-
mates for each point on each indicator scale (SI table
S4). Each sectoral modelling team from the IIASA
Water, Energy and Ecosystems Services and Man-
agement research programs reviewed and justified
the score ranges for each indicator. Our sensitivity
analysis ran 100 realisations, where for each indicator,
the interval was sampled randomly from the uni-
form distribution of the score ranges (SI figure S5).
Percentiles of these expert-informed score-ranges are
subsequently used in the uncertainty analysis (figure 5,
also evident in figure 3(a)).

2.6. Component uncertainty analysis
Our uncertainty analysis [75] determines the variabil-
ity (through coefficient of variation) across the key
uncertainty componentsofGCM, ImpactModel, Score
Range,GMTandSSP (figure5).This was systematically
assessed using all available model variants and scenar-
ios (290 in total, hereafter variants) by counting the
number of gridsquares with a score above the mod-
erate risk threshold (in all cases S𝑖 ≥ 2, apart from the
hotspot score Ms𝑖 ≥ 4), with the coefficient of variation
calculated across that component. This assessment was
carried out at three exposure subsets (SI figures S25–
27): all land gridsquares (∼65 000); gridsquares with
population density > 10 people km−2 (∼21–23 000,
depending on SSP); gridsquares with vulnerable pop-
ulation density > 10 people km−2 (∼5–12 000).

2.7. Socioeconomic pathways, income projections
and gridded vulnerability
Gridded projections of population and GDP for
SSPs 1–3 spanning 2010–2050 [41] at 0.125◦ res-
olution are used to identify the distribution and
numbers of exposed and vulnerable populations. We
use recently compiled datasets of global income dis-
tributions and inequality [18] to estimate vulnerable
populations using an income threshold. These datasets
are generated for each scenario using machine-learning
regression tree techniques for urban and rural income,

5
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Figure 1. Sectoral score (0–3) maps for 2 ◦C GMT warming scenario. In the left column the individual indicators are shown, in the
right column are the sectoral scores. Note that only four of the six water indicators are shown. Full indicator and sectoral exposure
data available in SI tables S7–8.

which are downscaled using urbanization and migra-
tion patterns to give gridded projections of vulnerable
population (SI section 3.1, figure S15).

This analysis uses definitions from the World
Bank for categorising population as vulnerable. Whilst
income level of $1.9 USD/day (2011 purchasing power
parity) commonly defines extreme poverty, those
living on <$10 USD/dayare considered vulnerable to
poverty. This category and income level is appro-
priate because it specifically captures the population
fraction that lack ‘economic stability and resilience
to shocks that characterizes middle-class households’
[76, 77]. These shocks can be natural hazards, loss of
income, illness or conflict, for example.

2.8. Multi-sector hotspot threshold analysis
Whilst the hotspot analysis uses a continuous distri-
bution of impacts scoring, thresholds are used to cut
the population exposure according to multi-sector risk
(MSR) severity and population vulnerability.

Specifically, we consider that MSR ≥ 4.0 defines
a multi-sector risk (see 3.2 for explanation). The
total exposed and exposed and vulnerable popula-
tions decrease with higher MSR thresholds. For the

central case, we use MSR ≥ 5.0 to indicate a multi-sector
hotspot,with sensitivity results atMSR≥4.0 andMSR≥

6.0 in the SI. The additional population exposed at 2 ◦C
and 3 ◦C, above the 1.5 ◦C reference case, is presented
in SI figure S24.

3. Results

We first present the sectoral indicator results, followed
by the multi-sector risks, and finally the exposure and
vulnerability assessment on global and regional basis.

3.1. Sectoral results
Water sector indicators have a wide range of risks of
varying spatial coverage. Results are driven both by
small areas of concentrated, high score indicators (w1,
w2, w4) and widespread areas of moderate risk (w3, w5,
w6). Water stress (WSI) and groundwater stress indices
are substantially demand driven and thus are spatially
concentrated in population centres and intense water
demand regions. The more bio-physical indicators of
drought intensity, inter-annual variability, and sea-
sonality have more widespread risks and affect larger
areas of land, including cropland and less populated
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areas. Arid areas for indicators w3 to w6 were masked
out. Areas of particular concern include southwestern
North America, southeastern Brazil, northern Africa,
the Mediterranean, the Middle East, and western,
southern and eastern Asia.

The energy sector indicators are strongly driven by
locations of higher air temperatures and population
density, due to the expected increases in air temper-
ature changes that drive cooling energy demands and
heat event exposure, particularly in the tropics. The
hydroclimatic risk to power plants indicator is con-
fined to a very small proportion of land grid squares
(6%); however, high correlation of power plants with
population density means the effects are not lost when
accounting for population exposure. Few locations
by spatial extent present high levels of risk, aside
from the Middle East, pockets of sub-Saharan Africa
and Southeast Asia, driven by low clean cooking access,
more heatwaves and higher cooling demands. Large
areas present consistently medium levels of risk, such
as sub-Saharan Africa, central, South and Southeast
Asia and central America.

Land sector impacts are widespread and cover
large portions of all continents except Australia.
Nitrate leaching is most widespread with many loca-
tions exceeding sustainable levels due to agricultural
input intensification. Reductions in crop yields and
habitat degradation also drive the sectoral score. Loca-
tions of agricultural water exploitation that would
violate environmental flow requirements, increases
in areas already dependent on irrigated agriculture:
North America, South Asia, and China. Overall,
Midwest United States, southeastern Brazil, Ethiopia
and South Sudan, the Mediterranean and most of
South and Southeast Asia, all present moderately
high impacts.

3.2. Multi-sector climate risks and global exposure
Multi-sector risk (MSR) occurs at locations where two
or more sectors surpass a tolerable level of risk. In
this study, we consider that the minimum MSR to
define a multi-sector risk is 4.0. It represents, for exam-
ple, two sectors at moderate risk (2+ 2), one sector
at high risk and another at low levels (3+ 1), three
sectors at low-moderate risk (e.g. 3× 1.34), or a simi-
lar combination. MSR ≥ 6.0 represents moderate risk
across 6+ indicators in three sectors, or high risk in
4+ indicators in two sectors. An MSR of 9 is the the-
oretical maximum score for any grid square, which
following the hotspot scoring would indicate at least
two indicators in every sector at high risk, fortunately
not observed in these results. Here, we present results
at an MSR ≥ 5.0, with sensitivity at 4.0 and 6.0 (SI
figures S12–14, S16–21).

For the multi-sector risk scores two main trends
emerge as global mean temperature rises (figure 2).
First, the area of land affected by climate risks grows
in area, particularly populated areas (figure 2, fig-
ure 3(a)). At 1.5 ◦C risks are predominantly in South

Asia. Secondly, the risks intensify in some locations,
with more MSR heterogeneity and more pronounced
differences between the 1.5 ◦C and 3 ◦C scenarios,
as shown by the wider distribution in figure 3(a).
For example, at 1.5 ◦C, MSR scores between 4–6 are
fairly uniform across small areas, whilst a 3 ◦C GMT
results in hotspots of high MSR, interspersed with
wider areas of moderate risk. High risks occur pri-
marily in Central America, East Africa and West Asia,
the Mediterranean, the Middle East, most of South
Asia and East China.

Although the fraction of global land area exposed
to MSR≥ 5.0 is 3%–16% across GMT scenarios, the
equivalent fraction of exposed population is sub-
stantially larger and rises more rapidly with GMT
increases (figure 3(a)). For example, whilst at 1.5 ◦C
only 16% (1.5bi) of the population faces MSR≥ 5.0,
29% (2.7bi) and 50% (4.6bi) are similarly exposed in
2 ◦C and 3 ◦C climates, respectively. These impacts also
scale with latitude, noticeably between 40◦N and 10◦S
(SI 3.4).

Comparing the macro-regions (figure 3(b)), Latin
America, Africa and Southeast Asia and Australasia
include at least one region with worse population expo-
sure than the global median (Caribbean, West Africa,
Southeast Asia). The exceptions are Asia, where most
regions are above the global median exposure, and
North America and Europe, where all have lower than
median exposure. The least exposed region is Alaska
and the most exposed regions are Southeast Asia, South
Asia and Tibetan Plateau.

3.3. Global exposure and vulnerability
Considering the total global population exposure
(MSR≥ 5.0), global mean temperature rise has a
considerably stronger effect than the differences in
population between the SSPs. Between 1.5 ◦C and
2 ◦C, the total population exposure to multi-sector
risks increases by 69%–113% (SSP3-SSP1), whilst the
level of exposed and vulnerable population (E&V)
(black shaded areas figure 4(a)) increases by 60%–
258% (with large differences in absolute numbers
between the SSPs (SI figures S16–18, tables S6–7)).
At 3 ◦C, whilst impacts are more severe, the number
of E&V increases by similar absolute numbers, but
less in relative terms. This is largely because the spa-
tial extent of risks does not increase as much between
2 ◦C–3 ◦C as it does from 1.5 ◦C–2 ◦C (figure 2). Fur-
thermore, whilst at 1.5 ◦C, locations may experience
only moderate-high impacts in one sector, at 2 ◦C
there is a strong emergence of multiple, moderate-high
risks.

The benefits of poverty and inequality reduction are
made clear when E&V population numbers are com-
pared for different SSPs (figure 4(b)). Whilst SSP1,
and to a large extent SSP2, project widespread poverty
reduction primarily across Asia and Africa, in SSP3
poverty and inequality scarcely improvesby2050.What
is achieved in Southeast and East Asia is offset by
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Figure 2. Multi-sector risk maps for 1.5 ◦C, 2 ◦C and 3 ◦C climates. Left column shows the full score range 0–9 (with transparency) and
multi-sector risk score, MSR ≥ 5.0, in full colour. Right column greyscale underlay is the SSP2 2050 vulnerable populations, with the
MSR ≥ 5.0 overlaid (only pixels ≥10 vulnerable persons km−2), indicating the concentrations of exposed and vulnerable populations
(E&V). Moderate and high multi-sector impacts are prevalent where vulnerable people live, predominantly in South Asia at 1.5 ◦C,
but spreading to sub-Saharan Africa, the Middle East and East Asia at higher warming.

growing poor populations in Africa and South Asia.
South, East and West Asia, have both some of the high-
est MSR scores and vulnerable populations (figure 3).
Subsequently, in SSP3 there are between 8–32x more
E&V population compared to SSP1, concentrated in
the African and Asian regions with between 25%–
100% more E&V in 2050 than compared to the 2010
demographic.

The largest co-benefits of poverty reduction and cli-
mate mitigation are for Africa and South Asia. Overall,
there are approximately factors of ∼30–190x differ-
ence of total E&V population between the best case
(SSP1/1.5 ◦C) and worst case (SSP3/3 ◦C) scenario

combinations: with more severe impacts (i.e. MSR =
6.0) the differences are accentuated (SI figures S16–
21, tables S6–7). This growing scale factor with MSR
threshold indicates that in worst case scenarios, higher
fractions of a larger vulnerable population will be living
in areas of particularly high risk.

Latitude also plays a role in the distribution of
impacts (SI figure S23), consistently across a number
of metrics. Whether assessed by mean score per pixel,
cumulative score, land area-weighted or population-
weighted impact, latitudes between40◦N to the equator
fare worst; southern hemisphere quite poorly; and
north of 40◦N above average.

8



Environ. Res. Lett. 13 (2018) 055012

Figure 3. Distributions of global population and land area exposure to multi-sector risk score in 2050 with SSP2 population. Top
panel (a) shows the exposure aggregated for the whole world by population and land area. Shaded areas around the lines represent the
indicator score ranges uncertainty (Methods 2.5, and SI 1.4). Lower panel (b) is the population exposure for over 27 IPCC land regions
(SI table S4 for three letter region codes). Noticeably, the differences in MSR on population, according to GMT, are most pronounced
when MSI ≈4.0. At this level, population exposed in 1.5 ◦C is less than half that of a 3 ◦C climate. Land area exposure differences are
smaller, as some of the impacts indicators are more driven by population. The differences between regions (b) are substantial, for
example all North American subregions are below the global median exposure, whilst almost all Asian regions are above.

4. Discussion

Sustainable development that actively reduces socioe-
conomic inequality, poverty and population growth in
Africa and Asia is ultimately the most effective way
of reducing the total number of people categorized as
exposed and vulnerable to climate change risks. An
SSP3 future, with which low emissions scenarios are
technically incompatible, results in order of magni-
tude higher exposed and vulnerable populations than
SSP1. However, keeping population and inequality
levels as low as projected in SSP1 is extremely ambi-
tious and only possible if SDG targets for mortality,
reproductive health and female education are achieved
and sustained long-term [78].

Even still, the huge absolute numbers of peo-
ple exposed to multi-sector risks (∼1–5 billion), even
in high income countries, underscore the benefits of
climate mitigation. Most strikingly, the differences

between 1.5 ◦C and 2 ◦C are substantial, strongly indi-
cating the compounding risk with higher levels of
warming. Efforts to meet the SDGs and low temper-
ature targets of the Paris Agreement will substantially
reduce global exposure to multi-sector risks, especially
if recognized co-benefits are targeted [79]. Energy sec-
tor targets will facilitate achievement of other SDGs,
particularly climate [80–82]. Without action on cli-
mate change (SDG13), including slowing the rate
of warming, achieving the goals for water, energy,
food and land (SDGs 6, 7, 2 and 15), amongst oth-
ers [83], will be more difficult. Similarly, almost all
the SDGs are likely to contribute to poverty eradica-
tion (SDG1) and climate action (SDG13). Additionally
the work may support other multi-lateral environ-
mental agreements, such as the Sendai framework
on disaster risk reduction and the Addis Ababa
Agreement on finance and investment for sustainable
development.
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Figure 4. Global population exposure and vulnerability. Upper row (a) background is the total global populationin 2050 for SSP2, whilst in the foreground, the fraction of exposed population (MSR≥ 5.0, strongcolours). Black
shaded central segments are the exposed and vulnerable (E&V) population. For global exposure, GMT is the dominant driver over SSP population. However, the lower panel (b) shows how important socioeconomic development
is for reducing the E&V population. It compares, for a 2 ◦C climate, the E&V population in 2010 (background circle, currently 4.2billion), compared with the projected E&V population in 2050 in the foreground. Whilst poverty
reduction in SSP1 almost eradicates the E&V population in most regions by 2050, SSP3 results in substantial increases compared to 2010 in Asia and Africa due to high levels of inequality.
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Figure 5. Contributions to uncertainty, measured as coefficient of variation (relative standard deviation, RSD), on proportional and
absolute basis for gridsquares with exposed (indicator/sectoral/MSR scores ≥ 2/2/4, respectively).

Hotspots with high multi-sector risk, such as in
West Africa, South and Southeast Asia, the Middle East,
and north east Brazil, indicate where vulnerable pop-
ulations will benefit most from targeted actions and
further modelling exercises [85]. Further assessment
could also include a broader coverage of sectors and
indicators, for example, coastal and marine environ-
ments and health, or analysis at river basin and country
scales.

In selecting indicators, understanding both their
correlation (SI figure S28) and uncertainty structure
(figure 5) has contributed to important analytical
improvements and interpretation of the results. Whilst
model and internal uncertainties (from GCM, Impact
Models (IM) and Score Range (SR)) contribute most
to impact uncertainties over land, irreducible scenario
uncertainty (GMT and SSP) becomes significantly
more important in every indicator when assessing
exposed and vulnerable populations. Notwithstand-
ing, improvingmodel performance in highly populated
regions is critical. Whilst the uncertainty analysis
indicates that uncertainties in the water indicators
are largest, it was also the sector with the largest
model ensembles, with up to 25 GCM x IM com-
binations. The covariance analysis revealed generally
very low correlation between indicators, particularly
in populated areas, indicating that the resulting chal-
lenges will need multiple strategies, as opposed to
tackling key pairs of highly co-dependent indicators.
Further work could consider the risks of specific
combinations of dependent variables, such as for
heat events, drought and crop-yields, using multi-
variate approaches for compound extremes, because
univariate approaches can underestimate these risks
[86].

It is not just extremes that result in the most severe
impacts. Average events can have extreme impacts
because of high vulnerability, antecedent conditions
and low coping capacity [14]. Low incomes, infor-
mal employment and low property values are poorly
represented by traditional loss accounting approaches
and indicators like loss in GDP [87], cost-benefit anal-
ysis and damage functions. This can result in gross
underestimates of the economic and social impacts
on the most vulnerable in society. Whilst the use of
a global income level to represent vulnerability is a
simplification, nonetheless, this assessment is the first
to use gridded projections of income distribution to
indicate future vulnerability at the global scale. Analysis
usingdifferent income levels, ornational and provincial
poverty lines and at urban-rural gridded disaggrega-
tion will soon be possible and will provide even better
insights on how risks could be spatially distributed in
the future.

5. Conclusions

Although global exposure to multi-sector risks (fig-
ure 3) will affect a relatively small fraction of global
land area, the risks to human populations will be
large. Between 1.5 ◦C–3 ◦C, the increase in exposed
population to multi-sector risks almost doubles from
1.5 ◦C–2 ◦C, and similarly again at 3 ◦C (1.5:2.7:4.6
bi). The differences between the socioeconomic pro-
jections are smaller, but not insignificant and are due
to different population numbers. Both the scale of and
the differences between these numbers underlines the
multi-dimensional risks of climate change that will be
experienced across the world regardless of wealth.
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Exposure in Asian regions is the most severe, on
proportional and absolute terms, due to the high con-
centrations of population and the high multi-sector
risks of those regions. Asian and African regions face
high proportions (>75%) of exposed population com-
pared to their total population.

For populations exposed and vulnerable to poverty
(E&V), i.e. daily income<$10/day, the importance
of socioeconomic development potentially alters the
number of E&V by an order of magnitude (∼0.1–1.5bi,
SSP1–3). Whilst approximately 85%–95% of global
exposure falls to Asian and African regions, they have
91%–98% of the E&V population, approximately half
of which in South Asia.

As the most undeveloped region, Africa fares worse
than most regions (particularly East Africa), especially
in high inequality socioeconomic scenarios and high
warming climate scenarios. In higher warming scenar-
ios, African regions have higher fractions of the global
E&V population, ranging from 7%–17% at 1.5 ◦C,
doubling to 14%–30% at 2 ◦C and again to 27%–51%
at 3 ◦C.

The results also indicate that the poorest are
also disproportionately impacted by multi-sector risks.
Compared to a 1.5 ◦C baseline, the number of exposed
and vulnerable scales faster than the exposed pop-
ulation, driven by both the warming level and the
inequality levels. Further assessments to understand
the distributional risks of climate change to different
levels of vulnerability are required.

Climate mitigation alone is not enough to reduce
exposure to the world’s poorest, who will still be vul-
nerable to impacts at 1.5 ◦C. Action to rapidly reduce
inequality, eradicate poverty and promote proactive
adaptation through mechanisms such as the SDGs,
would greatly reduce the size of exposed and vulner-
able population, especially if co-benefits for climate
mitigation also accrue.
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[33] Sedláček J and Knutti R 2014 Half of the world’s population
experience robust changes in the water cycle for a 2 ◦C warmer
world Environ. Res. Lett. 9 044008
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