A method for calculation of program package elements for singular clusters

Nikita Strelkovskii, Sergey Orlov International Institute for Applied Systems Analysis Lomonosov Moscow State University

"The problem of constructing optimal closed-loop control strategies under uncertainty is one of the key problems of the mathematical control theory. Its solution would give a new impetus to the theory's development and create the foundation for its new applications" Arkady Kryazhimskiy (2013)

I A S A

1. Problem statement

ET US CONSIDER A LINEAR DYNAMIC CONTROLLED SYSTEM,

3. Algorithm for singular clusters

An algorithm for the package guidance problem solution is proposed in paper [4], however, in some cases (so called *singular clusters* of the initial states set) it may not be applied, because the minimum condition degenerates. In this work an additional algorithm for tackling such cases is presented.

At a step i = 0, 1, ... of the algorithm for arbitrary cluster $X_{0r}(\tau_k) \in \mathcal{X}_0(\tau_k), r = 1, ..., R(\tau_k), k = 1, ..., K$ a non-empty set w_0 of indices is estimated $j, 1 \leq j \leq m$ such that to $j \in w_0$ corresponds non-empty set $\sigma_j \subset [\tau_{k-1}, \tau_k]$, such that

6. If mes $\sigma^{(h)} = \text{mes} \bigcup_{j \in w^{(h)}} \sigma_j^{(h)} = 0$, then $(u_{X_{0r}(\tau_k)}^*(t))_j$ is known on the whole set $\sigma = \bigcup \sigma_j$ and the problem is solved. Otherwise the algorithm proceeds to the next step 7. The following approximation is calculated

described by an ordinary differential equation

 $\dot{x}(t) = A(t)x(t) + B(t)u(t) + c(t), t_0 \le t \le \vartheta$ (1)

Open-loop control (program) $u(\cdot)$ is a measurable function on $[t_0, \vartheta], u(t) \in P \subset \mathbb{R}^r$, P is a convex compact set. The initial state of the system maybe not known a priori: $x(t_0) = x_0 \in X_0 \subset \mathbb{R}^n$, where X_0 is a finite known set. The terminal condition $x(\vartheta) \in M \subset \mathbb{R}^n$, where M is a closed and convex set, should hold.

A linear signal y(t) = Q(t)x(t), where $Q(\cdot)$ is left piecewise continuous matrix-function, $Q(t) \in \mathbb{R}^{q \times n}$, $t \in [t_0, \vartheta]$, is observed by the controlling side.

The problem of positional guidance is formulated as follows based on the given arbitrary $\varepsilon > 0$ choose a closed-loop control strategy with memory, whatever the system's initial state x_0 from the set X_0 , the system's motion $x(\cdot)$ corresponding to the chosen closed-loop strategy and starting at the time t_0 from the state x_0 reaches the state $x(\vartheta)$ belonging to the ε -

$$\sum_{x_0 \in X_{0r}(\tau_k)} \sum_{q=1}^n D_{jq}(t) l_{x_{0q}}^{*(i)} \equiv 0 \quad (t \in \sigma_j).$$
 (2)

The problem of estimation of the components $(u_{X_{0r}(\tau_k)}^*(t))_j$ of the guiding program package elements on the sets $\sigma_j, j \in w_0$ reduces to the following system of equations

$$\begin{cases} \sum_{j \in w_0 \sigma_j} \int e_j(t) u_j(t) dt = v_{x_0}, & |u_j(t)| \le a_* p, \\ x_0 \in X_{0r}(\tau_k) \end{cases}$$
(3)

where

$$\begin{aligned} v_{x_0} &= z_{x_0} - F(\vartheta, t_0) x_0 + a_* p \sum_{k=1}^K \int_{\tau_{k-1}}^{\tau_k} \sum_{j=1}^r e_j(t) \operatorname{sign} \left(\sum_{\substack{\bar{x}_0 \in X_{0r}(\tau_k) \\ r:x_0 \in X_{0r}(\tau_k)}} \sum_{q=1}^n D_{jq}(t) l_{x_{0q}}^* \right) d\tau, \\ z_{x_0} &\in \operatorname{Arg\max_{z \in M}} \langle z, l_{x_0}^* \rangle_{\mathbb{R}^n}, \\ e(t) &= \begin{pmatrix} D(t)_{j1} \\ \dots \\ D(t)_{jn} \end{pmatrix}, j = 1, \dots, m. \end{aligned}$$

Let us introduce functions $\lambda(\cdot, \cdot, \cdot, \cdot, \cdot) : \mathbb{R}^n \times \mathbb{R}^n \times [0, 1] \times [\tau_{k-1}, \tau_k] \times \mathbb{N} \mapsto \mathbb{R}$ $\Lambda(\cdot, \cdot, \cdot, \cdot, \cdot) : \mathbb{R}^n \times [0, 1] \times [\tau_{k-1}, \tau_k] \times \mathbb{N} \times \mathbb{N} \mapsto \mathbb{R}$:

$$\lambda(z_{x_0}, l_{x_0}, \mu, \sigma, w) = \sum_{x_0 \in X_{0r}(\tau_k)} \langle l_{x_0}, z_{x_0} \rangle_{\mathbb{R}^n} - \mu \sum_{j \in w} \int_{\sigma^j} \left| \sum_{x_0 \in X_{0r}(\tau_k)} \sum_{q=1}^n D_{jq}(t) l_{x_{0q}} \right| dt,$$

$$\Lambda(z_{x_0}, \mu, \sigma, w, h) = \max_{\sum \|l_{x_0}\|_{\mathbb{R}^n} = 1} \lambda(z_{x_0}, l_{x_0}, \mu, \sigma, w).$$

and the algorithm proceeds to the step h + 1.

After $n \times m$ steps, in a generic case, *m*-dimensional control in *n*-dimensional problem is calculated on the whole half-interval $[\tau_{k-1}, \tau_k)$. Convergence of the algorithm follows from convergence of the corresponding algorithm in Euclidean space [3].

4. Example

Let us consider a linear control system

$$\begin{cases} \dot{x_1} = x_2, x_1(0) = x_{02} \\ \dot{x_2} = u, x_2(0) = x_{02} \end{cases}$$

(5)

on the time segment [0, 2].

$$M = \left\{ \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} \in \mathbb{R}^2 : |x_1| \le 1, x_2 \in \mathbb{R} \right\}; X_0 = \left\{ \begin{pmatrix} \frac{3}{2} \\ 0 \end{pmatrix}, \begin{pmatrix} -\frac{3}{2} \\ 0 \end{pmatrix} \right\}$$
$$Q(t) = \left\{ \begin{pmatrix} (0,0), t \in [0,1] \\ (1,0), t \in (1,2] \end{pmatrix} | u(t) \in P = \{u : |u| \le 1\}, t \in [0,2]. \right\}$$

Since the solvability criterion holds, the package guidance problem is solvable. Using the algorithm from [4] the guiding program package elements for x'_0 and x''_0 can be calculated. However, for the cluster $X_0 = \{x'_0, x''_0\}$ on the time interval [0, 1] there is an ambiguity in the minimum condition and the standard algorithm is not applicable. The presented method allows to reduce the problem to the system of two integral equations:

neighbourhood of the target set M at the time ϑ .

2. Program packages method

Homogeneous system, corresponding to (1)

 $\dot{x}(t) = A(t)x(t)$

For each $x_0 \in X_0$ its solution is given by the Cauchy formula:

 $x(t) = F(t, t_0)x_0$; F(t, s) $(t, s \in [t_0, \vartheta])$ is the fundamental matrix.

Homogeneous signal, corresponding to an admissible initial state $x_0 \in X_0$:

 $g_{x_0}(t) = Q(t)F(t,t_0)x_0 \ (t \in [t_0,\vartheta], \ x_0 \in X_0).$

Let $G = \{g_{x_0}(\cdot) | x_0 \in X_0\}$ be the set of all homogeneous signals and let $X_0(\tau | g(\cdot))$ be the set of all admissible initial states $x_0 \in X_0$, corresponding to the homogeneous signal $g(\cdot) \in G$ till time point $\tau \in [t_0, \vartheta]$:

 $X_0(\tau|g(\cdot)) = \{x_0 \in X_0 : g(\cdot)|_{[t_0,\tau]} = g_{x_0}(\cdot)|_{[t_0,\tau]}\}.$

Program package is an open-loop controls family $(u_{x_0}(\cdot))_{x_0 \in X_0}$, satisfying **non-anticipatory condition**: for any homogeneous signal $g(\cdot)$, any time $\tau \in (t_0, \vartheta]$ and any admissible initial states $x'_0, x''_0 \in X_0(\tau | g(\cdot))$ the equality $u_{x'_0}(t) = u_{x''_0}(t)$ holds for almost all $t \in [t_0, \tau]$.

The input of the algorithm is

 $\mu^{(0)} = 1, \sigma_j^{(0)} = \sigma_j, w^{(0)} = w_0, z_{x_0}^{(0)} = v_{x_0} \quad (j \in w_0).$

After the step h - 1, h = 1, 2, ...) of the algorithm the following is known

 $\mu^{(h-1)}, w^{(h-1)}, \sigma_j^{(h-1)}, z_{x_0}^{(h-1)}, l_{x_0}^{*(1)}, \dots, l_{x_0}^{*(h-1)}, (u_{X_{0r}(\tau_k)}^*(t))_j \ (t \in \sigma_j / \sigma_j^{(h-1)}, j \in w_0).$

Let us describe the step $h,h=1,2,\ldots$ of the algorithm: 1. $\mu^{(h)}~(0\leq\mu^{(h)}\leq\mu^{(h-1)})$ is calculated as the smallest root of the equation

 $\Lambda\left(z_{x_0}^{(h-1)}, \mu, \sigma^{(h-1)}, w^{(h-1)}, n-h+1\right) = 0.$

2. If $\mu^{(h)} = 0$, then $(u_{X_{0r}(\tau_k)}^*(t))_j = 0, t \in \sigma_j^{(h-1)}, j \in w^{(h-1)}$, and the required element of the guiding program package is found. Otherwise the algorithm proceeds to the next step immediately.

3. The vector family $(l_{x_0}^{*(h)})_{x_0 \in X_0}$ is estimated such, that

 $\sum_{x_0 \in X_{0r}(\tau_k)} \left\langle l_{x_0}^{*(h)}, l_{x_0}^{*(d)} \right\rangle = 0$ for all $d = 1, \dots, h - 1$ and $\Lambda \left(z_{x_0}^{(h-1)}, \mu^{(h)}, \sigma^{(h-1)}, w^{(h-1)}, n - h + 1 \right) =$

 $= \max_{\substack{\sum \\ x_0 \in X_{0r}(\tau_k)}} \lambda\left(z^{(h-1)}, l_{x_0}^{(h)}, \mu^{(h)}, \sigma_j^{(h-1)}, w^{(h-1)}\right) =$

 $\begin{cases} x_1(2|x_0') = \frac{3}{2} + \frac{1}{2}u_{X_0}(t) + \int_{1}^{2} \left(u_{X_0}(t) - t + 1\right)dt = 1\\ x_1(2|x_0'') = -\frac{3}{2} + \frac{1}{2}u_{X_0}(t) + \int_{1}^{2} \left(u_{X_0}(t) + t - 1\right)dt = -1 \end{cases}$

Its solution gives that $u_{X_0}(t) \equiv 0, t \in [0, 1]$.

Program package $(u_{x_0}(\cdot))_{x_0 \in X_0}$ is guiding, if for all $x_0 \in X_0$ holds $x(\vartheta|x_0, u_{x_0}(\cdot)) \in M$. Package guidance problem is solvable, if a guiding program package exists.

Theorem 1 ([1]). The problem of positional guidance is solvable if and only if the problem of package guidance is solvable. The work is supported by Russian Science Foundation, project 14-11-00539 $= \sum_{x_0 \in X_{0r}(\tau_k)} \left\langle l_{x_0}^{*(h)}, z_{x_0}^{(h-1)} \right\rangle - \mu^{(h)} \sum_{j \in w^{(h-1)}} \int_{\sigma_j^{(h-1)}} \left| \sum_{x_0 \in X_{0r}(\tau_k)} \sum_{q=1}^n D_{jq}(t) l_{x_{0q}}^{*(h)} \right| = 0.$ = 0.(4)

4. The set of indices $w^{(h)} \subset w^{(h-1)}$ is estimated and for each $j \in w^{(h)}$ a set $\sigma_j^{(h)} \subset \sigma_k^{(h-1)}, k \in w^{(h-1)}$ is found such that

 $\sum_{n} \sum_{j=1}^{n} D_{jq}(t) l_{x_{0_{q_1}}}^{*(h)} \equiv 0 \quad (j \in w^{(h)}, t \in \sigma_j^{(h)}).$ $x_0 \in X_{0r}(\tau_k) q = 1$

5. On the sets $\sigma_k^{(h-1)}/\sigma_j^{(h)}$, $k \in w^{(h-1)}$, $j \in w^{(h)}$ the components $(u_{X_{0r}(\tau_k)}^*(t))_j$ of the guiding program package elements are

 $(u_{X_{0r}(\tau_k)}^*(t))_j = a_* p \operatorname{sign} \left(\sum_{x_0 \in X_{0r}(\tau_k)} \sum_{q=1}^n D_{jq}(t) l_{x_{0q}}^{*(h)} \right).$

References

-1.5 x_0''

[1] Kryazhimskiy A.V., Osipov Yu.S. On the solvability of problems of guaranteeing control for partially observable linear dynamical systems // Proc. Steklov Inst. Math. 2012. No. 277. Pp. 144-159.

[2] Kryazhimskiy A.V., Strelkovskii N.V. An open-loop criterion for the solvability of a closed-loop guidance problem with incomplete information. Linear control systems // Trudy IMM UrO RAN. 2014. Vol. 20. No. 3. Pp. 132-147.

[3] Gindes V.B. Singular control in optimal systems // Izv. Vyssh. Uchebn. Zaved. Mat. 1967. No. 7. Pp. 34-42.

[4] Strelkovskii, N.V., Orlov, S.M. Moscow Univ. Comput. Math. Cybern. 2018. Vol. 42. No 2. Pp. 69-79.