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Abstract 

Land-climate interactions are driven by causal relations that are difficult to ascertain given the 

complexity and high dimensionality of the systems. Many methods of statistical and mechanistic 

models exist to identify and quantify the causality in such highly-interacting systems. Recent 

advances in remote sensing development allowed people to investigate the land-climate 

interaction with spatially and temporally continuous data. In this study, we present a new 

approach to measure how climatic factors interact with each other under land cover change.  

The quantification method is based on the correlation analysis of the different order derivatives, 

with the canonical mathematical definitions developed from the theories of system dynamics 

and practices of the macroscopic observations.  We examined the causal relationship between 
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the interacting variables on both spatial and temporal dimensions based on macroscopic 

observations of land cover change and surface climatic factors through a comparative study in 

the different grassland ecosystems of China. The results suggested that the interaction of land-

climate could be used to explain the temporal lag effect in the comparison of the three 

grassland ecosystems.  Significant spatial correlations between the vegetation and the climatic 

factors confirmed feedback mechanisms described in the theories of eco-climatology, while the 

uncertain temporal synchronicity reflects the causality among the key indicators. This has been 

rarely addressed before. Our research show that spatial correlations and the temporal 

synchronicity among key indicators of the land surface and climatic factors can be explained by a 

novel method of causality quantification using derivative analysis. 

Keywords: remote sensing; grassland; land-climate; cause-effect; correlation analysis; eco-

climatology 

1 Introduction 

In the field of climate change, elucidating the mechanism of regional climate, caused by 

biophysical processes at the land surface, is essential but still inadequate (Anderson et al. 2011). 

Observations on the coupled land–atmosphere system have generated considerable data, 

especially with remote sensing techniques for hydrothermal environmental mapping. However, 

in the process of data analysis and mechanism exploration, the analysis of causal relationships 

has been mostly focused on correlations, but no breakthroughs have emerged yet (Teuling et al. 

2010; Zhao et al. 2014).  

At the microclimate scale, individual plants transport water through transpiration and utilize 

gaseous water that is converted from liquid water. Surface evaporation is also used to transport 

gaseous water from the land surface to the atmosphere. Isotope labeling methods have been 
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used to corroborate the scale and rate of water circulation in different temporal and spatial 

dimensions (Hoffmann, Werner, and Heimann 1998; Xu et al. 2015). Environmental factors, such 

as precipitation, humidity, the underlying surface, and temperature, have direct impacts on the 

physiological processes of vegetation communities, including vegetation succession, and 

phenology. The micro-mechanism of interaction between these communities is well understood 

(Xu et al. 2015). However, at the ecosystem level, the cumulative function should be integrated 

as the effects at the community level are not equal to the sum of the effects at the individual 

level. Therefore, it is essential to assess, quantitatively, the interactive cause-effect relationship 

among these effects in a more holistic way.  

In statistical models, causality analysis was driven mostly from correlation analysis. There are 

also many well-developed methodologies based on a combination of the relevant principles 

(Anderson et al. 2011)1. In economics, the Granger causality test was developed to judge the 

causation with a hypothesis on prediction capabilities (Granger 1969). These conventional 

statistical methods for causality assessment have been applied widely in economics and social 

sciences indicating patterns of relationships with the sampled data (Shipley 2000). Recently, as 

spatial analysis techniques are developing, multi-variate regression has been widely applied to 

geographic studies to test the association and causation (Mooij et al. 2016; Thomas and 

Beierkuhnlein 2013).  For example, using mechanistic models, theoretical ecologists introduced 

a method with nonlinear state space reconstruction to distinguish causation from correlation. 

This shed light on a feasible way to detect the causality for non-separable, weakly-connected 

dynamic systems, i.e., a class of systems not previously covered by the Granger causality 

approach (Sugihara et al. 2012). Cause-effect demonstration and quantification is one of the key 

aims of system dynamics. The simulation of causality with feedback provides an analysis tool for 

the structure and behavior of the real systems (Li et al. 2015, 2017; Ford 2000). For ecological 
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applications, based on an input-output food web model, network analysis reveals direct and 

indirect causation  of the interacting components in the ecosystems (Fath and Patten 1999). In 

the latest ecological studies, researchers tried to calculate the different order derivatives 

correlation to measure the relationship between bird migration and phenological dynamic (Wijk 

et al. 2012; Si et al. 2015). The methods applied in such studies are quite instructive as 

concordant with the thoughts in system dynamics constructing the model with the dependent 

relationship between the stock and flow variables, and similar to the higher-order pathway 

analysis in network analysis as well (Jørgensen and Fath 2011). Inspired by the derivative 

correlation analysis, in this study, we developed a method to measure the causation using the 

different order derivatives among the key factors of the land-climate interaction.  

2 Methodology 

2.1 Study areas and land cover change 

In this study, the three typical grassland ecosystems of China were selected including a) the 

alpine grassland in Madoi in the Tibetan Plataea, b) the arid grassland in the middle of Inner 

Mongolia, and c) the temperate grassland in Hulubuir in North-eastern China (Figure 1). The 

study areas were comparable in the middle latitude zone, having a similar ecological function. 

The altitudes and the distance to the sea of the three areas were very different as with the 

various climate types. The heat-hydro patterns, the vegetation communities, and the 

distribution of river basins have obvious spatial heterogeneity, which provides exemplary cases 

to discover common regulators of land-atmosphere interactions under varied environmental 

gradients.  

The alpine grassland is located at the headwaters of the Yellow River on the first-level Tibetan 

Plateau of the Chinese mainland terrain in Qinghai Province. From the 1980s to the 2010s, the 

alpine grasslands experienced ecological degradation and restoration. The regional climate has 
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experienced significant changes including rainfall, runoff, and temperatures (Li et al. 2013, 2015, 

2017). The mid-section of the arid grassland, Inner Mongolia, which partially covers the Siziwang 

Banner, is located on the second-level of the Chinese mainland terrain, adjacent to the Xilingol 

grassland and Hohhot city. The arid grassland area is located on the agro-pastoral ecotone, 

where the land cover types is diverse and changeable. That area has rapidly urbanized during 

the past 20 years. The regional climate is drought, amplified by strong winds and adjacent to 

sand deserts making the grassland quality comparably lower than the other two grasslands. The 

temperate grasslands were selected in the Middle Eastern Region of the Hulunbuir grassland on 

the northeastern third-level step of the Chinese terrain. It mainly covers the most of Hulunbuir 

city, Old Barag Banner, and Evenk Autonomous Banner.  The presence of a local ground water 

system provides abundant water and the grass is good; the regional climate is relatively warmer 

and wetter. Urbanization has been developing rapidly. The area is also on the agro-pastoral 

ecotone and is adjacent to the Greater Khingan Forest area. The Hulunbuir grassland is a world-

class area of high-quality grassland. 

The land cover change, representing the basic structural ecosystem dynamics, was mapped with  

satellite imagery (Beck et al. 2015). The remote sensing data consisted of five scenes of Landsat-

5 TM/ 7 ETM images (30 m × 30 m resolution) of each study area acquired annually from 1988 to 

2011 (Table S-1 of supplementary file). The land covers of the images were classified into five 

types by applying the method of maximum likelihood in ERDAS IMAGINE 2011. There were five 

categories of the land cover types in general, including 1) natural vegetation, 2) agricultural land, 

3) bare land, 4) developed land, and 5) waters. The accuracy assessment of the land 

classification results was in Table S-2 of the supplementary file. The specific land cover types 

were varied in the different grassland ecosystems. 
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Fig. 1. The study area and the land cover change of the study areas in the alpine grassland, the 

arid grassland, and the temperate grassland.  

 

2.2 Retrieval of the underlying surface climatic indicators 

Satellite-derived vegetation index as the normalized difference vegetation index (NDVI) have 

been closely associated with primary vegetation production. NDVI is defined as follows:  

NDVI= (rnir−rred)/(rnir+rred) 

where rnir and rred represent surface reflectance levels averaged over wavelength ranges of 

infrared and visible infrared regions of the spectrum, respectively (Li et al. 2016).  

Regional underlying surface climatic indicators regarding surface energy and water budget levels 

were examined using the same set of Landsat imagery. Surface temperature (Ts) was calculated 

as an indicator of surface energy conditions based on the following formula:  

Ts = K2/ln(K1ε/L6+1) 
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where K1=607.76×106 W/cm2/sr/µm; K2=1260.56×106 W/cm2/sr/µm, as K1 and K2 are radiation 

constants for Landsat-5 images; L6 is the spectral radiance of band 6 in Landsat-5 images; and ε 

is the atmospheric emissivity level determined based on the NDVI (Li et al. 2016, 2015). 

We calculated the heat fluxes of the land surface to retrieve the ET (cm/day), the indicator for 

regional hydro-recycle, in the atmospheric correction (ATCOR2) module platform of the ERDAS 

2011 remote sensing processing software. The ET retrieval was based on the following surface 

energy balance equations (Li et al. 2015): 

Rn= H+G+λET 

where the terms denote composites of net radiation (Rn, W/m2), sensible heat flux (H, W/m2), 

ground heat flux (G, W/m2), and latent heat flux (λET, W/m2). The modeling method involved 

two main tasks: 1) calculating the radiation balance based on remote sensing pixel reflectance 

levels and 2) calculating the heat balance using field knowledge that includes surface vegetation 

and meteorological conditions. Albedo, α, was calculated as the intermedia key variable in the 

ATCOR2 module based on the reflectance of the bands of the Landsat imagery. 

The four indicators, NDVI, α, Ts, and ET, were calculated by the method above. The details of the 

calculation can be found in the previous study (Li et al. 2015) and its supplementary materials. 

To perform the statistical analysis, we extracted 800 random sampling points of the indicator 

values along with the information of the land types using ArcGIS. The causality measurement 

was based on the mean value curve of the different land types.  

2.3 Definition and quantification on causalities 

According to the principles and methods in systems dynamics, as well as the higher-order 

pathway analysis in network analysis, we conceptualized a coupled model representing the 

structure-function of land-climate interactions (Figure 2). In the horizontal planes, the structural 

dynamics showed the shifting of the mutually exclusive components inside the land or the 
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climate subsystem. On the spatial dimension, the variables of the land and the climate 

subsystems have the correlation when we overlapped the layers. In the vertical direction, the 

two subsystems are coupled and geared as a dynamic whole, which could be mathematically 

described using a cause-effect chain. Here, we defined the direct causality, indirect causality, 

and the semblance causality, with a canonical mathematical description, using the correlation 

analysis between the different order derivatives. The constructed causality index C(X,Y) was 

used to measure the direct causation between the key indicators in the dynamics of the coupled 

systems. 

 

Fig. 2. Conceptual diagram structure-function interactive mechanism between land cover 

succession and underlying surface climate. 

Within the framework of system dynamics (Jørgensen and Fath 2011) and based on the previous 

empirical practices applying the different order derivatives to detect the causal relationship, we 

made the canonical mathematical definition for this method (Wijk et al. 2012; Si et al. 2015). 

Xij

Yij

X(i+1)j

=ki+1Yij

direction of 
regional 
climate change  

direction of 
terrestrial ecosystem 
succession

cause-effect chain

=kiXij

Sum(Xi)=

structural dynamics
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Firstly, we defined a kind of direct causality. If the changing rate of Y has linear correlation with 

X, that is, 

dY/dt = kX+c 

where k and c are constants, then it is defined that X is the causation for Y. In a more general 

statement, if Y(n) has linear correlation with X(n-1), where n means the order of derivative for the 

variables, then X is defined as the causality to Y, noted as DX


Y. 

Secondly, similarly to above, we define a kind of indirect causality (I).If the acceleration or higher 

order derivatives of Y has linear correlation with X, such as, 

d2Y/dt2 = kX+c 

more generally, if Y(n) has linear correlation with X(n-2), then X is defined as the indirect causality 

to Y, noted as IX


Y. 

Particularly, if there is a linear correlation between two sets of data of X and Y of the same order 

derivatives, then it will be defined as an association between X and Y with no direction of 

dependence, noted as AXY.  

Based on the definition above, we used the Pearson regression coefficient to measure the linear 

relation between the variables, X and Y, and their different order derivatives, X(n) and Y(n). The 

absolute values of the Pearson regression coefficient of the two variables which had the 

difference of a one-order derivative, e.g., Y(n) and X(n-1), were used to quantify the direct 

causation from −2 to 2; the absolute values of the Pearson regression coefficient of the two 

variables which had the difference of second-order derivatives, like Y(n) and X(n-2), were used to 

quantify the indirect causation from −1 to 1. The absolute values of the Pearson regression 

coefficient of the original functions and the functions of the same-order derivative, X and Y, or 

X(n) and Y(n), were used to quantify the association between X and Y, as a measurement space 

from −3 to 3. We formulated a comprehensive indicator C(X, Y) using the residue of the direct 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 10 / 21 

 

causation minus indirect causation and divided by the association to assess the overall direct 

causality between the two variables. When C(X, Y) is below zero, it means the indirect causality 

is over the direct causality. According to the statistical distribution of C(X, Y), the value over 3.00 

was regarded as the strong direct causal contribution.  

𝑪(𝑋, 𝑌) =
∑ |𝑃𝑖𝑗(𝑋𝑖 , 𝑌𝑗)| − ∑ |𝑃𝑖𝑗(𝑋𝑖, 𝑌𝑗)|

0
𝑖=0,𝑗=𝑖+2

1
𝑖=0,𝑗=𝑖+1

∑ |𝑃𝑖𝑗(𝑋𝑖 , 𝑌𝑗)|
2
𝑖=0,𝑗=𝑖

 

Where, Pij(Xi,Yj)— the Pearson regression coefficient between Xi and Yj; 

Xi,Yj —Xi =ν
(i)(t) or Yj =ν

(i)(t), i=0, 1, 2; Xi =α
(i)(t) or Yj =α

(i)(t), i=0, 1, 2; Xi =τ
(i)(t) or Yj =τ

(i)(t), i=0, 1, 2; 

Xi=ε
(i)(t)  or Yj =ε

(i)(t), i=0, 1, 2; where, ν(i)(t), α(i)(t), τ(i)(t) and ε(i)(t), represent the fitted original 

functions (i=0) or the derivative functions of i order by time (t) of the four key indicators, NDVI, 

α, Ts , and ET. 

Results 

Land cover in the three grasslands shows structural changes over the past two decades (Fig. 3). 

It is evident that the alpine grassland was restored in 1994 and the recovery accelerated after 

2000. For the arid grassland, the high coverage grassland and low coverage grassland shifted up 

and down alternatively under the impact of annual precipitation, which reflected adaptivity of 

the low coverage vegetation succession in the drought years. The original quality of the natural 

vegetation in the temperate grassland was better due to its advantageous location and 

hydrological endowment; however, since 2000, the ecological degradation in that area became 

more severe. The proportion of grassland and open water decreased, while the bare and sandy 

land increased rapidly. The land cover reflected the different phases in the three grassland 

ecosystems. 
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Fig. 3. The statistic results of the land cover change of the three grasslands, alpine grassland (a), 

arid grassland (b), and temperate grassland (c). 

We selected and calculated the key indicators of the regional climate, including NDVI, α, Ts, and 

ET. They represented the vegetation, the underlying surface physical features of the energy 

balance, the heat environment, and the intermedia link of the hydrological cycle, respectively. 

The correlation analysis based on the spatially extracted data shows a concordance in the four 
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pairs of the key indicators, with negative correlation between NDVI-α, positive correlation 

between α-Ts, negative correlation between Ts-ET, and positive correlation between ET-NDVI 

(Fig. 4). Almost all correlations are statistically significant (p<0.05) (Table S-3 in the 

supplementary shows the detailed numbers). From Fig. 4, in the planes of the pair variables, the 

dots with different color represented the different land cover types. They distributed differently 

by the effects of the land covers and composed together to form the correlation as a whole. The 

general pattern is comet-like. The shrubs and trees, and the high-coverage grassland 

concentrated in the head, while the bare land scattered in the tail part, the low-coverage 

grassland and the agricultural land being in the middle. These reflected how closely the land and 

climate coupled, as the vegetation matters most. This result among these key steps in the three 

areas over the past decades proved the universality of the feedback loop.  

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 13 / 21 

 

 

Fig. 4. Spatial correlation and temporal synchronicity among the four key indicators, NDVI, 

albedo (α), surface temperature (Ts), and evapotranspiration (ET), underlying surface climate 

subsystems by the different land cover types in the ecosystems of alpine grassland (a), arid 

grassland (b) and temperate grassland (c). (The color scheme of the dots is the same as the Fig. 3, 

meaning the different land cover types) 

We measured the trends of changes in the key indicators with their annual means (Fig. 4). For 

the alpine grassland, NDVI started to rise from the bottom as vegetation restored since 1994, 

and α declined from its peak in 1994 as the roughness increased with expanding vegetated 

cover. The condition of the hydrological cycle improved after 2000, indicated by increasing ET, 
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which demonstrates a lag effect between the land surface structure and its eco-hydrological 

function. For the arid grassland, the turning points of the indicators for the most land covers 

were in 2007, shown as the synchronicity. It was recorded by meteorological observation that 

the arid grassland experienced a severe drought around 2007. For the temperate grassland, the 

minimum ET appeared in 1994, then NDVI reached its lowest point and turned upwards in 2000. 

Later in 2006, the maximum α appeared. Through an overall comparison, we found that the key 

indicators of the underlying surface climate system have a strong correlation on the spatial 

dimension while it has an uncertain synchronicity on the temporal dimension. This prompted 

further investigation to measure the causality between these factors to explore the interaction 

processes. 

Applying the above method, the causality of the 4 key indicators were quantitatively assessed. 

In the three grassland ecosystems, all of them have strong direct causation with the value of C(X, 

Y) larger than 3.00 (Fig. 5), mostly in the feedback of NDVI-ET in the vegetated underlying 

surface. The negative value of C(X,Y) means the indirect causation was stronger than the direct 

one (shown with the dash-line linkages in Fig. 5). For all the three grassland ecosystems, the 

causality quantification results demonstrated that the vegetated underlying surface engaged 

more in land-atmosphere coupling than the un-vegetated surface, especially for the hydrological 

cycle indicated by ET. Because vegetation is the dominant land cover in the grassland 

ecosystems, and the biophysical processes like photosynthesis and transpiration of vegetation 

are directly involved in the surface water circulation and energy, the direct contribution in the 

causality of the vegetated land to the regional heat-hydro environment and the coupling 

relationship is higher than the un-vegetated land.  
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Fig. 5. Causality quantification results in the interaction between the land cover and the four key 

indicators, NDVI, α, Ts, and ET of the underlying surface climate subsystems in the ecosystems of 

alpine grassland (a), arid grassland (b) and temperate grassland (c). 

It was found that the total direct causality of the arid grassland was higher than the other two 

grassland ecosystems. Through further comparison, we knew that the feedback loop within the 

internal sub-systems of land and underlying surface climate, represented by NDVI–α and Ts–ET, 

were significantly higher in the arid grassland than those in the other two grasslands. When we 

compared the coupling feedbacks between those sub-systems, NDVI–α-Ts and NDVI–α-ET, to the 

internal feedbacks within the sub-systems, NDVI–α and Ts–ET, it was found that the difference 

of these calculated causalities in the arid grassland is much smaller than the other two types of 

grassland. 
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Discussion and Conclusions 

Novel methods were used to demonstrate patterns of the different coupling features in the 

various grassland ecosystems. Based on the coupling features identified, we categorized the arid 

grassland as one type while we took the alpine and the temperate ones as the other type. For 

the grassland with lower vegetation coverage and drought climate, like the arid grassland in our 

study, both the direct causality within the internal sub-systems and between the coupled 

subsystems are strong. Meanwhile, the alpine and temperate grassland ecosystems, with higher 

vegetation coverage and cooler and wetter climate, showed relatively loose causal connection 

within their internal sub-systems. In this type of grassland ecosystem, the indirect cause-effect 

was detected as comparatively higher. The difference in the quantified direct causality could 

explain why the climatic functional indicators of alpine and temperate grasslands have lag effect 

on the temporal dimension while those indicators have the synchronicity in arid grasslands. 

Since the causality measurement was based on the different-order derivative calculation, it 

could be formulated with a system dynamics approach, which could link to the mechanism of 

climatology (Mavrommati, Bithas, and Panayiotidis 2013; Byakatonda, Parida, and Kenabatho 

2018). However, it should be clarified that such a linkage would be general and limited. The 

main model used in our study is a statistical approach aiming to measure and quantify the 

numerical relationship in the dynamic of vegetation-climate as in a holistic manner, ours is 

different from the biophysical models which are bottom-up calculations based on the 

physiological and physical mechanism. 

We may develop these summarized findings with the principles of restoration ecology (Dobson, 

Bradshaw, and Baker 1997; Downing et al. 2012; Lamb, Erskine, and Parrotta 2005). In the arid 

grassland, the drought environment is not very suitable for plants habitat, as there are both 

relatively lower biomass per unit area and thinner vegetation indicated by the lowest NDVI 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 17 / 21 

 

(0.091±0.066) among the three cases. The artificial land use and cover (agricultural, developed, 

and bare lands) takes a larger proportion (47.6%) than the natural ones, so the biodiversity and 

complexity in the underlying ecological structure was assumed as lower. Such ecosystems have 

a lower resistance and higher resilience.  They would be more vulnerable to get an impact from 

the external inference of the climate or humans, but turn back to the original level sooner, such 

as what happened around 2007 in the arid grassland.  In the alpine and temperate grasslands, 

the plant communities flourished under better hydrological condition. The vegetation is dense 

and has a higher biomass per unit area indicated by NDVI (0.279±0.135 for the alpine, and 

0.401±0.148 for the temperate regions, respectively). The natural vegetation area proportion is 

larger (69.4% for the arid, and 66.5% for the temperate), so the biodiversity and complexity 

there was assumed as higher. These ecosystems have higher resistance and lower resilience, as 

having more indirect causation in the systems. The effects of external interferences on 

functional factors are delayed after a longer interval of accumulation, such as the lag effect that 

we found in the alpine and the temperate grasslands.  

The generalized inference above is based on the logic of  ecological cause an effect, leading to a 

new hypothesis about the relationship between the structural features and the stability of 

ecosystems. Additional scientific questions regarding the measurement approach need be 

specified in future research to test the ideas and to reveal more intrinsic principles regarding the 

coupled land-atmosphere system.   

Acknowledgements This research was supported by State Key Joint Laboratory of Environment Simulation 

and Pollution Control, China (No.11Y02ESPCT). Z. L. acknowledges the support from ‘985’ Future 

Scholarship of Tsinghua University, and the WIMEK Fellowship of Wageningen University and Research. 

 

 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 18 / 21 

 

 

 

References  

Anderson, Ray G, Josep G Canadell, James T Randerson, Robert B Jackson, Bruce A Hungate, Dennis D Baldocchi, 

George A Ban-Weiss, Gordon B Bonan, Ken Caldeira, and Long Cao. 2011. “Biophysical Considerations in 

Forestry for Climate Protection.” Frontiers in Ecology & the Environment 9 (3): 174–82. 

Beck, Inga, Ralf Ludwig, Monique Bernier, Esther Lévesque, and Julia Boike. 2015. “Assessing Permafrost Degradation 

and Land Cover Changes (1986–2009) Using Remote Sensing Data over Umiujaq, Sub‐Arctic Québec.” 

Permafrost & Periglacial Processes 26 (2): 129–41. 

Byakatonda, Jimmy, B P Parida, and Piet K Kenabatho. 2018. “Relating the Dynamics of Climatological and 

Hydrological Droughts in Semiarid Botswana.” Physics & Chemistry of the Earth Parts A/b/c. 

Dobson, Andy P, A D Bradshaw, and A J M Baker. 1997. “Hopes for the Future: Restoration Ecology and Conservation 

Biology.” Science 277 (5325): 515–22. 

Downing, A S, E H van Nes, W M Mooij, and M Scheffer. 2012. “The Resilience and Resistance of an Ecosystem to a 

Collapse of Diversity.” Plos One 7 (9): e46135. 

Fath, Brian D, and Bernard C Patten. 1999. “Review of the Foundations of Network Environ Analysis.” Ecosystems 2 (2): 

167–79. 

Ford, Andrew. 2000. Modeling the Environment. An Introduction to System Dynamic Modeling of Environmental 

Systems. University of Chicago Press,. 

Granger, C W J. 1969. “Investigating Causal Relations by Econometric Models and Cross-Spectral Methods.” 

Econometrica 37 (3). [Wiley, Econometric Society]: 424–38. https://doi.org/10.2307/1912791. 

Hoffmann, G, M Werner, and M Heimann. 1998. “Water Isotope Module of the ECHAM Atmospheric General 

Circulation Model: A Study on Timescales from Days to Several Years.” Journal of Geophysical Research 

Atmospheres 103 (D14): 16871–96. 

Jørgensen, Sven Erik, and Brian David Fath. 2011. Fundamentals of Ecological Modelling: Applications in 

Environmental Management and Research. 4th ed. Elsevier. 

Lamb, D, P D Erskine, and J A Parrotta. 2005. “Restoration of Degraded Tropical Forest Landscapes.” Science 310 

(5754): 1628–32. 

Li, Z., X. Liu, T. Ma, D. Kejia, Q. Zhou, B. Yao, and T. Niu. 2013. “Retrieval of the Surface Evapotranspiration Patterns in 

the Alpine Grassland-Wetland Ecosystem Applying SEBAL Model in the Source Region of the Yellow River, 

China.” Ecological Modelling 270. https://doi.org/10.1016/j.ecolmodel.2013.09.004. 

Li, Z., W. Wu, X. Liu, B.D. Fath, H. Sun, X. Liu, X. Xiao, and J. Cao. 2017. “Land Use/cover Change and Regional Climate 

Change in an Arid Grassland Ecosystem of Inner Mongolia, China.” Ecological Modelling 353. 

https://doi.org/10.1016/j.ecolmodel.2016.07.019. 

Li, Zhouyuan, X. Liu, T. Niu, D. Kejia, Q. Zhou, T. Ma, and Y. Gao. 2015. “Ecological Restoration and Its Effects on a 

Regional Climate: The Source Region of the Yellow River, China.” Environmental Science and Technology 49 (10). 

https://doi.org/10.1021/es505985q. 

Li, Zhouyuan, Wenzhao Wu, Xuehua Liu, Brian D Fath, Hailian Sun, Xinchao Liu, Xinru Xiao, and Jun Cao. 2016. “Land 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 19 / 21 

 

Use/cover Change and Regional Climate Change in an Arid Grassland Ecosystem of Inner Mongolia, China.” 

Ecological Modelling. 

Mavrommati, G, K Bithas, and P Panayiotidis. 2013. “Operationalizing Sustainability in Urban Coastal Systems: A 

System Dynamics Analysis.” Water Research 47 (20): 7235–50. 

Mooij, Joris M, Jonas Peters, Dominik Janzing, and Jakob Zscheischler. 2016. “Distinguishing Cause from Effect Using 

Observational Data: Methods and Benchmarks.” Journal of Machine Learning Research 17 (1): 1103–1204. 

Shipley, B. 2000. “Cause and Correlation in Biology: A User’s Guide to Path Analysis, Structural Equations, and Causal 

Inference.” Quarterly Review of Biology 82 (4): 646–49. 

Si, Y, Q Xin, W F de Boer, P Gong, R C Ydenberg, and H H Prins. 2015. “Do Arctic Breeding Geese Track or Overtake a 

Green Wave during Spring Migration?” Sci Rep 5 (1): 8749. 

Sugihara, G, R May, H Ye, C H Hsieh, E Deyle, M Fogarty, and S Munch. 2012. “Detecting Causality in Complex 

Ecosystems.” Science 338 (6106): 496–500. 

Teuling, Adriaan J, Sonia I Seneviratne, Reto Stockli, Markus Reichstein, Eddy Moors, Philippe Ciais, Sebastiaan 

Luyssaert, Bart Van Den Hurk, Christof Ammann, and Christian Bernhofer. 2010. Contrasting Response of 

European Forest and Grassland Energy Exchange to Heatwaves. Nature Publishing Group. 

Thomas, Stephanie Margarete, and Carl Beierkuhnlein. 2013. “Predicting Ectotherm Disease Vector Spread—benefits 

from Multidisciplinary Approaches and Directions Forward.” Naturwissenschaften 100 (5): 395–405. 

Wijk, Rien E Van, Andrea Kölzsch, Helmut Kruckenberg, Barwolt S Ebbinge, Gerhard J D M Müskens, and Bart A Nolet. 

2012. “Individually Tracked Geese Follow Peaks of Temperature Acceleration during Spring Migration.” Oikos 

121 (5): 655–664. 

Xu, Chenxi, Nathsuda Pumijumnong, Takeshi Nakatsuka, Masaki Sano, and Zhen Li. 2015. “A Tree-Ring Cellulose δ 18 

O-Based July–October Precipitation Reconstruction since AD 1828, Northwest Thailand.” Journal of Hydrology 

529: 433–41. 

Zhao, L, X Lee, R B Smith, and K Oleson. 2014. “Strong Contributions of Local Background Climate to Urban Heat 

Islands.” Nature 511 (7508): 216. 

 

  

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 20 / 21 

 

 

Graphical abstract 

  

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 21 / 21 

 

Causal relationship in the interaction between land cover 

change and underlying surface climate in the grassland 

ecosystems in China 
Zhouyuan L, Zezhong Wang, Xuehua Liu, Brian D. Fath, Xiaofei Liu, Yanjie Xu, Ronald Hutjes, 

Carolien Kroeze  

Highlights 
1. We discovered that spatially highly correlated factors changed not simultaneously.  

2. The lag effects was quantified to assess the causality contribution.  

3. This study compared the land-climate dynamics among three different types of 

grassland.   
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