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well-publicized success in image classifi-
cation has encouraged continued work and 
produced other amazing technologies, such 
as real-time text translation.

Unfortunately, DNN adoption powered 
by these successes—combined with the 
open-source nature of the machine learning 
community—has outpaced our theoretical 
understanding. We cannot reliably identify 
when and why DNNs will make mistakes. 
Though this does admittedly provide comic 
relief and fun fodder in research talks about 
applications like text translation, a single 
error can be very costly in tasks such as 
medical imaging. Additionally, DNNs have 
shown susceptibility to so-called adversarial 
examples, or data specifically designed to 
fool a DNN. We can generate such exam-
ples with imperceptible deviations from an 
image, causing the system to misclassify an 
image that is nearly identical to one that is 
correctly classified. Adversarial examples 
in audio applications can also exert control 
over popular systems like Amazon’s Alexa 
or Apple’s Siri, allowing malicious access 
to devices containing personal information. 
As we utilize DNNs in increasingly sensi-
tive applications, a better understanding of 
their properties thus becomes imperative.

Early DNN theory employed learning and 
function approximation theory to analyze 
quantities like the Vapnik-Chervonenkis 
dimension. Although such quantities char-
acterize DNN complexity with respect to 
training data, many important questions 
pertaining to generalization, expressibil-
ity, learning rule efficiency, intuition, and 
adversarial example susceptibility remain. 
More recent interpretations begin to address 
these questions and fall into three main 
analysis styles. First are methods to under-
stand the explicit mathematical functions of 
DNNs by demonstrating the ways in which 
specific combinations of nonlinearities and 
weights recover well-known functions on 
the data. The second approach analyzes 
theoretical capabilities and limitations of 
the sequence of functions present in all 
DNNs — again, given assumptions on the 
nonlinearities and weights. These analyses 

include quantifications of the data-depen-
dent cost-function landscape. Finally, a 
third class of techniques focuses on learn-
ing algorithms that solve the high-dimen-
sional, nonlinear optimization programs 
required to fit DNNs, and attempts to char-
acterize the way in which these algorithms 
interact with specific DNN architectures.

Advances in DNN theory include many 
different sources of intuition, such as 
learning theory, sparse signal analysis, 
physics, chemistry, and psychology. For 
example, researchers have related the 
iterative affine-plus-threshold structure to 
algorithms that find sparse representations 
of data [3]. A generalization of this result 
temporally unrolls the algorithmic itera-
tions that solve regularized least-squares 
optimization programs

 
argmin ( ) ,x 2

2y Ax x− +





λR
    

(1)

via a proximal projection method that 
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projection is a pointwise nonlinearity that 
mimics DNN architectures. Treating β�t as 
different vectors at each algorithmic itera-
tion, these variables can map to the node 
values at subsequent DNN layers, with 
weights w A A IT= +  between layers, a 
bias b A yT= ,  and nonlinearity defined 
by the proximal projection. This example 
offers a sense of the intuitions gleaned 
by mapping the network operations onto 
well-known algorithms. And this single 
interpretation is just the tip of the iceberg; 
a larger, non-exhaustive list of additional 
explanations is available in [1].

The sheer quantity of recent publica-
tions on DNN theory demonstrates just 
how relentless the search for meaning has 
become. An interesting pattern begins to 

emerge in the breadth of possible interpre-
tations. The seemingly limitless approaches 
are mostly constrained by the lens with 
which we view the mathematical opera-
tions. Physics-based interpretations stem 
from researchers with a physics background. 
Connections to sparsity and wavelets come 
from well-known scientists in those fields. 
Ultimately, the interpretation of DNNs 
appears to mimic a type of Rorschach test 
— a psychological test wherein subjects 
interpret a series of seemingly ambigu-
ous ink-blots (see Figure 1b, on page 1). 
Rorschach tests depend not only on what 
(the result) a subject sees in the ink-blots 
but also on the reasoning (methods used) 
behind the subject’s perception, thus mak-
ing the analogy particularly apropos.

On the one hand, these diverse perspec-
tives are unsurprising, given DNNs’ status 
as arbitrary function approximators. Specific 
network weights and nonlinearities allow 
DNNs to easily adapt to various narratives. 
On the other hand, they are not unique 
in permitting multiple interpretations. We 
can likewise view standard, simpler algo-
rithms through many lenses. For example, 
we can derive the Kalman filter—a time-
tested algorithm that tracks a vector over 
time—from at least three interpretations: the 
orthogonality principle, Bayesian maximum 
a-priori estimation, and low-rank updates 
for least-squares optimization. These three 
derivations allow people with different 
mathematical mindsets (i.e., linear algebra 
versus probability theory) to understand 
the algorithm. Yet compared to DNNs, the 
Kalman filter is simple; it consists of only 
a handful of linear-algebraic operations. Its 
function is completely understood, allowing 
for validation of each viewpoint despite the 
different underlying philosophies.

Similar validation for DNN theory 
requires a convergence of the literature. We 
must distinguish between universal results 
that are invariant to the analysis perspective 
and those that are specific to a particular 
network configuration. A healthy debate is 
already underway, with respect to the infor-
mation bottleneck interpretation of DNNs 
[4, 5]. We should also work to better under-
stand the interactions between functions that 
DNNs perform, their mathematical proper-
ties, and the impact of optimization methods. 

Unfortunately, DNN complexity introduces 
numerous challenges. Many standard tools, 
such as those that attempt to comprehend 
a model’s generalization from training data 
[6] or empirically assess important network 
features [2], are difficult to apply to DNNs. 
Luckily, there is no shortage of excitement, 
and we continue to enhance our understand-
ing of DNNs with time. The community is 
also beginning to coalesce, and dedicated 
meetings—like workshops at the Conference 
on Neural Information Processing Systems 
and the recent Mathematical Theory of Deep 
Neural Network symposium at Princeton 
University—will further accelerate our pace.
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Humans continually face catastrophes 
involving natural disasters, such as 

floods, droughts, hurricanes, and large-
scale fires. In today’s highly interconnected 
world, losses from such incidents have 
increased greatly due to growing population 
densities, asset concentration in disaster-
prone areas, and environmental change 
from anthropogenic impacts.

Catastrophic natural disasters are ran-
dom events that are rare but very impact-
ful. Traditionally, most catastrophic losses 
are paid ex-post (adaptively) by indi-
viduals (property owners), government 
agencies, insurers and reinsurers, charity 
institutions, and international organiza-
tions, rather than through explicit ex-ante 
(forecast-based) arrangement via long-
term strategic decisions [7].

Moreover, there is typically little or no 
prior agreement as to who should bear what 
portions of the monetary cost. In anticipa-
tion of the need to cover potentially large 
losses in an ad-hoc way, responsible agen-
cies retain certain budget resources for this 
purpose. However, such retention reduces 
the options for profitable investment; in 
the case of large funds, it can potentially 
stifle economic growth.

We propose that intensification of ex-
ante measures—combined with a more 
intelligent method for setting aside 
resources to build adaptive capacities for 
ex-post compensations, contingent cred-
its, catastrophic bonds, monitoring, and 
regulation—can significantly reduce the 
overall burden on national economies and 
strike a healthy balance between econom-
ic growth and security. Integrated long-
term approaches to risk management and 
economic development, with an explicit 
emphasis on the possibility of rare high-

consequence catastrophes, enable effec-
tive decisions in this context. This tactic 
requires one to account for the dependence 
between decisions and risk distributions.

Existing observations demonstrate 
the increasing magnitude and variabil-
ity of risks, indicating that one cannot 
assume catastrophic risk distribution to 
be Gaussian; in fact, they are skewed and 
have fat tails. Their focus on tails makes 
quantile-based risk measures—e.g., value 
at risk (VaR) and conditional value at 
risk (CVaR)—more appropriate than vari-

ance-based measures applicable only to 
Gaussian distributions. We have developed 
and applied a new approach to stochastic 
optimization in a number of case studies. 
Our strategy allows us to include quantile-
based performance functions in decision 
support models for integrated catastrophic 
risk management. These models are char-
acterized by complex nested distributions 
shaped by the decisions of policymakers. 
Here we briefly outline this approach, its 

Figure 1. Geographical distribution of robust premiums as percentage of the 100-year flood damages. Figure courtesy of [6].
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