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FOREWORD 

In the past few years interest in the phase portrait of systems -- that is, in a qualita- 
tive description of the global structure of systems and their long-term behavior - has 
grown, both at the International Institute for Applied Systems Analysis (IIASA) and else- 
where. Accordingly, the Energy Systems Program has developed a line of compact, highly 
aggregated models of an "abstract economy" emphasizing the energy sector; the model 
presented in this report is the heir of this line. The authors, Manfred Breitenecker and 
Hans-Richard Griimm, are interested not so much in the behavior of individual trajecto- 
ries (i.e., "simulation runs") as in the global structure and its variation under parameter 
changes. Of course, they do not claim that this model can predict the future; they believe, 
however, in its usefulness in pointing at trends and in helping one to conceptualize prob- 
lems, to understand structures, and, perhaps, to formulate questions to put to bigger, 
more realistic economic models. Obviously, this paper is just one experimental step 
toward a more satisfying state of the art, where a more immediate meaning will be cap- 
tured by such a model. 

WOLF HXFELE 
Leader 

Energy Systems Program 
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ECONOMIC EVOLUTIONS AND THEIR RESILIENCE: A MODEL 

Manfred Breitenecker and Hans-Richard Griimm 
International Institute for Applied Systems Analysis, Austria 

SUMMARY 

This report designs a highly aggregated macroeconomic model that can be formu- 
lated in terms of a system of ordinary differential equations (i.e., a "dynamical system"). 
The report consists of two parts supplementing each other in a sort of symbiosis. One 
part is the abstract structure of the equations - that is, the individual dependence of  the 
time variations of the state variables (which span the state space) on the variables them- 
selves (which in this model are E. K ,  and L). The other part is the parameter space, each 
point of which is a set of parameter values that have a welldefined economic meaning 
and thereby endow the system with economic content. 

A particular economy is then defined by a particular point in parameter space, 
together with a particular point in state space (describing the "status quo") from which it 
evolves deterministically in time along its trajectoy. 

The model is analvzed carefully with the help of methods from differential topology. 
The following questions are answered: 

- Are there points of stationay growth in state space? If  so, where are they 
located? 

- What is the qualitative behavior of such a point? Is it attractive (stable) or not? 
- Which regions of state space are slack-free - that is, describe a "desirable" 

economy? 
-- What is the influence of a change in the system parameters on the global behavior 

of  a trajectoy or, more generally, on the phase portrait as a whole (i.e., the set 
of all trajectories, roughly speaking)? 
Where are the regions in parameter space within which the system shows simi- 
lar global behavior? In particular, where are the economic niches (regions) for 
which the system isglobally stable? 

- What effects do delivering and receiving investment goods (e.g., granting or 
receiving foreign aid) have on the qualitative behavior of  the economy? To 
what extent can a transition out of  or into a more suitable economic niche be 
induced by foreign aid? Similarly, what influence does the price of imported 
primay energy, which must be paid primarily through investment goods, have 
on the economy? 
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As the parameter space is highdimensional, some essential parameters have been 
merged into what we call scenario variables. To a certain extent, these variables reflect 
a particular scenario: highly or less effective use of energy, conventional or new tech- 
nology in energy production, high or low emphasis on the consumption sector. The 
economic niches have also been determined within this scenario space. 

We considered as a particular application a coupling o f  two economies with dif- 
ferent qualitative behaviors (the one being within, the other outside, a stable economic 
niche) via foreign aid and under the influence of the price of imported energy. This led 
to determination of an upper limit for the price of energy. 

This work is experimental; we do not intend to present a model that is in any sense 
final. Rather, we wouM like to examine more thoroughly what structural stabiliw means, 
particularly with respect to long-term problems (those with a time horizon of, say, 50 
years). More work and additional contributions are obviously needed. 

1 INTRODUCTION 

Both within the Energy Systems Program at the International Institute for Applied 
Systems Analysis (IIASA) and elsewhere, efforts have been under way to understand and 
therefore to conceptualize possible evolutions of energy and other systems over a long 
period of time - say, 50 years. Such a time horizon is longer than that which can be 
treated meaningfully by the normal technoeconomic models available. In the case of 
input-output modeling, for instance, the evolution of the input-output coefficients 
over time must be known if the technique is to be used purposefully. The same applies 
to elasticities and other input parameters in the case of econometric models. The method- 
ology of modeling a 50-year evolution for the purpose of conceptualization is therefore 
new, difficult, and specific. In Energy in a Finite World: A Global Systems Analysis 
(1981), the Energy Systems Program Group at IIASA outlines in detail one approach 
to this problem. 

Understanding such evolutions in minute detail is not always the major problem; 
most often, the concern is stability, and, more precisely, the stability of underlying struc- 
tures. In the context of the energy problem, which is in the forefront here, agood example 
is the price of oil and its impact, not only on a particular economy (either importer or 
exporter), but also on world trade as a whole - that is, on the overall structure of eco- 
nomic interactions. Will there be collapses or evolutions that inherently lead to distor- 
tions? Significantly, such a question is of a holistic nature. This approach focuses on the 
structure of evolutions in time (and possibly in space) as a whole, not on the summations 
of yearly increments. The issue is thus one of structural stability. 

Capital costs of new energy technologies were a special concern of IIASA's Energy 
Group. Since such costs tend to be high, one may wonder whether energy still works for 
the economy or whether the economy works for energy. While this has recently become 
less of a concern, it was once an important point that led to the evaluation of certain new 
energy technologies against the background of the rest of the economy. Furthermore, 
the conception of the model reported here was determined by considering oil prices as 
well as the extent of foreign aid and of similar transfers of wealth. 

Nontrivial structural problems arise only with nonlinear models. In this case one 
may consider the phase space of the variables in question. There are usually singular 
points, saddle points, sources, or sinks, which imply the existence of basins. These basins 
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are separate and are therefore divided from each other by separatrices (see Appendix A) 
consisting of one or of infinitely many trajectories. The evolution of the trajectories may 
be generally desirable with regard to one basin but undesirable in others. To demonstrate 
such features. Hafele (1975) conceived a simple model with population and per capita 
energy demand as the only variables. It then appeared desirable to consider a more power- 
ful and, one might hope, more meaningful model permitting us. among other possibilities, 
to discuss questions of capital costs for new energy technologies. 

This interest of IIASA's Energy Group coincided with another line of interest at 
IIASA: Holling and his team were studying the dynamics of ecological systems. One mo- 
tivation for their study was to develop pest management strategies - an effective spraying 
policy, for example - in an ecosystem. In the framework of this research, Holling (1973, 
ed. 1978) used the term resilience to describe a system's capability to continue its evolu- 
tion in the same basin when impacts on the system occur from outside. An IIASA work- 
shop (Griimm ed. 1975) brought together ecologists, economists, and climatologists 
under Koopman's chairmanship, and Griimm (1976) generalized and formalized the notion 
of resilience. While the precise mathematical definition of the term is still subject to debate, 
the concept is obviously helpful and enlightening. Indeed, when considering the problems 
of the next half century, we are less concerned about quantitative evolutions - which 
nevertheless shape the overall structure - than about the possibility that the system 
might collapse and the trajectory continue in a different basin. 

The model presented here should be seen in light of these considerations. It was 
designed, not to provide a final answer to the problem of structural stability while simul- 
taneously dealing with all economic details, but rather to make sense economically 
and technically. We have proposed a sequence of steps to reach the final goal. So that this 
methodological development is most fruitful, we hope that others will help to improve 
the state of the art. Broadening our understanding of resilience and including models 
other than the ecological one would also be desirable. The modeling effort reported here 
is clearly experimental. 

2 RESILIENCE 

At present there are several slightly different concepts of resilience, all of which 
stem from Holling's work (1973). We shall briefly describe the concept preferred by 
IIASA's Energy Systems Program. It is strongly tied to the theory of differentiable 
dynamical systems, i.e., the global theory of differentiable equations (see Appendix A); 
the mathematical definitions of resilience (given in Griimm 1976) are expressed in terms 
of that theory. 

Resilience - conceptually described - is the ability of systems to withstand exoge- 
nous, incontrollable disturbances affecting the values of state variables and parameters 
without qualitatively changing their behavior. As this is originally a property of the sys- 
tem existing in reality, resilience is reflected in the mathematical model describing that 
system. As we tend to identify the system with the model, we also speak of resilience as 
a property of the latter. Models used in this context describe the evolution of the system 
as motion in a state space each of whose points uniquely identifies a state of the system. 
We assume that the motion is given by a causal (as opposed to a stochastic or nonauton- 
omous) differential equation on state space, thus bringing the results of dynamical sys- 
tems theory to bear. For any given set of parameter values, the state space contains one 
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or several attractors that describe steady modes of the system's behavior. The basins of 
these attractors are separated by basin boundaries. All parameter values corresponding to 
the same structure of state space form one parameter regime (economic niche). Resilience 
may be described as follows: if. due to the change in state variables/parameters, the state/ 
set of parameter values has not left its previous basinlparameter regime, the system has 
absorbed the disturbance; if it hasjumped over a boundary,qualitative - often catastrophic 
- changes will occur. 

As basins and parameter regimes are usually open sets, disturbances below a certain 
level will always be absorbed, thus resolving at the same time our uncertainty about fine 
details of the dynamics, as well as about the exact values of state variables and param- 
eters. Small differences between the exact values and the values taken for the mathemati- 
cal model will not qualitatively affect the model's output.* This form of the "structural 
stability" argument is. of course, well known from catastrophe theory. 

Numerical measures for resilience can be introduced next, many of them incorpo- 
rating the notion of "distance to some boundary." Full details are contained in Definitions 
of Resilience (Griimm 1976). 

In our model, resilience with respect to changes in state variables is formally trivial: 
there is at most one basin. However, the constraint that small disturbances or errors in 
the state variables should not lead to drastically different future behavior translates into 
the postulate - as shall be seen - that the system has an attractor, which corresponds to 
an economically meaningful state of the model economy. As there are different parameter 
regimes (niches), resilience with respect to parameter changes is a meaningful question. 
This leads to the problem of determining the boundaries of these regimes in parameter 
space; if the parameters of an "actual" economy come close to a boundary, one should 
begin to be concerned. 

3 HISTORICAL DEVELOPMENT 

In this section we shall summarize the evolution of highly aggregated economic 
models at IIASA in the past three years. We shall give only brief descriptions of four 
models (A to D), as full details are contained in Economy Phase Portraits (Griirnm and 
Schrattenholzer 1976). 

Model A (Hafele 1975) showed for the first time in an economic model at IIASA 
how a saddle point, by generating a separatrix, can cause two basins with different long- 
term behavior to occur. The model attempts to describe phenomenologically different 
effects: the influence of the standard of living on the birth rate and on the level of safety 
expenditures, as well as the rise of energy consumption with an increase in the gross 
national product (GNP). The model has population and per capita energy consumption as 
state variables; its two basins describe two trends: toward "low population living in 
luxury" on the one hand and toward "growing population at a constant living standard" 
on the other. 

Model B (Avenhaus, Griimm, and Hafele 1975) is closer to established economic 
formulation. The entire economy is split into two parts, with an energy-producing sector 
distinguished from the rest. The other assumptions of Model A are incorporated, although 

*We can view these differences as "exogenous, incontrollable perturbations"! 
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their mathematical expression is necessarily different. The state variables are population, 
GNP per capita, and energy production; total GNP is split into consumption, depreciation, 
and net investment. A ceiling is assumed for per capita GNP. The two attractors and 
basins of the model correspond to two possibilities for producing this limiting GNP, one 
with a high energy production and a low investment in the nonenergy sector and theother  
with the reverse situation. 

Model C is the result of combining Model B with ideas presented in Hafele and 
Biirk (1976). Labor is introduced in addition to  energy and nonenergy capital stock as a 
production factor. A new feature is that the dyna~nics  of this model are given by  an infin- 
itesimal optimization postulate: at each point in state space, we should proceed in the 
direction that optimizes the rise of GNP. Various phase portraits for this model are given 
by Griimm and Schrattenholzer (1976). 

Total GNP has thus far been given by a Cobb-Douglas ansatz for the production 
function. In Model D the investment sector is described by a linear input-output ansatz. 
The fraction of total GNP available for investments (denoted by 1 - a )  plays a central 
role and is determined dynamically. Depending o n  the parameter values, the system has 
two to four basins. but its attractors are not isolated fixed points: along entire curves the 
system is a t  equilibrium. 

As the following description makes clear, many of the "building blocks" of the 
present model are contained in these four models. The overall structure of our model 
owes much to the work of Hafele and Biirk (1 976). 

Two further, unpublished "mini-models" by Biirk and Griimm give a phenomeno- 
logical treatment of the price rise for a scarce resource and thereby justify the "logistic 
transition between two different technologies" assumed in the present model. 

4 THE MODEL'S STRUCTURE 

We selected energy, capital, and labor force, denoted by E, K, and L, respectively, 
as basic variables spanning the state space of  our model. Their precise economic relevance 
is demonstrated in Fig. 1. E, K, and L denote the respective stocks of 

- Total installed power (we also refer t o  this as the total invested energy-related 
capital stock) 

- Total invested nonenergy-related capital stock 
- Total available stock of skilled. labor 

Illustrations of these quantities follow. (In the phenomenological spirit of the model, we 
d o  not  give economically exact definitions.) 

E includes, for example, power stations, with their integrated equipment, such as 
turbines, generators, dams (in the case of hydropower), electric grids, and so forth; oil 
refineries; pipelines; and tankers. As we assume a constant load factor, E may also be 
interpreted as the total energy output (or input into the economy) per time unit.  In this 
report we use 1 year as the time unit and 0.75 as the load factor. Hence 1 W of installed 
power yields 0.75 Wyr of energy per year. 

K denotes all factories in operation (assuming n o  spare capacity), with their ma- 
chinery and equipment to  produce 
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FIGURE 1 Structure of the model. 

- Energy-related capital goods (the stock denoted by E), such as turbines; genera- 
tors; and cement for existing dams and power stations 

- Nonenergy-related capital goods, such as new machinery (which may eventually 
produce new turbines) or cement for new factories, schools, universities, or 
other means of "skill production" (but not cement for new dams, power sta- 
tions, or private homes) 

- Consumption goods, such as private cars, private homes (i.e., cement to build 
private homes), and everything else that does not produce anything in turn 

T 

K also denotes existing schools, universities, and other means of "skill production." The 
unit for K is $1. 

L represents the available stock of labor (assuming no idle workers) weighted with 
skill: effectiveness, know-how, sophistication of such tools as pocket calculators, and so 

Consumption 
goods production 
(CP) 

l nvestment 
goods production 
(IP) 

Cobb- 
Douglas 
function 
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forth.* With a load factor of 0.25, 1 worker of unit skill corresponds to  2000 effective 
man-hours per year or 0.25 effective man-years per year. By introducing skill, we are able 
to increase 1, without increasing the number of workers and t o  omit a term - em' (describing 
technological progress) from our production functions. 

We assume two lines of production within our system. The first is investment goods 
production (IP), which produces (per year) 

- Energy-related capital goods A E  

- Nonenergy-related capital goods AK 
- Skilled labor force A L  

The second is consumption goods production (CP), which produces consumption 
goods C (per year). C does not  include private energy consumption. Energy is required 
to  utilize and to maintain consumption goods, especially such middle- and long-term 
durable goods as cars and homes. We call the part of E allocated for this purpose Ep 
(private energy consumption). Because even homes are o f  finite durability (say, 5 0  years), 
the appropriate portion is in fact "consumed" each year. Hence in a first approximation 
Ep is assumed t o  be proportional to C: 

This assumption is backed by statistics. 
Combining what has been said about the stocks and their allocation, we have 

We express the stocks allocated t o  CP in terms of the total quantities, using the 
coefficients aE, aK , aL : 

The a s  clearly describe the emphasis o n  CP within the economy. 
The inputs into IP are El ,  K I ,  and L I ;  the outputs, AE,  AK,  and A L .  Part (d,X) 

of the outputs has t o  compensate for the respective depreciations (in the case of skilled 
labor, retirements of laborers); the other part (a is the annual net increase in the respec- 
tive stocks: 

where the d, denote the respective depreciation rates. 

*Again, we do not define skill quantitatively; we assume that it describes both "subjective" (e.g., better 
training) and "objective" (e.g., better technology) increases in productivity. We could use a similar 
concept of effective capital. 
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Common sense tells us that stocks and outputs have to be nonnegative, i.e., 

Thus our state space is R:. 
We now assume that the IP is of the linear input-output type with minimum pro- 

duction functions (see Dorfman, Samuelson, and Solow 1958; Samuelson 1947, 1976; 
Beaumol 1977; and Hicks 1969) 

AX = min ( Y I , x / a y X )  X = E,K,L 
Y = E , K , L  

More explicitly, 

a y x  denotes the minimal amount of stock Y I  (the portion of the total stock Y  
allocated to IP) required to  produce one unit of output of stock of type X; correspond- 
ingly, Y I , x  is the total amount of Yr necessary to produce AX. Another way of looking 
at eq. (6 ' )  is 

a  yx  AX < Y1.x for all X, Y  = E,K,L ( 7 )  

Adding the left- and right-hand sides for X  = E , K , L  while keeping Y  fixed, we obtain 

Hence ( Y I , E ,  Y I , K ,  Y I , L )  is a particular allocation of Y1 to  the three production lines 
within the IP. 

We first assume that our IP runs optimally - that is, without slacks. Thus all ratios 
Y I , X / a y X .  X futed, Y  = E , K , L  over which the minimum has to  be taken in eq. (6 ' )  are 
the same, and the inequality in eq. ( 8 )  becomes an equality. In part of state space, this 
requirement of optimality is inconsistent with eq. (5 ) .  

In matrix notation this reads 

TAX = XI ( 9 )  
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where 

AX = AK and XI = K I  (1) (1:) 

is called the technological matrix because it reflects the technological situation within 
our model economy. 

The examples that follow illustrate the significance of the matrix coefficients. 
(We estimate the values of the coefficients for our base case in Section 6.) 

- aEE is the number of watts allocated to 1P in order to increase the installed power 
E by 1 W per year 

- aEK is the number of watts allocated to IP in order t o  increase the nonenergy- 
related capital stock K by $1 per year 

- aE12 is the number of watts allocated to IP in order to increase the number of 
skilled workers L by 1 person per year 

- UKE is the amount of capital invested in IP required to increase E by 1 W per year 
- U K K ~ S  the amount of capital invested in IP required to increase K by $1 per year 
- UKL is the amount of capital invested in IP required to increase L by 1 person per 

year 
- aLE is the number of skilled workers employed in IP required to increase E by 1 W 

per year 
- ULK is the number of skilled workers employed in IP required to increase K by $1 

per year 
- aLL is the number of skilled workers employed in IP required to increase L by 1 

person per year 

The choice of eq. (6) as the production function for the IP implies nonsubstitutability 
among the production factors. This property seems to  be realistic; the lines of production 
within heavy industry, for instance, are rather inflexible and allow only illinor deviations 
from an optimal path. 

In contrast, the production function of the CP should allow for substitutability; 
using a simple ansatz, we describe it by a Cobb-Douglas function: 

Equation (12) accounts for constant returns t o  scale. Combining eqs. (I),  (2), (3), 
(4), (9), and ( l l ) ,  we arrive at the system of ordinary differential equations that we 
sought and that we shall analyze by global techniques: 



10 M. Breitenecker. H.-R. Griirnrn 

where we have used the notation 

with Ep = ~ A ~ ~ ~ ~ ~ Z E O I K ~ L ' .  
Equation (1 3) may be rewritten as 

Inserting eq. (1 4) in eq. (5) leads to a condition defining a region in the state space where the 
optimality assumption is consistent with the positivity requirement, eq. (5). We call this 
region the slack-free region: inside it, the dynamics of our system (its evolution in time) 
are given by eq. (14). 

Our considerations will be largely restricted to the slack-free region because such 
questions as the existence of equilibrium states and their stability can be discussed 
within it. Possible dynamics outside the slack-free region are described in Appendix B; 
they differ from the formal continuati'on of eq. (14) to the outside. As shown in the 
appendix, this difference does not affect the results presented in the following sections, 
which use eq. (14) in the entire state space. 

To analyze eq. (14) we would normally calculate the critical element - in our 
case, the fixed point (FP). Obviously, X = 0 is an FP and we can easily show that, in 
general, it is the only FP. 

We put 2 = 0; hence, from eq. (14), 

From the expansion of eq. (1 S), we express E and K as linear functions of L and sub- 
stitute them into the first line. Since E p ,  the first component of Xp, shows constant 
return to  scale, the right-hand side of eq. (15) is linear in L ;  so, also, is the left-hand side. 
Hence L f 0 drops out, and we are left with a restriction on the parameters; we cannot 
expect this restriction to  hold generally. 

If we assume variable returns to scale in the Cobb-Douglas function (i.e., if instead 
of eq. (1 2) we have a  + 0 + 7 # I), there will be a second FP in the E,K,L space. We then 
look for a fixed ray instead of an FP in state space; this ray describes an equilibrium state 
of stable growth. 

The property of constant returns to  scale of both production functions allows us 
to introduce new variables and to reduce three dimensions to two. Inserting 

E :  = E/L K : = K/L h: = log L (1 6) 

in eq. (13') yields, after straightforward algebra, 
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where B = e ~ a i 4 4 .  Thus is the growth rate of skilled labor. We observe that the 
right-hand side of eq. (1 7) depends only on E and K - not on A; the problem has become 
two-dimensional. One first solves for E and K and then substitutes the solutions into the 
expression for );, and integrates. Details are given in Section 5. The system parameters, 
which must be chosen consistently, are as follows: nine coefficients of T, the technologi- 
cal matrix, a X y , X ,  Y = E, K ,  L ;  three ratios, a ~ ,  a ~ ,  a ~ ;  three depreciation rates, d ~ ,  d K ,  
d L ;  and three Cobb-Douglas coefficients, a ,  0, and B (where A and e are combined). 
These parameters make up a parameter space of eighteen dimensions. 

5 ANALYSIS OF THE MODEL EQUATIONS 

For a qualitative analysis of eq. (17), we follow the standard procedure: 

- Determination of FPs and their properties 
-- Determination of the slack-free region according to eq. (5) 
- In the case of a stable FP, determination of the central region, i.e., the region 

of initial values within the slack-free region such that the trajectories do not 
subsequently leave the slack-free region 

As previously mentioned, an FP Z = ri = 0 corresponds to a time-invariant ray 
(direction) in E,K,L space. Equations (18) and (19) are valid only inside the slack-free 
region. This amounts to solving the (nonlinear) eigenvalue problem 

in terms of eq. (14) or 

in terms of eq. (17). 
To get a feeling for the situation, we may analyze a simplified version of eq. (18) 

or (19). We use the argument of structural stability and extrapolate eqs. (18) and (19) 
outside the slack-free region. We assume all depreciations to be equal, dE = dK = dL = d .  
consider Xp as a perturbation that we put to zero in our simplification,* and solve the 
remaining linear problem. n then appears as the simultaneous growth rate of E, K ,  and L 
at the point of stable growth, i.e.. at the fixed ray. 

Simple algebra then leads to the respective equations 

where z = I/(d + n).** 

*This is justified by looking at actual numerical values. 
**z is an auxiliary quantity introduced to apply a Frobenius theorem. 
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As (1 - T is a matrix with strictly positive elements, a theorem of Frobenius is 
applicable. This theorem implies that exactly one eigenvector with positive components 
exists and that its corresponding eigenvalue is positive and is the largest among the real 
eigenvalues. As eqs. (18') and (19') are of third degree, there are two possibilities: either 
three real solutions for z (and hence for n) or one real and two complex conjugate solu- 
tions. 

In the first case, we have three fixed points in the E-K plane with the respective 

as growth rates. The FP corresponding to the smallest growth rate is in the positive quad- 
rant and is a sink. The other two are a saddle point and a source, respectively, but their 
location is outside the positive quadrant. Qualitatively, the full phase portrait then appears 
as shown in Fig. 2. 

In the second case, we have only one FP, with a growth rate n > - d .  I t  is again 
located within the positive quadrant and may be attractive or repulsive; the corresponding 
phase portraits are shown in Fig. 3 .  

Owing to structural stability, these statements also remain true ,within certain limits, 
for differing ds and nonvanishingXp. For the base cases that we studied, the second alter- 
native holds; it prevails even for large deviations from the base case data. Appendix C 
gives a criterion for distinguishing between the two alternatives. 

FlGURE 2 Three real fixed points. 
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FIGURE 3 One real fixed point. 

Returning to eq. ( 1 9 ) ,  the fixed point condition E = I? = 0 yields ( € 0 , ~ ~ )  as a solu- 
tion of 

~ ( E , K )  = 0 and ~ ( E , K )  = 0 (20) 

Subsequent substitution into h leads to 

where the functions f, g, and h are defined by eq. (1 7). This is the simultaneous growth 
rate of E, K, and L at the FP. 

For purely technical reasons it is advantageous first to solve 

~ ( E , K )  = 0 and ~ ( E , K )  = n (22 )  

to obtain E and K as functions of n,  and then to substitute them into ~ ( E , K )  = 0 and to 
solve for n.  Thus, after some manipulation, 

These equations must be solved for E ,  K ,  and n, respectively. With the abbreviations 

we obtain 
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d~ + n (1 - .L ) ~ K E  - ( d ~  + n)D3 
K (n) = - 

D(n) 
[(I - .L)~KE - ( d ~  + n)D31 = 

- (LX)aLE + (dK + n)Dl 
(25) 

Substitution of eq. (25) into the third part of eq. (23) yields a transcendental 
equation for n. 

Three remarks are in order. First, as previously mentioned, the simplified system of 
equations (all ds equal, Xp = 0) always has a solution with E > O,K > 0. On the other 
hand, the general set of equations G need not have a solution at all; there need not exist 
a domain for n where both ~ ( n )  and ~ ( n )  are nonnegative (they obviously should be, as 
eq. (5) demonstrates). 

Second, n always appears in connection with depreciation rates; hence, changing 
the three depreciation rates by the same amount and simultaneously changing n by the 
same amount (but with the opposite sign) leaves €0 and K O  unchanged. 

Third, as functions ~ ( n )  and ~ ( n )  depend onthe 18 system parameters, the previously 
mentioned positivity condition restricts the allowed parameter values to certain regions 
or economic niches within the parameter space. 

To analyze the properties of the FP ( E ~ , K ~ )  (assuming the conditions of eq. (5) to 
be fulfilled), we follow the standard procedure: linearization of eq. (17) yields, after 
straightforward calculations, 

where we introduced 

and where 

denotes the matrix between the braces.* Considering the first two parts of eq. (22), we 
have, with 

*Explicit expressions for matrix elements of S tend to become cumbersome; as they must be evaluated 
numerically in any case, they are omitted here. 
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According to the general theory, the behavior of the solutions near the FP is determined 
by the eigenvalues p1,2 of S1, which are given by 

p1,2 = 1/2{tr S1 f [(tr s112 - 4 det S l ]  I* (28) 

The FP ( E ~ , K ~ )  is stable if the real parts of p1.2 are negative 

It is called real stable if Im p1,2 = 0 and complex stable in any other case. For both real 
stable and complex stable FPs, the trajectories ( ~ ( t ) , ~ ( t ) )  approach the FP in the future. 
If eq. (29) does not hold, tbe FP is unstable; with the exception only of special cases, 
the trajectories leave any neighborhood of the FP in the future, even if there are finite 
time periods during which the FP is approached. 

Analyzing eq. (28) in more detail, we may have 

(tr ~ 1 ) ~  2 4 det S1 
or 

(tr ~ 1 ) ~  < 4 det S1 

In the case of eq. (30'), the p1,2 will be real. We now have to  distinguish 

det S1 > O  
from 

det S1 < 0 

for eq. (3 1). Both ps have the same sign as tr S1. Hence 

det S1 > 0 and tr S1 < 0 (32) 

is the stable case; 

det S1 > 0 and tr S1 > 0 (32') 

is the unstable case. 
For eq. (31') the ps have the opposite sign and the FP is unstable. In the case of 

eq. (30t), the eigenvalues will be conjugate complex, with 

Hence tr S1 > 0 means instability, and tr S1 < 0 ,  stability, of the FP. 

*Here tr S1 = Sll + Spa = fil + fip (11') denotes the trace of S, and det S1: = SllSz2 -S12Sp1 = 
file fii (1 1") denotes the determinant of Sl, respectively. 
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Combining these results, we can say that eqs. (30), (31), and (32) yield a real 
stable FP, whereas eqs. (30') and (32) yield a complex stable FP. All other situations 
are unstable. 

The economic relevance of the stability or instability of an FP is significant. The 
ratios E = E/L and K = K/L attain certain constant values €0 = EO/LO and K O  = KO/Lo, 
respectively, at the FP. This means that E, K, and L have the same time evolution, given 
by no of eq. (21), at the point (EO,KO,LO). 

If the FP (EO,KO) is unstable, trajectories will move away from it in time, and the 
system will move into unrealistic regions, i.e., arbitrarily large or small values of E/L and 
K/L. Although our model is unrealistic for such values of the state variables, we can 
interpret this behavior as a prediction of catastrophic, and certainly undesirable, behavior 
of our model economy. If, on the other hand, the FP is stable, the system will tend to 
stable values of E/L and K/L and will achieve stable growth (or decrease, if no happens 
to be negative). Although at this point we can draw this conclusion only for evolution 
within the feasible region, so that eq. (18) is valid, Appendix B shows it also holds in a 
neighborhood of the slack-free region. This is certainly a more desirable economic situation. 

In the case of stability, we can distinguish within the slack-free region a central 
region consisting of points the entire evolution of which will remain in the slack-free 
region (e.g., A in Fig. 4). In contrast, points such as B in Fig. 4 will for some time leave 
the slack-free region, although they, too, will come back and tend toward the FP. Thus 
their evolution will be governed for some time by the dynamics discussed in Appendix B, 
which imply large-scale variations of the economy. We may regard the central region as 
the set of "best initial conditions" because a smooth evolution toward stable growth is 
assured there. 

We note that the central region is different from the slack-free region only if the 
FP is a stable focus (i.e., has two complex eigenvalues with negative real parts). For an 
unstable FP, the concept of a central region is meaningless, as all trajectories except that 
coinciding with the FP will leave the slack-free region. 

FIGURE 4 The slack-free region. 
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Note, too, that eq. (18) becomes undefined if T is not invertible, i.e., if det T = 0. 
For such a technology matrix, EI ,KI ,L I  would be restricted to a plane. We assume that 
this is not the case, from a genericity argument. Care must be taken, however, if i det T I 
becomes too small or if, by an adiabatic variation of the technology matrix (see Section 
6), we should cross the hypersurface in parameter space, where det T = 0. 

6 THE BASE CASE 

We chose a base set of parameters for actual calculations. As the elements of the 
technology matrix T describe the technological standard of the model economy, the 
numbers could be expected to differ significantly according to their correspondence to 
the situation of a developed country (DC) or to that of a less developed country (LDC). 
In the case of a DC, most could be taken directly from data available at IIASA, while 
some had to be deduced from statistical material. In particular, the last column of T, 
referring to skill production, required comparison of the relative numbers of teachers 
and students, identification of the depreciation rate with the rate of retirements, and so 
forth. In the case of an LDC, orders of magnitude of the required numbers were obtained 
from LDC specialists; these estimates are necessarily crude. 

The primary purpose of the numerical calculations was not to obtain "predictions" 
but rather to acquire some feeling for the position and size of the economic niches. 
More explicitly, Section 5 contained the first step toward a division of the parameter 
space into economically meaningful parts and useless regions, according to the character 
of the FP. The second step involves selection of definite base case values within an 
economically meaningful part and estimation of the size of the region around these values, 
such that the qualitative behavior of the base case remains unchanged. For a stable FP we 
call this region a favorable economic niche. Favorable and unfavorable economic niches 
are separated by hypersurfaces; it is interesting to  consider which parameters are primarily 
responsible for crossing such boundaries. In other words, which parameters allow the 
least range of variation? Since stability or instability of the FP (i.e., favorableness or 
unfavorableness of the corresponding economic niche) is described by the eigenvalues 
hi (eq. (26)), this amounts to analyzing which parameters show the strongest influence 
on the h i .  

The eigenvalues are, however, not the only indicators of the economy; the growth 
rate at the FP is also important. Even within a favorable niche, the growth rate may be 
negative, which means that a trajectory will move toward equilibrium, but with shrinking 
E, K,  and L.  As previously mentioned, growth rate n always appears in connection with 
depreciations. The unwanted situation of a negative growth rate could therefore immedi- 
ately be improved by reducing the depreciations, i.e., by producing goods of higher 
quality and greater durability. 

The model was implemented on a desk computer (HP8830A) and on IIASA's 
PDPl 1/70. Implementation allows 

- Alternation between countries (i.e., parameter sets (DC and LDC)) and varia- 
tion of scenario variables 

- Computation of the FP and its eigenvalues 
- Plotting of the feasible region 
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- Numeric integration and plotting of specific system trajectories 
- Adiabatic variations of scenario variables during the numeric integration 

With regard to the last point, the model implementation should be able to simulate 
an "economy in transition" in the sense used by Hafele e t  al. (1976) - for example, an 
economy changing from conventional to nuclear energy production. One must thus 
change some parameters continuously while running the model. We have assumed a transi- 
tion from initial to final values using a logistic curve; this assumption is confirmed by the 
data collected by Marchetti and Nakicenovic (1979). The term adiabatic refers to the 
system's smooth response to parameter changes if the time scale of those changes is long 
compared to that of the system. 

Table 1 shows the parameter values of the base case representing a DC, together 
with the band width of allowed variation of eachparameter (all other parameters remaining 
fixed). Numbers with a single asterisk do not denote the boundary of the niche but 
rather the point of transition to a negative growth rate. Numbers followed by <are still 
within the favorable niche, but we did not pursue the upper limit further. 

The corresponding FP is located at €0 = 10 600 Wyr/smyr, K O  = 16 700 $yr/smyr, 
with a growth rate of no = 3.3 percent and eigenvalues X = -0.047 * 0.3 1i. 

The extent of the favorable niche in some parameter directions is quite wide, while 
in others (particularly aKK and aLL) it is quite narrow. 

Table 2 shows a set of parameter values that might represent the economy of some 
LDC. In this case the FP is not stable and we again indicate the extension of the unfavor- 
able niche in each direction. 

The corresponding FP is located at €0 = 7 500 Wyrlsmyr, K O  = 360 $yr/smyr, with 
a growth rate of no = 2.2 percent and eigenvalues X = +0.58 * 0.66i. 

Obviously, the extent of the niches in each direction changes if the parameters are 
not kept fixed at their base case values. 

We may think of the base cases as the representation of certain scenarios: T describes 
a particular standard of investment goods production, e describes how effectively the 
energy allocated to private consumption is used, the a s  describe the emphasis on CP 
w i t h  the economy, and the aii describe a particular technology. 

In order to study the effect of a scenario change, we introduced scenario variables, 
which enable one to study the economic niches in parameter space without needing to 
vary 18 parameters at the same time; moreover, most independent variations of param- 
eters are unrealistic. Each set of values of the scenario variables, however, is assumed to 
represent at least a consistent model economy. 

H I  accounts for a transition from standard to new (e.g., nuclear or solar) energy 
options. We model the full transition by increasing ~ E E  by a factor of 30  and aKE by a 
factor of 10, i.e., 

Intermediate stages are represented by intermediate values of HI; this is similar for the 
other scenario variables. 

*HI may also be taken as larger than one, which corresponds to still more expensive energy options. 



TABLE 1 Parameter values of the base case (DC). 2? 
6 

Technological matrix o 3 
3 

U E E  = 0.04 yr U E K  = 3.4 Wyr/$  EL = 300 Wyr/smyr** (b z 
(0-0.7) (2- 100 <) (0-22 400) P 

2. 

OLE = 8 X smyr yr/W U L K  = 8 X smyr yr/$ 
(2.5 x l 0 - ~ - 2  x lo-3a - 3 x (4 x 10-~-1.5 x 

Depreciation rates 

Consumption fractions *** 

Cobb-Douglas constants 

*Denotes point of transition to a negative growth rate. 
**Skilled man-year. 

***as are varied simultaneously. 
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Looking at Table 1 ,  we might expect H 1  = 1 to bring the system close to the 
boundary of the base case niche, if not beyond. Our interpretation - always within the 
limits of the model - might then be that the base case economy could hardly afford to 
replace conventional energy options totally by new technology without paying the 
price somewhere else - on the consumption side, for example. H 2 ,  the second scenario 
variable. describes the emphasis on CP. We assume, for the sake of simplicity, that the 
as are changed simultaneously. 

H2 = -1 represents a 20 percent reduction of CP inputs; H2 = + I ,  a 20 percent increase. 
Not surprisingly, calculations show a high sensitivity of the growth rate n on H 2 .  

We also examined the effect of increasingly efficient energy use. This would de- 
crease UEK and e but would also change L Z K K  Classical arguments about substitutability 
would suggest an increase in LZKK (o = +1 in the following equations); however, the highly 
aggregate character of our model makes this argument doubtful. In fact, adherents to the 
"small is beautiful" school of thought have claimed that saving energy according to that 
philosophy could actually result in a decrease in U K K  (o = -1). Thus we have incorporated 
both alternatives in a scenario variable H3 : 

Figures 5 and 6 show the boundary in space of scenario variables H I ,  H 2 ,  and H3 ; this 
boundary separates a favorable from an unfavorable niche. The direction of scenario 

FIGURE 5 Boundaries of the stable niche (DC): "Big is beautiful" (o = +I). 
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FIGURE 6 Boundaries of the stable niche (DC): "Small is beautiful" ( a  = -1). 

variable H2 is perpendicular to the plane of the figure, and the intersections of the 
boundary surface with the planes H z  = 0 ,  0.1, 0.2, and 0.3 (Fig. 5) and H 2  = 0 ,  0.65, 
and 0.8 (Fig. 6) are shown as solid lines. The region of stability always lies to the left 
of the respective lines. The growth rate along the line H 2  = 0.8 in Fig. 6 is negative; 
therefore, the actual boundary lies within the stable region. This is indicated by the 
dotted line, which represents the locus of zero growth. 

Figure 7 shows a typical trajectory for our DC base case. The FP is located at €0 = 
10600 Wyrlsmyr, K O  = 16700 $yr/smyr, with a growth rate of no = 3.3 percent. It will 
take five years to move along the trajectory from one square to the next. 

7 TWO-COUNTRY INTERACTION 

Thus far, the model has been used to describe an economy isolated from the rest 
of the world. Now, to be more realistic, we introduce two important links to other 
economies. First, most economies must import a significant part of their energy sources 
and must pay for it,  with, for example, nonenergy-related capital goods. Second, a rich 
economy may give away part of its AK - thereby reducing its growth rate, but not so 
much as to leave its favorable economic niche - to support a poor economy and thus 
induce its transition into a favorable niche. 

We therefore modify the dynamics of eq. (1 6) in the following way: 

- Reduce AK by a term proportional to E; the factor of proportionality is de- 
noted by g. The numerical value of g is obtained heuristically: 

g (fraction of energy imported) X (conversion factor bbl/Wyr) X (oil price 
$/bbl) X (1 - fraction recycled) = 0.3 X 5 X X 12 X (1 - 0.7) = 5 X 

$/Wyr. 

The last factor is included because petrodollars reinvested do not correspond to 
capital goods extracted from the system. 
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FIGURE 7 Trajectory in e-K space. E ( X  lo4) 

- Extract a fraction rAK from (or, for negative r ,  add a fraction rAK to) the 
total output of nonenergy-related capital goods. This corresponds to foreign 
aid given away (or received). 

In the spirit of the model, the phenomena of oil import and foreign aid are dealt 
with only schematically, by restricting discussion to the transfer of capital goods. r should 
not be confused with the well-known "0.7 percent of GNP" because foreign aid is measured 
on the scale of AK only. 

In mathematical terms, we have to replace AK by (1 - r)AK - gE; this is done 
simply by replacing eq. (14) by 

where 

For technical purposes, r may be incorporated into T by 
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Starting from the two base cases for a DC and an LDC economy, respectively, we 
may consider the resilience against variations of g and r (the base cases themselves cor- 
respond to g = r = 0).  Given the price of energy (in terms of the oil price of  1976 ,12  $/bbl), 
how much foreign aid can the DC economy afford without leaving its favorable economic 
niche, decreasing its growth rate below zero, or both? How much foreign aid must be 
granted to  an LDC economy so that both a transition from its unfavorable t o  a favorable 
economic niche and a positive growth rate are induced? 

Figures 8 and 9 illustrate our findings. In Fig. 8, the solid line divides the stable region 
(on the left) from the unstable region (on the right); the broken lines are loci of constant 

Oil price 

I$/bbll I 

Percentage of foreign aid 

FIGURE 8 Economic aid: niche boundary (DC). 

growth rate. In Fig. 9, the stable region is t o  the right of  the boundary. In both cases, 
foreign aid is measured relative to  AK of the respective country. 

We may then combine the two economies by superimposing the two figures. Care 
must be taken t o  rescale foreign aid t o  one of the two economies. Hence, the ratio 
q = AKLDC/AKDC must be given some value.* The result is displayed in Fig. 10(a) with 

*The units on the abscissae in Figs. 8 and 9 are different; a,  which relates capital goods production in 
the DC to that in the LDC, accounts for this difference. 
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FIGURE 9 Economic aid: niche boundary (LDC). 

q = 0.1 and in Fig. 10(b) with q = 0.2. Fig. 11 (of which Figs. 10a and l o b  are actually 
slices) shows the situation with various values of q. As q is essentially a scale factor, dia- 
grams with different values of q do not differ qualitatively. 

8 OUTLOOK AND CONCLUSION 

Two directions for further study come to mind immediately: 

Introducing an oil country as a full economy rather than merely as a sink for 
investment goods as in Section 7. Thus two-country (DC + oil country) or 
three-country (DC + LDC + oil country) interaction could be investigated. 
The existence of oil price thresholds (lower, upper, or both) for the stability 
of the oil country would be an interesting consideration. 
Relaxing our requirement of homogeneous production functions (neither 
economy nor diseconomy of scale). For this t o  be done meaningfully, E, K, 
and L must be reinterpreted as quantities referring t o  a "typical population" 
(say, 50 million inhabitants) or ,  better, to  a "typical area" (say, 500000  km2;  
just as we introduced skill, we could weigh differently land of different pro- 
ductivity or other factors.* We could then multiply the linear production 
function for the investment sector with a "congestion function" or "agglomer- 
ation function," depending on  the level of economic activity, which would 
be measured by a suitable linear combination of E, K, and L.  

An interesting agglomeration function has the shape shown in Fig. 12. This conges- 
tion function expresses the unfavorable effects of levels that are either too high or too 
low. A system with this function would behave like a single-species ecological system with 

+An FP in E, K,  and L would imply that we predict the same equilibrium energy production for the 
US as for Liechtenstein, as long as they have the same parameters! 
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FIGURE 10 Maximum oil price. 

Percentage of foreign aid 
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FIGURE 11  Maximum oil price variation with r )  

the reproduction curve illustrated in Fig. 13  (Holling 1973), which shows a threshold level 
below which growth is negative and the system tends to  zero and an equilibrium at a 
higher economic level; the trends are indicated by arrows. The behavior of the system 
transverse to  the stable ray, i.e., in the E-x space, remains unaffected; the system thus has 
two FPs in E, K, and L outside of the origin, one of which can generate a separatrix. 

I I b 
Current Economic 
situation level 

FIGURE 12 Congestion function. 
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FIGURE 1 3  Reproduction curve. 

The two-country interaction that we introduced must be considered as a first step. 
To help an LDC simply by pumping investment goods into its economy is certainly not 
sufficient: the transition to a favorable economic niche would be only a temporary one, 
and a cancellation (or perhaps merely a reduction) of foreign aid would result in an 
immediate reversal. The system parameters are only virtually, not intrinsically, changed 
by the exogenous support (as long as it is supplied). It is therefore necessary to introduce 
a coupling between the foreign aid and the parameters that corresponds to an actual 
improvement in the economy's infrastructure. As the economy improves, foreign aid 
may be reduced gradually until the transition from an LDC to a DC is completed. The 
mathematical way to express these mechanisms is unclear. 

In summarizing our results, we must stress both what our approach can do and 
what it cannot do. Any detailed economic prediction - with quantitative results that 
inspire confidence - of course requires a much larger model. While it would be ridiculous 
to claim that an economy can be described accurately by just three state variables, we 
do feel justified in making three observations. 

First, to the extent that the structure of our model (i.e., the choice of the state 
variables and the form and interrelation of the production functions) has something to 
do with an actual economy, we can deduce the existence of a slack-free region within 
the state space. As it can be said definitely that unpleasant situations will arise at the 
boundary (e.g., one or several outputs will tend to zero), proximity to the boundary 
of the slack-free region should be avoided. 

Similarly, we have determined boundaries in parameter space (or, equivalently, 
in a space of scenario variables) across which the model's behavior changes drastically, 
showing instability, negative growth, and so forth. Because our knowledge is incom- 
plete. parameter values close to those boundaries should be avoided as well (see Section 3). 

Second, the model allows us to determine an FP (point of equal growth of E. K, 
and L)  that shows one of the previously mentioned possible qualitative behaviors. These 
possible behaviors depend on the model economy's infrastructure, expressed in terms of 
a set of certain characteristic system parameters. The parameter space appears to be 
subdivided into cells, which we have called economic niches. By definition, all points 
within one niche correspond to economies with the same topological behavior. We have 
called niches with a stable associated FP favorable niches; their significance lies in the 
existence of a central region around the FP (within the slack-free region, of course) 
from which the slack-free region cannot be escaped. On the contrary, an economy start- 
ing outside the central region inevitably approaches the boundary of the slack-free region 
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within a finite time. If such a trajectory were well off the boundary, a person "living" on 
it might not initially recognize a problem with the economy but,even with positive growth 
rates of E, K ,  and L ,  would observe that at least one of the outputs becomes zero. The 
initial conditions, i.e., the "right" amount of the available stocks, are essential for a fa- 
vorable economic evolution. 

Third, the two-country interactions studied in Section 7 model the structure to be 
expected for foreign aid given by an abstract DC to an abstract LDC, both of which are 
subject to the same oil price. An oil price sufficiently high inhibits any reasonable level 
of foreign aid; either the DC gives away too much or the LDC receives too little. It is a 
pleasant surprise that the limiting oil price comes out at the right order of magnitude - 
neither too close to the present level nor too high. A limiting price of, say, 10000 $/bbl 
would make this feature irrelevant. 

These qualitative results suggest interesting questions that we hope will be addressed 
through a full-size economic model. 
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APPENDIX A Some Concepts of Dynamical Systems 

We assume a deterministic system described by differential equations: knowing 
the state of the system at a particular time, one can calculate the time derivatives of all 
state variables. A "geometric" point of view is inherent in this approach: we introduce 
state space, each of whose points fully specifies a state of the system at one instant in 
time. The state space is spanned by the state variables. On the state space, we have a 
time-evolution law, possibly dependent on several parameters, ranging over parameter 
space. Under it, the states of the system move along trajectories. In our approach, we 
emphasize not so much a single trajectory as the structure of all trajectories. A fixed 
point (or equilibrium) is a state of the system that does not change in time; it may be 
stable or unstable. 

Under general assumptions, the state space can be divided into basins, each con- 
sisting of states having a common future long-term behavior. Each basin contains one 
attractor representing this common behavior; it is the region in state space toward which 
all trajectories originating in the basin tend. The simplest attractor is a stable fixed point 
(or stable equilibrium); if the attractor of a basin is a stable fixed point and if the system 
starts in this basin, all state variables of the system will tend toward constant values. 
There are many more complicated types of attractors; the list is currently incomplete. 

Basins are separated from each other by basin boundaries or separatrices. States on 
or very close to a basin boundary have uncertain futures because small modifications of 
the state variables may cause them to belong to different basins and thus to exhibit com- 
pletely different long-term behavior. 

The phase portrait is a full (at least qualitatively) description of the basins and 
attractors of a system. In general, it depends on the parameters of the system; qualitative 
changes of the phase portrait caused by parameters crossing certain boundaries are 
called bifurcations. These boundaries play a role similar to that of separatrices in state 
space. 

The mathematical theory behind these concepts can be found in Arnold (1973), 
Griimm (1979), and Hirsch and Smale (1 974). 

APPENDIX B Dynamics Outside the Slack-Free Region 

In looking at possible dynamics outside the slack-free region of the system defined 
in Section 4 ,  we may rewrite eq. (14) as follows: 
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We have chosen this form to avoid the detailed structure of XI, which is a known func- 
tion of X. As discussed, if T - lx I  B 0, i.e., if some ( T - ~ x I ) ~  < 0, eq. (Bl) does not make 
economic sense. We denote the value of AX obtained from eq. (Bl) by AXvi, (the 
"virtual" gross production). To find a realistic AX, we turn again to eq. (6), 

with similar equations for AK and AL. The assumption of "allocations without slacks," 
i.e., the equality of all terms in eq. (B2) and its AK and AL counterparts, leads to eq. 
(Bl); thus this assumption can be fulfilled if and only if the system lies within the slack- 
free region. In this case, it leads to the unique dynamics contained in eq. (Bl). Outside 
the slack-free region, we have to introduce slacks, taking into account that the terms in 
eq. (B2) and its counterparts will be equal. Summing the slacks occurring in the three 
sectors, we obtain 

with XS representing the stock of energy-related goods, nonenergy-related capital goods, 
and skilled labor not allocated to production and Xw representing the stock actually 
"working" in the investment goods sectors. 

As it stands, eq. (B3) of course does not define a unique evolution. We complement 
it by two requirements. 

The first is the requirement of "Pareto optimality" of our allocation: no other 
allocation of EL, KL,  and LL to the three sectors leads to an increase in any of the 
quantities AE, AK, or AL without decreasing at least one of them. This is ail obvious 
extension of the "allocation without slacks" possible within the slack-free region; there, 
this allocation is the unique Pareto-optimal one. Outside the slack-free region, there are 
generally several Pareto-optimal allocations. 

The second is the requirement that uneconomical processes be shut off; if AEvi, 
< 0, the realistic AE is set to zero. The allocation without slacks that, if possible, would 
give the virtual AE would require the AE production to run backwards; as this is not 
possible, we handle the situation by shutting off AE production completely. This require- 
ment follows from the first if we have only two production functions; one can argue for 
it using familiar arguments from linear programming. 

Both requirements might still fail to define a unique evolution of our system by 
giving unique expressions for .k, K ,  and i. We call any evolution of the system outside 
the slack-free region fulfilling eq. (B3) and these two requirements a rational evolution. 

To illustrate the general situation, we assume that the system is just crossing from 
inside the boundary of the slack-free region corresponding to AE = L? + dEE = 0. We 
write for the "real" evolution outside the slack-free region 
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together with 

and the Pareto optimality of the allocation. At least one of the slacks must obviously 
be zero; otherwise, we could increase AK, say, without decreasing AL.* If one slack is 
zero, the other two are linearly related; taking the inequalities of eq. (B5) into account, 
we see that for all rational allocations XS = (ES,KS,LS) must lie on one of three straight 
segments. As eq. (B4) is an affine relation between (K',i) and Xs, all rational allocations 
lead to  the following net increases: 

S denotes the set in (J?,i) space that is the image of the previously mentioned 
straight segments. If S contains a "greatest point," i.e., if both and i are larger than 
at any other point of S, there is only one rational allocation, and the time derivatives 
f, d ,  and i are uniquely determined; if not, the system will have a residual freedom. 
The two situations in ( d , i )  space (S is the boundary of the triangle) are shown together 
with the virtual time derivatives in Fig. B1. Fig. Bl(a) shows a unique evolution; in 
Fig. Bl(b), any point on the upper right-hand segment corresponds to  a rational evolu- 
tion; nevertheless, all rational trajectories will lie inside a certain "fan." 

This ambiguity is not serious: as we come close to the slack-free region, S becomes 
small and contracts to ( d , i ) v i r  as we reach the boundary. If the virtual evolution is 
stable, as analyzed in Section 5, its trajectories le?vFg the.slack-free region will come 
back. As indicated in Fig. B1, kvir < E,J?,,~, > K,Lvir > L for all rational allocations 
(if the trajectory crosses the AE = 0 boundary). Outside the slack-free region a "rational" 

FIGURE B1 Rational evolutions. 

*Equation (B4) of course !OMS on the boundary of the slack-free region, too, with ES = KS = LS = 0. 
Furthermore, the "reai" K and 2 are the same as the virtual fvi, and .fvir defined by eq. (Bl). Thus 
the evolutions inside and outside the slack-free region fit together continuously. 
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trajectory will of course not coincide with the "virtual" trajectory but, owing to these 
inequalities, it will lie closer to the slack-free region than will the "virtual" trajectory. 
Thus any rational evolution leads the system back to the slack-free region, just as the 
"virtual" trajectory does. 

APPENDIX C A Criterion for the Number of Fixed Points 

The criterion explained here distinguishes between the two alternatives discussed 
in Section 5. We write eq. (18') in the form 

det [ l - a - ( d + n ) T ]  =O 

which yields (x = d + n) 

Here A = det (1 -a), D = -det T, and B and Care defined correspondingly. Substituting 

into the normal form of an equation of third degree, 

brings us back to eq. (C3). Theory now tells us that there will be one real solution of 
eq. (22) if 

and three real solutions if 

Substitutions of eq. (C3) into eq. (CS) or eq. (C6) produce a hypersurface in parameter 
space that separates the two alternatives. Unfortunately, this relation is too clumsy to be 
written down explicitly. 

Equations (CS) and (C6) are only a criterion for the simplified case (equal ds and 
Xp = 0); the hypersurface mentioned will be continuously deformed during the transition 
to the general case. 
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