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Guaranteed positional guidance problem at the (pre-defined)
time

x(t) = A(t)x(t) + B(t)u(t) + c(t), to <t <9 (1)
Open-loop control (program) u(:) is
measurable.
u(t) € P C R, Pis a convex compact set K/©

2(-lb, u(y(-),) - N

x(to) = x0 € Xo CR", Xy is a finite set ) OO \"
x(¥) € M CR", M is a closed and convex O !
set S /
Xo —
Observed signal y(t) = Q(t)x(t), Q(:) € (M]*

RI*" is left piecewise continuous

Problem statement

Based on the given arbitrary € > 0 choose a closed-loop control strategy with
memory, whatever the system'’s initial state x; from the set Xy, the system’s
motion x(-) corresponding to the chosen closed-loop strategy and starting at the time
to from the state xo reaches the state x(1}) belonging to the e-neighbourhood of the
target set M at the time 1.
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Homogeneous signals

Homogeneous system, corresponding to (1)

For each xp € Xj its solution is given by the Cauchy formula:
x(t) = F(t, to)xo; F(t,s) (t,s € [to,¥]) is the fundamental matrix.
Homogeneous signal, corresponding to an admissible initial state xp € Xp:
8x(t) = Q(t)F(t, to)xo (t € [to, V], x0 € Xo).

Let G = {gx,(-)|x0 € Xo} be the set of all homogeneous signals and let Xp(7|g(-)) be
the set of all admissible initial states xg € Xy, corresponding to the homogeneous
signal g(-) € G till time point T € [to, V]:

Xo(lg(+)) = {x0 € Xo : g()lto.,r] = & (i1}
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Package guidance problem

Program package is an open-loop
controls family (uy,(-))xex,, Satisfying
non-anticipatory condition: for any
homogeneous signal g(-), any time 7 €
(to,¥] and any admissible initial states
X0, %9 € Xo(7|g(+)) the equality uy(t) =
Uy (t) holds for almost all t € [to, 7].

x'(1) = x(t,xq,u,,)

=n

Y1) =y"(t)
(t<71)

x"'(1) = x(t,xq,u,)

10 (1) = 11 (1)
Ct=1)"’

Program package (ux,(+))xcx, is guiding, if for all xo € Xp holds x(¥|xg, ux,(+)) € M.
Package guidance problem is solvable, if a guiding program package exists.

Theorem 1 (Osipov, Kryazhimskiy, 2006)

The problem of positional guidance is solvable if and only if the problem of package

guidance is solvable.
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Homogeneous signals splitting

For an arbitrary homogeneous signal g(-) let

ORISR R

0 t

be the set of initially compatible homogeneous signals
and let

71(g(-)) = max {T € [to,¥]:  max max |g(t) g(t)| = O}

&(-)€Go(e(")) telto,

be its first splitting moment.
Foreach i =1,2,... let

Gi(g(") = {é’(-) € Gi-(g(1) : fim (&(7i(g()) + <) — &(mi(g() +)) = 0}

be the set of all homogeneous signals from G;_1(g(-)) equal to g(-) in the right-sided
neighbourhood of the time-point 7i(g(+)) and let

ria(8() = max{r € (r(g("), 9] I8 - 5(0)] = o}

be the (i + 1)-th splitting moment of the homogeneous S|gnal g()

ma
()EG(g( ))tE[T,
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Initial states set clustering

Let
T(g(1)) ={m(e()) i =1, kg(}

be the set of all splitting moments of the homogeneous signal g(-) and let

T= U 7))
()e6

be the set of all splitting moments of all homogeneous signals. T is finite and
| T| < |Xol|. Let us represent this set as T = {m,..., 7« }, where
thh<m<...<tgk="2>.

For every k =1,..., K let the set

Xo(7k) = {Xo(7xlg(-)) : &() € G}

be the cluster position at the time-point 7, and let each its element Xp;(7),
Jj=1,...,J(7«) be a cluster of initial states at this time-point; J(7«) is the number
of clusters in the cluster position Xp(7%), k=1,..., K.
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Extended space

Let R" (h=1,2,...) be a finite-dimensional Euclidean space of all families (r,)x,ex,
from R" with a scalar product (-,-)z» defined as

<T/a 7J/>’R” = <(r)/<0)X0€X07 (r>/<;)X0€X0>R” = Z <I‘)/<0, r)/<;>Rh ((r>/<o)X0€X07 (r)/(;)XOGXO € Rh)
x0€Xo

For each non-empty set £ C R (h=1,2,...) let us define its lower
p~(-|€) : R" — R and upper support functions p*(-|€) : R" — R:

pi((lxo)X0€X0|5) = inf £<(/><0)X06X0’ (eXO)XoEX0>Rh ((/Xo)XUEXO € Rh)v

(exo )xo exp €

p+((/Xo)X0€X0|g) = sup <(/X0)X06X07 (eXO)XOGXo>R” ((/XU)XOGXO € Rh)

(eXQ )><0 €Xy €&
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Extended open-loop control control

Let P C R™ be the set of all families (uy,)x,ex, of vectors from P.

Extended open-loop control control is a measurable function

t = (U (t))s0ex, : [to, 9] — P.

Let us identify arbitrary programs family (u, (-))xex, and an extended open-loop
control t — (Uy, (t))xex, -

For each k =1,..., K let P be an extended admissible control set on (74_1, 7%]
in case k > 1 and on [to, 1] in case k =1 as a set of all vector families

(U )xoexo € P such that, for each cluster Xyj(7x) € Xo(7%),j =1,...,J(7k) and any
x4, Xy € Xoj(7«) holds Uyy = Uy

Extended open-loop control control (u,, (-))xex, is admissible, if for each
k=1,...,K holds (uy(t))xex, € P« for almost all t € (14_1,7%] in case k > 1 and
for almost all t € [tg, 71] in case k = 1;

Lemma 2 (Kryazhimskiy (2013))

Extended open-loop control control (u, (-))xex, is a control package if and only if it
is admissible.
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Homogeneous signals, cluster positions and extended
open-loop control controls

9(t) g"(t - .\'?”/< | =
P TOF, 2O 05
BN © »Qw@ DR SO0
I I 1 |
T QA Do =00

to 7"1 ™73 7 1 X(Tl) X (72) X(13)

Homogeneous signals splitting Initial states set clustering
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dl | | |
I | | |
I | | |
I uy ‘J(f‘, | uxgh () |
to G I
| i
ux, (t)
uy; (8) ! o | !
| 1 1 I
| 1 1 1

Extended open-loop control control
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Extended problem of program guidance

Extended system (in the space R"):
X (1) = A1) (8) + B(t) (1) + ¢(t)
Xx(t0) = Xo

(x0 € Xo)

Extended target set M is the set of all families (xy,)xex, € R" such, that x,, € M
for all Xg € Xo-

An admissible extended open-loop control (uy,(-))xex, is guiding the extended
system, if (x(F|xo, Ux, (1)) xex, € M.

The extended problem of open-loop guidance is solvable, if there exists an
admissible extended open-loop control which is guiding the extended system.

Attainability set of the extended system at the time ¥:
A = {(x(Ix0, txy(-)))xoexo (U, (-))xoexo € Uext }, Where Uey is the set of all
admissible extended open-loop control controls.

11 / 31



Solvability criterion

Theorem 3 (Kryazhimskiy, Strelkovskii (2014))

1) The package guidance problem is solvable if and only if the extended problem of
open-loop guidance is solvable. 2) An admissible extended open-loop control is a
guiding program package if and only if it is guiding extended system.

1
P P
<> P! {<«—>{ control guidance
jproblem problem

|Guaranteed Package guid E ded

Let us denote D(t) = BT (t)FT(9,t) (t € [to,V]) and set the function p(-,-) : R" x X ~— R:
9

p(/,XO) = </7 F(’L97 fo)X0>Rn + </,/F(’I97 t)C(t)dt> (/ eR", xg € Xo).
to RN
Let us set

'Y((IXO)XOGXQ) =p ((Ixo)xoexolA) —p" ((IXO)XOEXO‘M) =

DI ED SVACIED Dl DS "( > D<r>1X0|”>dt'
(k)

K
X0 E€Xo X0 €Xo k=17 Xoj(Tk)EXo X0 €Xoj (k)
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Solvability criterion

Let £ be a compact set in R", containing an
image of the unit sphere 8" — for some positive
rn and r > r; for each [ € S" there is r €
[, r2], for which r € L.

Theorem 4 (Kryazhimskiy, Strelkovskii (2014))

Each of the three problems — (i) the extended
open-loop control guidance problem, (ii) the
package guidance problem and (iii) the
guaranteed positional guidance problem — is
solvable if and only if

() ELV((IXO)XOGXO) <o (2)
X0 )x0 €X0

<

13 / 31



Construction of the guiding program package

Assuming that the solvability criterion (2) is satisfied, let us introduce the function
A(+,+) : R" x [0,1] — R:

9

Wlbooexs) = 30 <IXU,F<ﬁ,to)xa>Rn+</xO, / F(ﬂ,t)c(t)dt> — S (e IM) -
x0 EXo to RP x0€Xp
Tk
_ Z/ 3 —( > D(t)lx0|aP>dt. (3)
k= 1 Xoj(Tk)EXo(7k) X0 €Xoj(Tk)

Program package (1 (-))x,ex, is zero-valued, if uf (t) = 0 for almost all t € [to, 9], x0 € Xo.

Lemma 5 (Kryazhimskiy (2014))

If the solvability criterion (2) holds and l
zero-valued program package is not guiding the v
extended system, then exists a, € (0, 1] such, ’
that

max  §((ho)xpexpsas) =0.  (4) 40)

(Ixo )Xg €Xp €L
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Construction of the guiding program package

For each program package (uy,(-))xex,. arbitrary cluster € X(7),
j=1,...,J(7),k=1,...,K and arbitrary t € [Tk_1,7«) let us denote u (t) program

values u,(t), which are equal for all xo €
Let (I, )xoex, be the maximizer of the left handside of (4). Cluster

> D(t)hy #0, t € [ri1, 7).

X0 €

is regular, if

Otherwise the cluster is singular.

Theorem 6 (Kryazhimskiy (2014))

Let P be a strcitly convex compact set, containing the zero vector; condition (4) holds and

the program package (ux,(-))xex, satisfies the condition
ug (t) €a.P  (x0 € Xo, t € [to,V]). Let the clusters € Xo(m), k=1,...,K,
Jj=1,...,J(7«) be regular, and for each of them the following equality holds

<D(t) Z |:07 u* (t)> =p (D(t) Z |:0 a*P> (t € [Tk_l,Tk)). (5)

X0 € R X0 €

Then the program package (ux,())xex, is guiding.
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Computational algorithm

Algorithm for calculating elements of the guiding program package based on the
theorem 6 and the method of succesing approximations was proposed in [6].

The algorithm is applicable only if there now singular clusters, i. e. that for the
problem (8) for any direction [/ € R™, i =0,... corresponding to the i-th step of
the algorithm and for [*, maximizing (4), holds that there exist unique v/(-),
i=1,...,nv*() such, that

pmOV(), L) = (L Vi), i = 1, ..om p~(V(t), (%) = ([*,v¥(t)), tel[td]. (6)
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Approximation of the control set with a smooth convex

compact set

Let us get back to the extended control problem and consider it in the Euclidean
space RV instead of the extended space R", where N = | Xp|, |Xo| is the number on
elements in Xj. Let us denote the admissible extended control, i. e. the family

U, (")xoex, With 4(+), the corresponding motion of the extended system

(x(-|x05 txy (*)))xoex, With X(+), and the vector (xp)x,cx, With X9. So we have

%(8) = A(0)*(1) + B(£)a(t) + &(t),  K(to) = %o, o
X)) e M, a(t) € P(t).
Let us substitute the variables v(t) = B(t)d(t), so that
v(t) € V(t) = {v(t) = B(t)a(t) : a(t) € P(t)}. Then the problem (7) will take the
form
’ $(6) = ADR(E) + V(1) + &), £(t0) = 5o, ©
R(W) e M, v(t)eV(t)
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Smoothing of the control set |

Let us introduce the set V.(t) such that for any t € [ty, 9] holds V(t) C V.(t) and
h(V:(t),V(t)) < &, where h(A, B) is the Hausdorf distance between the sets A u B.
Let us consider the augmented problem

A(t)R(t) + v(t) +
M, v(t) € Vo(t).

Let V.(t), € > 0 be a smooth convex compact set and (X:(-), v-(-)) is a solution of
the problem (9). Then for any control v(-) : v(t) € V(t), t € [0,0], such that
|lve(t) — v(t)|| < &, the corresponding motion x(-) value of the system (8) at the
time 6 differs from X.(6) by not more than O(e).

6(t)a )?(tO) = Xo, (9)

If we use instead of the original control set V(-) which could be non-strictly convex
and have an empty interior which leads to singular clusters in the original package
guidance problem (8), a smooth convex compact set V.(-), € > 0, then in a small
vicinity of the augmented problem (9) there is always a trajectory of the original
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Smoothing of the control set Il

problem (8), whose end is close to the end of the trajectory of the solution of the
augmented problem (9), and for constructing a solution of the augmented

problem (9) it is possible to use the algorithm [6], which converges to the exact
solution since the are no singular clusters.

So for constructing an approximate solution of the original problem (8), we need to
consider the augmented problem (9) with a small ¢ > 0 and solve it approximately
with the algorithm [6]. This approach has two obstacles:

1) The trajectory of the exact solution of the augmented problem would not always
guide on the target set

2) The iterative process leads to a new approximate solution on each step which
guides to a (smaller after each step) vicinity of the target set, i .e. there is no exact
guidance onto the target set.

To solve these problems we can guide the object in the augmented problem (9) inside
the target set to satisfy the estimate of the theorem 7 and inaccuracy of the iterative
process of the algorithm [6]. Then any trajectory from the e-vicinity (with regard to
the control) of the obtained approximate solution of the augmented problem (9) will
guide precisely onto the target set in the original problem (8).
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Target set compression

Let us fixa d > 0 and demote /\;/5 as an arbitrary convex closed set satisfying the condition
Ms + S5(0) C M (here S5(0) is a sphere with the radius § in the space R™N with its center in the
coordinate center). Let us consider the following guidance problem:
(1) = A()R(t) + v(t) + &(1), (1) = o,
(1) = A (10)
X(9) € Ms, v(t) € Ve(t).

Let us assume that int M # & and the problem (8) has a solution with the trajectory end guiding
inside the set M. Then exist such & > 0 and a set Ms : Ms + S5(0) C M, that the following
statements hold:
@ For any € > 0 the problem (10) is solvable.
@ There exists such a € > 0, that for any solution (Xz5(+), ves(-)) of the problem (10) any control
v(+) such, that v(t) € V(t) and ||v(t) — ves(t)|| < €, guides the motion of the system (8) to
the target set M.

Corollary 9

Let (%5(-), v4(-)) be an approximate solution of the problem (10), calculated using the

algorithm [6], and A > 0 is guiding inaccuracy onto the target set M, i. e. min X5 (9) — || =
e Mg

Then X55(9) € M;s + Sa(0) and for satisfying the statement 2 of the theorem 8 for the approximate
solution (%5(-), v4(:)), is necessary that for e, §, A holds the condition eC < § + A.
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Concrete examples

The proposed theorems do not suggest concrete ways of constructing the sets V. (-) n I\?I(;. For
applications it is important to have constructive formulas for smoothing the set M and for
approximation of the control set V(-) with a smooth convex compact set.

The following methods for constructing the set Ms could be used: 1) based on the set compression
relative to the compression center (see [7]) and 2) based on the geometrical difference of the sets
(see definition in [9]) of the set M;s and the sphere S5(0). For constructing a smooth convex
compact set Ve (-) the following methods could be used ([10], [11]). For the sets motivated by
applications there are suggested convenient formulas in [10], [11], [12]

Let us consider a typical example there the control set is a segment symmetrical with respect to the
coordinate center and an algebraic sum of two segments. Let the set

U=h+...+1I, i=[-b,bl, j=1,...,L, (11)
be an algebraic sum of the segments in the space R” (b; € R", j =1,...,L). Then the upper
support function of the smoothed set (with a parameter p > 0) is

+ - 2 2 (L)
P )= 32 4092 IR = S | (12)
=1 J

Let the set Uy be of the form (11), and the set U, 3defined by the support function (12). Then, for
any p > 0 the inclusion Uy C Uy, holds and for any given € > 0 it is possible to choose . > 0, such
that h(Up, U,) <e.
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Model example |

Let us consider a dynamical controlled system on the time segment [0, 2]:

{X'1 = x2, x1(0) = xo1

X2 = u, x2(0) = xp2.

Xo = { <_g/5>7<765> }; MZ{(X17X2)T€R21X12+X22 Sl}

(0,0), te]l0,1/2],

u(tye P={u:|ul <1}, t€]0,2]; Q(t) = { (1.0), te(1/2,2]

The package guidance problem is solvable and the cluster positions are Xy (1/2) = {Xp} and

X0(2) = {{x{}, {x{'}}- To calculate the guiding program package let us try to apply the

algorithm [6]. On the zero step let us estimate the motion value of the extended system under the
zero-valued extended control, so we get the vector d = (—7/507/50)T. It is obvious that d ¢ M,
where M = M x M. Let us find the closest to d point of the set M: z=(—1010)T. Let us
calculate the zeroth approximation of the support vector:

T
po_ d=z [ V2 V2,
Tld -z 2 2 ’
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Model example |l

Since the first two elements of the vector *(%) correspond to the initial state x{ and the next two
elements to the initial state x/, for the cluster Xo € Xy (1/2) the support vector in the right

hand-side of the (5) is

(2-¢ 1)( —(\)Tﬁ >+(2t 1 )( ? >50,te[0,1/2),

i. e. the cluster Xj is singular on the segment [0,1/2), and the algorithm is not applicable.
Let us write the extended system in the space R* in the form (7), where

Xxél(t) 0
~ Xx/2(t) uys (t)
X(t) = 0 s o(t) = 0
O=1 e |4 0
Xx6’2(t) uxé’(t)
So we have

).(Xél(t) = XX62(t)7
XxéZ(t) = uxé(t)v
).(X(;'l(t) :Xxé'Z(t)u

kxé’Z(t) = uxé'(t)v

>
Il
cocoo

[=NeN e}
[N elNele)
= O OO
[ve )
Il
[=NeN SN}
= O OO

(13)
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Model example Il

The extended control resource takes the form

where

Py
P

Let us substitute variables

v(t) = Bi(t)

where

Vi

Vo

5o P t€0,1/2),
P(t)_{Pg, te[1/2,2],

{(o)oexs € 1,1 x [-1,1] g = ug },
= {(ux)xex, € [-1,1] x [-1,1]}.

Vx(’)l(t)
_ Vx62(t) Y _ Vi, te€e [0, ]./2)7
- VX(;'1Ef; € vit) = BP(t) = {Vg, te1/2,2],
Vx6'2 t

{V € R4 : Vxél = Vx(’)/l = 07 Vx62 = Vx6/2 € [7171]}7

4. — —
{V eR": Vxél - vx(;’l =0, Vx627 Vx6’2 € [_171]}'
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Model example IV

The system (13) takes the form

Xg1(8) = x2(8) +viga (1), x¢1(0) = X015
X2(8) = via (1), X2(0) = X2
X1 (t) = xr5(8) + v (1), x011(0) = xq1,
Xr2(£) = vigra(2), ,42(0) = xg5-

(14)

For smoothing the set V(t) let us apply the formula (12), and for t € [0,1/2] let it be L1 =1 and
by = (0101)T while for t € [1/2,2] let it be Ly =2 and by = (01 00)T, b, = (000 1)T. For

illustrative reasons let us take p = 0.01.

Let us apply the algorithm [6] to the system (14) with a smoothed control set defined by the support
function (12) with the mentioned parameters. After 14 iterations of the algorithm the guidance

inaccuracy (i .e., the distance from the motion end to the target set) is A ~ 0.001. We will have the
trajectories (xig(),x)’%,()) and the corresponding controls (v)f:;(~), v¥,(-)). Using the theorem 7 let us

find in the p-vicinity of the obtained controls original system (14) controls, namely, let us use these

controls:
‘_/xél(t) = Vxé'l(t) =0, te [072]7
‘7x62(t) = Vx(;'Z(t) = V)tgz(t)v te [07 1/2]7
gale) = V(o) te/2,2,
Tralt) = vl (1), te1/2,2].

(15)
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Model example V

It is possible to choose different controls (Vx(;( v u( )) from the p-vicinity of the controls

(v)’f,(-), V)%'()) for some of them a precise gmdance onto the target set is possible, for some of them
not. Let us take such controls (\7)(6(-)7 Vxé/(‘)) that there is no precise guidance onto the target set.
On the Fig. 1 the trajectories (XQ(),X)’%,()) are shown, corresponding to the calculated by the
algorithm controls (v)tg(-), v;:,)/(-)), and the trajectories ()_(Xé('),)_(xél(')), corresponding to the

controls (15), in the state space xi, x2. It is clear that the obtained trajectories (>'<Xé(~),>'<xé/(~)) are

not guiding precisely onto the target set and the guidance inaccuracy does not exceed
VLG 4/l G + A, where

1/2
G = /IIF2 t)lrdt <16, C = /||F2 t)||r dt < 3.5
1/2

according to the theorems 7 and 8.
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Model example VI

) M
N Ry A

-0.5 0 0.5

-+ 2" (t)

. To

Fig 1. Guidance onto the set M (projection
on R?)

T2
) M
. 057 T.Lg(f)
ﬁ |

Fig 2. Guidance onto the set I\7I,;, 6=0.1
(projection on R?)

For precise guidance of the trajectories of the original system (14), let us use the results of the
theorem 8. Let is apply the algorithm [6] to the extended guidance problem for the system (14) with
a coefficient for smoothing the control set of x = 0. 0001 onto the compressed target set

Ms = Ms x Ms, where Ms = {(xo,x0 )T (X0)2

x§)? < (1—6)2}, 6 =0.1. After 17 iterations of
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Model example VII

the algorithm the computation inaccuracy is A ~ 0.001. We have obtained the trajectories
(X:L,é(),x)‘:,‘,s()) and the corresponding controls (Vf:,é(-), vi‘,‘,g()) So, the trajectories corresponding to
0 0 0 0
any control from the p-vicinity
(vf,‘s(~), vf,‘,s(')), are guiding precise onto the target set. As an example the following controls were
0 0

chosen: B _
Vxél(t) = Vxé'l(t) =0, te [072]’
To(t) = Grp(£) = vEO (1), te[0,1/2],
0 0 Xy
~ no (16)
vxéz(t) = vX62(t), te(1/2,2],
Gro(t) = vE0 (1), te[1/2,2].
0 X0

Trajectories (>"<X6(~),>"<X6/(~)), corresponding to the controls (16) are shown on the Fig. 2. It is clear

that they are guiding inside the target set M.
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