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Guaranteed positional guidance problem at the (pre-defined)
time

ẋ(t) = A(t)x(t) + B(t)u(t) + c(t), t0 ≤ t ≤ ϑ (1)
Open-loop control (program) u(·) is
measurable.
u(t) ∈ P ⊂ Rr , P is a convex compact set
x(t0) = x0 ∈ X0 ⊂ Rn, X0 is a finite set
x(ϑ) ∈ M ⊂ Rn, M is a closed and convex
set

Observed signal y(t) = Q(t)x(t), Q(·) ∈
Rq×n is left piecewise continuous

Problem statement
Based on the given arbitrary ε > 0 choose a closed-loop control strategy with
memory, whatever the system’s initial state x0 from the set X0, the system’s
motion x(·) corresponding to the chosen closed-loop strategy and starting at the time
t0 from the state x0 reaches the state x(ϑ) belonging to the ε-neighbourhood of the
target set M at the time ϑ.
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Homogeneous signals

Homogeneous system, corresponding to (1)

ẋ(t) = A(t)x(t)

For each x0 ∈ X0 its solution is given by the Cauchy formula:

x(t) = F (t, t0)x0; F (t, s) (t, s ∈ [t0, ϑ]) is the fundamental matrix.

Homogeneous signal, corresponding to an admissible initial state x0 ∈ X0:

gx0(t) = Q(t)F (t, t0)x0 (t ∈ [t0, ϑ], x0 ∈ X0).

Let G = {gx0(·)|x0 ∈ X0} be the set of all homogeneous signals and let X0(τ |g(·)) be
the set of all admissible initial states x0 ∈ X0, corresponding to the homogeneous
signal g(·) ∈ G till time point τ ∈ [t0, ϑ]:

X0(τ |g(·)) = {x0 ∈ X0 : g(·)|[t0,τ ] = gx0(·)|[t0,τ ]}.
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Package guidance problem

Program package is an open-loop
controls family (ux0(·))x0∈X0 , satisfying
non-anticipatory condition: for any
homogeneous signal g(·), any time τ ∈
(t0, ϑ] and any admissible initial states
x ′0, x

′′
0 ∈ X0(τ |g(·)) the equality ux′0 (t) =

ux′′0 (t) holds for almost all t ∈ [t0, τ ].

Program package (ux0(·))x0∈X0 is guiding, if for all x0 ∈ X0 holds x(ϑ|x0, ux0(·)) ∈ M.
Package guidance problem is solvable, if a guiding program package exists.

Theorem 1 (Osipov, Kryazhimskiy, 2006)

The problem of positional guidance is solvable if and only if the problem of package
guidance is solvable.
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Homogeneous signals splitting
For an arbitrary homogeneous signal g(·) let

G0(g(·)) =
{
g̃(·) ∈ G : lim

ζ→+0
(g̃(t0 + ζ)− g(t0 + ζ)) = 0

}
be the set of initially compatible homogeneous signals
and let

τ1(g(·)) = max

{
τ ∈ [t0, ϑ] : max

g̃(·)∈G0(g(·))
max

t∈[t0,τ ]
|g̃(t)− g(t)| = 0

}
be its first splitting moment.

For each i = 1, 2, . . . let

Gi (g(·)) =
{
g̃(·) ∈ Gi−1(g(·)) : lim

ζ→+0
(g̃(τi (g(·)) + ζ)− g(τi (g(·)) + ζ)) = 0

}
be the set of all homogeneous signals from Gi−1(g(·)) equal to g(·) in the right-sided
neighbourhood of the time-point τi (g(·)) and let

τi+1(g(·)) = max

{
τ ∈ (τi (g(·)), ϑ] : max

g̃(·)∈Gi (g(·))
max

t∈[τi (g(·)),τ ]
|g̃(t)− g(t)| = 0

}
be the (i + 1)-th splitting moment of the homogeneous signal g(·).
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Initial states set clustering

Let
T (g(·)) = {τj(g(·)) : j = 1, . . . , kg(·)}

be the set of all splitting moments of the homogeneous signal g(·) and let

T =
⋃

g(·)∈G

T (g(·))

be the set of all splitting moments of all homogeneous signals. T is finite and
|T | ≤ |X0|. Let us represent this set as T = {τ1, . . . , τK}, where
t0 < τ1 < . . . < τK = ϑ.
For every k = 1, . . . ,K let the set

X0(τk) = {X0(τk |g(·)) : g(·) ∈ G}

be the cluster position at the time-point τk , and let each its element X0j(τk),
j = 1, . . . , J(τk) be a cluster of initial states at this time-point; J(τk) is the number
of clusters in the cluster position X0(τk), k = 1, . . . ,K .
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Extended space

Let Rh (h = 1, 2, . . .) be a finite-dimensional Euclidean space of all families (rx0)x0∈X0

from Rh with a scalar product 〈·, ·〉Rh defined as

〈r ′, r ′′〉Rh = 〈(r ′x0
)x0∈X0 , (r

′′
x0
)x0∈X0〉Rh =

∑
x0∈X0

〈r ′x0
, r ′′x0
〉Rh ((r ′x0

)x0∈X0 , (r
′′
x0
)x0∈X0 ∈ Rh).

For each non-empty set E ⊂ Rh (h = 1, 2, . . .) let us define its lower
ρ−(·|E) : Rh 7→ R and upper support functions ρ+(·|E) : Rh 7→ R:

ρ−((lx0)x0∈X0 |E) = inf
(ex0

)x0∈X0
∈E
〈(lx0)x0∈X0 , (ex0)x0∈X0〉Rh ((lx0)x0∈X0 ∈ Rh),

ρ+((lx0)x0∈X0 |E) = sup
(ex0

)x0∈X0
∈E
〈(lx0)x0∈X0 , (ex0)x0∈X0〉Rh ((lx0)x0∈X0 ∈ Rh)
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Extended open-loop control control

Let P ⊂ Rm be the set of all families (ux0)x0∈X0 of vectors from P.
Extended open-loop control control is a measurable function
t 7→ (ux0(t))x0∈X0 : [t0, ϑ] 7→ P.
Let us identify arbitrary programs family (ux0

(·))x0∈X0 and an extended open-loop
control t 7→ (ux0(t))x0∈X0 .

For each k = 1, . . . ,K let Pk be an extended admissible control set on (τk−1, τk ]
in case k > 1 and on [t0, τ1] in case k = 1 as a set of all vector families
(ux0)x0∈X0 ∈ P such that, for each cluster X0j(τk) ∈ X0(τk), j = 1, . . . , J(τk) and any
x ′0, x

′′
0 ∈ X0j(τk) holds ux′0 = ux′′0 .

Extended open-loop control control (ux0
(·))x0∈X0 is admissible, if for each

k = 1, . . . ,K holds (ux0(t))x0∈X0 ∈ Pk for almost all t ∈ (τk−1, τk ] in case k > 1 and
for almost all t ∈ [t0, τ1] in case k = 1;

Lemma 2 (Kryazhimskiy (2013))

Extended open-loop control control (ux0
(·))x0∈X0 is a control package if and only if it

is admissible.
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Homogeneous signals, cluster positions and extended
open-loop control controls

Homogeneous signals splitting Initial states set clustering

Extended open-loop control control
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Extended problem of program guidance

Extended system (in the space Rn):{
ẋx0(t) = A(t)xx0(t) + B(t)ux0(t) + c(t)

xx0(t0) = x0

(x0 ∈ X0)

Extended target setM is the set of all families (xx0)x0∈X0 ∈ Rn such, that xx0 ∈ M
for all x0 ∈ X0.

An admissible extended open-loop control (ux0(·))x0∈X0 is guiding the extended
system, if (x(ϑ|x0, ux0(·)))x0∈X0 ∈M.

The extended problem of open-loop guidance is solvable, if there exists an
admissible extended open-loop control which is guiding the extended system.

Attainability set of the extended system at the time ϑ:
A = {(x(ϑ|x0, ux0(·)))x0∈X0 : (ux0

(·))x0∈X0 ∈ Uext}, where Uext is the set of all
admissible extended open-loop control controls.
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Solvability criterion

Theorem 3 (Kryazhimskiy, Strelkovskii (2014))

1) The package guidance problem is solvable if and only if the extended problem of
open-loop guidance is solvable. 2) An admissible extended open-loop control is a
guiding program package if and only if it is guiding extended system.

Guaranteed 

positional guidance 

problem

Package guidance 

problem
Extended open-loop 

control guidance 

problem

Let us denote D(t) = BT(t)FT(ϑ, t) (t ∈ [t0, ϑ]) and set the function p(·, ·) : Rn × X0 7→ R:

p(l , x0) = 〈l ,F (ϑ, t0)x0〉Rn +

〈
l ,

ϑ∫
t0

F (ϑ, t)c(t)dt

〉
Rn

(l ∈ Rn, x0 ∈ X0).

Let us set
γ((lx0 )x0∈X0

) = ρ−
(
(lx0 )x0∈X0

|A
)
− ρ+

(
(lx0 )x0∈X0

|M
)

=

=
∑

x0∈X0

p(lx0 , x0)−
∑

x0∈X0

ρ+(lx0 |M) +
K∑

k=1

τk∫
τk−1

∑
X0j (τk )∈X0(τk )

ρ−

 ∑
x0∈X0j (τk )

D(t)lx0

∣∣P
dt.
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Solvability criterion

Let L be a compact set in Rn, containing an
image of the unit sphere Sn — for some positive
r1 and r2 ≥ r1 for each l ∈ Sn there is r ∈
[r1, r2], for which r l ∈ L.

Theorem 4 (Kryazhimskiy, Strelkovskii (2014))

Each of the three problems – (i) the extended
open-loop control guidance problem, (ii) the
package guidance problem and (iii) the
guaranteed positional guidance problem – is
solvable if and only if

max
(lx0

)x0∈X0
∈L
γ((lx0)x0∈X0) ≤ 0. (2)
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Construction of the guiding program package

Assuming that the solvability criterion (2) is satisfied, let us introduce the function
γ̂(·, ·) : Rn × [0, 1] 7→ R:

γ̂((lx0 )x0∈X0
, a) =

∑
x0∈X0

〈lx0 ,F (ϑ, t0)x0〉Rn +

〈
lx0 ,

ϑ∫
t0

F (ϑ, t)c(t)dt

〉
Rn

−
∑

x0∈X0

ρ+(lx0 |M)−

−
K∑

k=1

τk∫
τk−1

∑
X0j (τk )∈X0(τk )

ρ−

 ∑
x0∈X0j (τk )

D(t)lx0

∣∣aP
dt. (3)

Program package (u0
x0

(·))x0∈X0
is zero-valued, if u0

x0
(t) = 0 for almost all t ∈ [t0, ϑ], x0 ∈ X0.

Lemma 5 (Kryazhimskiy (2014))

If the solvability criterion (2) holds and
zero-valued program package is not guiding the
extended system, then exists a∗ ∈ (0, 1] such,
that

max
(lx0

)x0∈X0
∈L

γ̂((lx0 )x0∈X0
, a∗) = 0. (4)
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Construction of the guiding program package
For each program package (ux0(·))x0∈X0 , arbitrary cluster X0j(τk) ∈ X (τk),
j = 1, . . . , J(τk), k = 1, . . . ,K and arbitrary t ∈ [τk−1, τk) let us denote uX0j (τk )(t) program
values ux0(t), which are equal for all x0 ∈ X0j(τk).
Let (l∗x0)x0∈X0 be the maximizer of the left handside of (4). Cluster X0j(τk) is regular, if∑

x0∈X0j (τk )

D(t)l∗x0 6= 0, t ∈ [τk−1, τk).

Otherwise the cluster is singular.

Theorem 6 (Kryazhimskiy (2014))

Let P be a strcitly convex compact set, containing the zero vector; condition (4) holds and
the program package (u∗x0

(·))x0∈X0 satisfies the condition
u∗x0

(t) ∈ a∗P (x0 ∈ X0, t ∈ [t0, ϑ]). Let the clusters X0j(τk) ∈ X0(τk), k = 1, . . . ,K ,
j = 1, . . . , J(τk) be regular, and for each of them the following equality holds〈

D(t)
∑

x0∈X0j (τk )

l∗x0 , u
∗
X0j (τk )(t)

〉
Rm

= ρ−

D(t)
∑

x0∈X0j (τk )

l∗x0

∣∣∣∣∣∣ a∗P
 (t ∈ [τk−1, τk)). (5)

Then the program package (u∗x0
(·))x0∈X0 is guiding.

15 / 31



Computational algorithm

Algorithm for calculating elements of the guiding program package based on the
theorem 6 and the method of succesing approximations was proposed in [6].
The algorithm is applicable only if there now singular clusters, i. e. that for the
problem (8) for any direction l i ∈ RnN , i = 0, . . . corresponding to the i-th step of
the algorithm and for l ∗, maximizing (4), holds that there exist unique v i (·),
i = 1, . . ., и v∗(·) such, that

ρ−(V(t), l i ) = 〈l i , v i (t)〉, i = 1, . . . , n; ρ−(V(t), l ∗) = 〈l ∗, v∗(t)〉, t ∈ [t,ϑ]. (6)
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Approximation of the control set with a smooth convex
compact set

Let us get back to the extended control problem and consider it in the Euclidean
space RnN instead of the extended space Rn, where N = |X0|, |X0| is the number on
elements in X0. Let us denote the admissible extended control, i. e. the family
ux0(·)x0∈X0 with û(·), the corresponding motion of the extended system
(x(·|x0, ux0(·)))x0∈X0 with x̂(·), and the vector (x0)x0∈X0 with x̂0. So we have

˙̂x(t) = Â(t)x̂(t) + B̂(t)û(t) + ĉ(t), x̂(t0) = x̂0,

x̂(ϑ) ∈ M̂, û(t) ∈ P̂(t).
(7)

Let us substitute the variables v(t) = B̂(t)û(t), so that
v(t) ∈ V(t) = {v(t) = B̂(t)û(t) : û(t) ∈ P̂(t)}. Then the problem (7) will take the
form

˙̂x(t) = Â(t)x̂(t) + v(t) + ĉ(t), x̂(t0) = x̂0,

x̂(ϑ) ∈ M̂, v(t) ∈ V(t).
(8)
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Smoothing of the control set I

Let us introduce the set Vε(t) such that for any t ∈ [t0, ϑ] holds V(t) ⊂ Vε(t) and
h(Vε(t),V(t)) ≤ ε, where h(A,B) is the Hausdorf distance between the sets A и B.
Let us consider the augmented problem

˙̂x(t) = Â(t)x̂(t) + v(t) + ĉ(t), x̂(t0) = x̂0,

x̂(ϑ) ∈ M̂, v(t) ∈ Vε(t).
(9)

Theorem 7

Let Vε(t), ε > 0 be a smooth convex compact set and (x̂ε(·), vε(·)) is a solution of
the problem (9). Then for any control v(·) : v(t) ∈ V(t), t ∈ [0, θ], such that
‖vε(t)− v(t)‖ ≤ ε, the corresponding motion x(·) value of the system (8) at the
time θ differs from x̂ε(θ) by not more than O(ε).

If we use instead of the original control set V(·) which could be non-strictly convex
and have an empty interior which leads to singular clusters in the original package
guidance problem (8), a smooth convex compact set Vε(·), ε > 0, then in a small
vicinity of the augmented problem (9) there is always a trajectory of the original
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Smoothing of the control set II

problem (8), whose end is close to the end of the trajectory of the solution of the
augmented problem (9), and for constructing a solution of the augmented
problem (9) it is possible to use the algorithm [6], which converges to the exact
solution since the are no singular clusters.
So for constructing an approximate solution of the original problem (8), we need to
consider the augmented problem (9) with a small ε > 0 and solve it approximately
with the algorithm [6]. This approach has two obstacles:
1) The trajectory of the exact solution of the augmented problem would not always
guide on the target set
2) The iterative process leads to a new approximate solution on each step which
guides to a (smaller after each step) vicinity of the target set, i .e. there is no exact
guidance onto the target set.
To solve these problems we can guide the object in the augmented problem (9) inside
the target set to satisfy the estimate of the theorem 7 and inaccuracy of the iterative
process of the algorithm [6]. Then any trajectory from the ε-vicinity (with regard to
the control) of the obtained approximate solution of the augmented problem (9) will
guide precisely onto the target set in the original problem (8).
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Target set compression
Let us fix a δ > 0 and demote M̂δ as an arbitrary convex closed set satisfying the condition
M̂δ + Sδ(0) ⊂ M̂ (here Sδ(0) is a sphere with the radius δ in the space RnN with its center in the
coordinate center). Let us consider the following guidance problem:

˙̂x(t) = Â(t)x̂(t) + v(t) + ĉ(t), x̂(t0) = x̂0,

x̂(ϑ) ∈ M̂δ, v(t) ∈ Vε(t).
(10)

Theorem 8

Let us assume that int M̂ 6= ∅ and the problem (8) has a solution with the trajectory end guiding
inside the set M̂. Then exist such δ > 0 and a set M̂δ : M̂δ + Sδ(0) ⊂ M̂, that the following
statements hold:

1 For any ε > 0 the problem (10) is solvable.
2 There exists such a ε > 0, that for any solution (x̂εδ(·), vεδ(·)) of the problem (10) any control

v(·) such, that v(t) ∈ V(t) and ‖v(t)− vεδ(t)‖ ≤ ε, guides the motion of the system (8) to
the target set M̂.

Corollary 9

Let (x̂∆
εδ(·), v∆

εδ(·)) be an approximate solution of the problem (10), calculated using the
algorithm [6], and ∆ > 0 is guiding inaccuracy onto the target set M̂δ, i. e. min

m̂∈M̂δ

‖x̂∆
εδ(ϑ)− m̂‖ = ∆.

Then x̂∆
εδ(ϑ) ∈ M̂δ + S∆(0) and for satisfying the statement 2 of the theorem 8 for the approximate

solution (x̂∆
εδ(·), v∆

εδ(·)), is necessary that for ε, δ, ∆ holds the condition εC ≤ δ + ∆.
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Concrete examples
The proposed theorems do not suggest concrete ways of constructing the sets Vε(·) и M̂δ. For
applications it is important to have constructive formulas for smoothing the set M̂ and for
approximation of the control set V(·) with a smooth convex compact set.
The following methods for constructing the set Mδ could be used: 1) based on the set compression
relative to the compression center (see [7]) and 2) based on the geometrical difference of the sets
(see definition in [9]) of the set Mδ and the sphere Sδ(0). For constructing a smooth convex
compact set Vε(·) the following methods could be used ([10], [11]). For the sets motivated by
applications there are suggested convenient formulas in [10], [11], [12]
Let us consider a typical example there the control set is a segment symmetrical with respect to the
coordinate center and an algebraic sum of two segments. Let the set

U0 = I1 + . . .+ IL, Ij = [−bj , bj ], j = 1, . . . , L, (11)

be an algebraic sum of the segments in the space Rn (bj ∈ Rn, j = 1, . . . , L). Then the upper
support function of the smoothed set (with a parameter µ > 0) is

ρ+(Uµ, l) =
L∑

j=1

√
〈l , bj 〉2 + µ

[
‖l‖2 −

〈l , bj 〉2

‖bj‖2

]
. (12)

Lemma 10

Let the set U0 be of the form (11), and the set Uµ зdefined by the support function (12). Then, for
any µ > 0 the inclusion U0 ⊂ Uµ holds and for any given ε > 0 it is possible to choose µ > 0, such
that h(U0,Uµ) ≤ ε.
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Model example I

Let us consider a dynamical controlled system on the time segment [0, 2]:{
ẋ1 = x2, x1(0) = x01

ẋ2 = u, x2(0) = x02.

X0 =

{(
−7/5

0

)
,

(
7/5

0

)}
; M =

{
(x1, x2)T ∈ R2 : x2

1 + x2
2 ≤ 1

}
u(t) ∈ P = {u : |u| ≤ 1}, t ∈ [0, 2]; Q(t) =

{
(0, 0), t ∈ [0, 1/2] ,
(1, 0), t ∈ (1/2, 2] .

The package guidance problem is solvable and the cluster positions are X0 (1/2) = {X0} and
X0(2) = {{x ′0}, {x ′′0 }}. To calculate the guiding program package let us try to apply the
algorithm [6]. On the zero step let us estimate the motion value of the extended system under the
zero-valued extended control, so we get the vector d = (−7/5 0 7/5 0)T. It is obvious that d /∈M,
whereM = M ×M. Let us find the closest to d point of the setM: z̄ = (−1 0 1 0)T. Let us
calculate the zeroth approximation of the support vector:

l∗(0) =
d − z

‖d − z‖
=

(
−
√

2

2
0

√
2

2
0

)T

.

22 / 31



Model example II

Since the first two elements of the vector l∗(0) correspond to the initial state x ′0 and the next two
elements to the initial state x ′′0 , for the cluster X0 ∈ X0 (1/2) the support vector in the right
hand-side of the (5) is

(
2− t 1

)( −√2
2

0

)
+
(

2− t 1
)( √

2
2
0

)
≡ 0, t ∈ [0, 1/2),

i. e. the cluster X0 is singular on the segment [0, 1/2), and the algorithm is not applicable.
Let us write the extended system in the space R4 in the form (7), where

x̂(t) =


xx′01(t)

xx′02(t)

xx′′0 1(t)

xx′′0 2(t)

 , û(t) =


0

ux′0
(t)

0
ux′′0

(t)

 , Â =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

 , B̂ =


0 0
1 0
0 0
0 1

 ,

So we have 

ẋx′01(t) = xx′02(t), xx′01(0) = x ′01,

ẋx′02(t) = ux′0
(t), xx′02(0) = x ′02,

ẋx′′0 1(t) = xx′′0 2(t), xx′′0 1(0) = x ′′01,

ẋx′′0 2(t) = ux′′0
(t), xx′′0 2(0) = x ′′02.

(13)
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Model example III

The extended control resource takes the form

P̂(t) =

{
P1, t ∈ [0, 1/2),

P2, t ∈ [1/2, 2],

where

P1 =
{

(ux0 )x0∈X0
∈ [−1, 1]× [−1, 1] : ux′0

= ux′′0

}
,

P2 =
{

(ux0 )x0∈X0
∈ [−1, 1]× [−1, 1]

}
.

Let us substitute variables

v(t) = B̂û(t) =


vx′01(t)

vx′02(t)

vx′′0 1(t)

vx′′0 2(t)

 ∈ V(t) = B̂P̂(t) =

{
V1, t ∈ [0, 1/2),

V2, t ∈ [1/2, 2],

where

V1 =
{
v ∈ R4 : vx′01 = vx′′0 1 = 0, vx′02 = vx′′0 2 ∈ [−1, 1]

}
,

V2 =
{
v ∈ R4 : vx′01 = vx′′0 1 = 0, vx′02, vx′′0 2 ∈ [−1, 1]

}
.
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Model example IV

The system (13) takes the form

ẋx′01(t) = xx′02(t) + vx′01(t), xx′01(0) = x ′01,

ẋx′02(t) = vx′02(t), xx′02(0) = x ′02,

ẋx′′0 1(t) = xx′′0 2(t) + vx′′0 1(t), xx′′0 1(0) = x ′′01,

ẋx′′0 2(t) = vx′′0 2(t), xx′′0 2(0) = x ′′02.

(14)

For smoothing the set V(t) let us apply the formula (12), and for t ∈ [0, 1/2] let it be L1 = 1 and
b1 = (0 1 0 1)T while for t ∈ [1/2, 2] let it be L2 = 2 and b1 = (0 1 0 0)T, b2 = (0 0 0 1)T. For
illustrative reasons let us take µ = 0.01.
Let us apply the algorithm [6] to the system (14) with a smoothed control set defined by the support
function (12) with the mentioned parameters. After 14 iterations of the algorithm the guidance
inaccuracy (i .e., the distance from the motion end to the target set) is ∆ ≈ 0.001. We will have the
trajectories (xµ

x′0
(·), xµ

x′′0
(·)) and the corresponding controls (vµ

x′0
(·), vµ

x′′0
(·)). Using the theorem 7 let us

find in the µ-vicinity of the obtained controls original system (14) controls, namely, let us use these
controls:

v̄x′01(t) = v̄x′′0 1(t) ≡ 0, t ∈ [0, 2],

v̄x′02(t) = v̄x′′0 2(t) = vµ
x′02

(t), t ∈ [0, 1/2],

v̄x′02(t) = vµ
x′02

(t), t ∈ [1/2, 2],

v̄x′′0 2(t) = vµ
x′′0 2

(t), t ∈ [1/2, 2].

(15)
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Model example V

It is possible to choose different controls (v̄x′0
(·), v̄x′′0 (·)) from the µ-vicinity of the controls

(vµ
x′0

(·), vµ
x′′0

(·)), for some of them a precise guidance onto the target set is possible, for some of them

not. Let us take such controls (v̄x′0
(·), v̄x′′0 (·)) that there is no precise guidance onto the target set.

On the Fig. 1 the trajectories (xµ
x′0

(·), xµ
x′′0

(·)) are shown, corresponding to the calculated by the

algorithm controls (vµ
x′0

(·), vµ
x′′0

(·)), and the trajectories (x̄x′0
(·), x̄x′′0 (·)), corresponding to the

controls (15), in the state space x1, x2. It is clear that the obtained trajectories (x̄x′0
(·), x̄x′′0 (·)) are

not guiding precisely onto the target set and the guidance inaccuracy does not exceed√
µL1C1 +

√
µL2C2 + ∆, where

C1 =

1/2∫
0

‖F̂ (2, t)‖F dt ≤ 1.6, C2 =

2∫
1/2

‖F̂ (2, t)‖F dt ≤ 3.5

according to the theorems 7 and 8.
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Model example VI

Fig 1. Guidance onto the set M̂ (projection
on R2)

Fig 2. Guidance onto the set M̂δ, δ = 0.1
(projection on R2)

For precise guidance of the trajectories of the original system (14), let us use the results of the
theorem 8. Let is apply the algorithm [6] to the extended guidance problem for the system (14) with
a coefficient for smoothing the control set of µ = 0.0001 onto the compressed target set
M̂δ = Mδ ×Mδ, where Mδ =

{
(x ′0, x

′′
0 )T : (x ′0)2 + (x ′′0 )2 ≤ (1− δ)2

}
, δ = 0.1. After 17 iterations of
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Model example VII

the algorithm the computation inaccuracy is ∆ ≈ 0.001. We have obtained the trajectories
(xµδ

x′0
(·), xµδ

x′′0
(·)) and the corresponding controls (vµδ

x′0
(·), vµδ

x′′0
(·)). So, the trajectories corresponding to

any control from the µ-vicinity
(vµδ

x′0
(·), vµδ

x′′0
(·)), are guiding precise onto the target set. As an example the following controls were

chosen:
ṽx′01(t) = ṽx′′0 1(t) ≡ 0, t ∈ [0, 2],

ṽx′02(t) = ṽx′′0 2(t) = vµδ
x′02

(t), t ∈ [0, 1/2],

ṽx′02(t) = vµδ
x′02

(t), t ∈ [1/2, 2],

ṽx′′0 2(t) = vµδ
x′′0 2

(t), t ∈ [1/2, 2].

(16)

Trajectories (x̃x′0
(·), x̃x′′0 (·)), corresponding to the controls (16) are shown on the Fig. 2. It is clear

that they are guiding inside the target set M̂.
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Thanks for your attention!


