

Study Committee A1 "Rotating Electrical Machines" COLLOQUIUM

"Rotating Electrical Machines for Power Generation"

September 18th - 20th, 2017 Vienna, Austria

Seasonal Pumped-Storage Plants: An Integrated Approach for Hydropower, Water Management and Energy Storage

Julian David Hunt

International Institute for Applied Systems Analysis (IIASA)

Motivation:

• Intermittent renewable energy sources such as wind and solar increasing energy storage demand.

Large reservoir variations made possible with variable speed pump-turbines and asynchronous generators.

Combine energy and water storage needs with low land requirements using seasonal pump-storage.

Method:

• Compare conventional reservoir dams with seasonal pumped-storage plats. Seasonal pumped-storage consists of building a large storage reservoirs parallel to the main river and use it for energy and water storage.

Cuando CRD

Cuando SPS

Results:

• SPS can be cheaper then CRD due to its multiple uses and lower land and evaporation costs. Case studies have been developed on Zambezi River Basin and in Brazil.

Maximum level (m)	1140	1210
Minimum level (m)	1120	1150
Level variation (m)	20	60
Downstream level (m)	1100	1120
Upstream level (m)	-	1240
Minimum pumping height (m)	20	75
Dam height (m)	40	90
Dam Lenght (km)	4	2
Tube (km)	-	12 + 5 Chan
Maximum Flooded area (km²)	559.8	131.7
Minimum Flooded area (km²)	279.9	73.2
Floded area variation ratio	2	1.8
Useful stored volume (km³)	4.4784	4.48
Average flow (m³/s)	80.0	82.6
50% of Total Flow (km³/year)	1.23	1.27
Ratio with useful stored volume	3.64	3.52
100% of flow (km³/year)	2.46	2.54
Ratio with seful stored volume	1.82	1.76
Catchment (km²)	30509	30509
Power capacity (MW)	26	103

Conclusions:

- SPS plants should be used in locations where CRD are not viable due to it topography.
- The seasonal water storage process can be combined with the need for energy storage, reducing both costs.

Characteristics

- SPS have higher construction costs than CRD, however, have lower land requirements and evaporation losses.
- SPS are particularly appropriate for locations with low water.

