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ABSTRACT
Size and spatial distribution of trees are important for forest stand growth, but the extent to which it
matters in thinning operations, in terms of wood production and stand economy, has rarely been
documented. Here we investigate how the choice of spatial evenness and tree-size distribution of
residual trees impacts wood production and stand economy. A spatially explicit individual-based
growth model was used, in conjunction with empirical cost functions for harvesting and
forwarding, to calculate net production and net present value for different thinning operations in
Norway spruce stands in Northern Sweden. The in silico thinning operations were defined by three
variables: (1) spatial evenness after thinning, (2) tree size preference for harvesting, and (3) basal
area reduction. We found that thinning that increases spatial evenness increases net production
and net present value by around 2.0%, compared to the worst case. When changing the spatial
evenness in conjunction with size preference we could observe an improvement of the net
production and net present value up to 8.0%. The magnitude of impact differed greatly between
the stands (from 1.7% to 8.0%) and was highest in the stand with the lowest stem density.
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Introduction

Thinning operations produce fewer trees, but with larger
diameters, and promote the production of merchantable
timber, thereby increasing the value of the stand (Wallentin
2007; Nilsson et al. 2010). Moreover, since the removed trees
are recovered, thus preventing self-thinning, the net wood
production is higher in the thinned stands (Nilsson et al.
2010). Hence, thinning has a positive effect on a stand’s net
production and net value (Valsta 1992a; Zeide 2001; Hyytiäi-
nen and Tahvonen 2003; Cao et al. 2006). However, thinning
can be carried out in many ways, in terms of the multiple
choices regarding which trees to remove. Some common
terms for describing thinning prescriptions are basal area
reduction, tree size preferences, and spatial evenness. At
stand level, the effect of basal area reduction is well known
(Zeide 2001; Mäkinen and Isomäki 2004; Wallentin 2007;
Nilsson et al. 2010), just as it is known that the removal of
smaller trees (i.e. thinning from below) marginally increases
net production (Nilsson et al. 2010). Increased spatial even-
ness has shown a potential for increased net production
(Baldwin et al. 1989; Mäkinen et al. 2006).

What has not been fully addressed is how basal area
reduction, tree size preferences (thinning form) and spatial
evenness interrelate, and how significant an effect each of
them has on net production if other aspects are kept constant.
Moreover, from an economic perspective, it could be argued
that the rise in income from the increased net production

and wood value does not compensate for the increase in har-
vesting costs. Due to the long rotation time and time-consum-
ing field measuring, such experiments are difficult to perform
empirically.

However, the experiments can be addressed using a
model-based approach. Indeed, so-called individual-based
models (IBMs) (Grimm and Railsback 2005) can be used.
IBMs use information on a tree-by-tree basis and simulate
interaction between the trees to predict the future growth
of each individual tree, e.g. Pacala et al. (1996), Liu and
Ashton (1998), Phillips and Gardingen (2001), Seidl et al.
(2012), Cronie et al. (2013). IBMs have been used in a variety
of studies such as identifying thinning regimes on an individ-
ual tree level in order to minimise the risk of forest fire (Con-
treras 2010; Contreras and Chung 2013) and studies of forest
management in which the timber price and growth are sto-
chastic (Valsta 1992b; Pukkala 2015). To our knowledge,
IBMs have not been used to address the question of the
effect of spatial evenness and thinning form.

In this study, we analyse how different spatial distributions,
after thinning operations, in conjunction with different thin-
ning intensities, and thinning forms, affect the net present
value and net production of the stand during an entire
rotation. To achieve this, we developed an individual-based
model, in which both tree diameter and height growth were
modelled and applied asymmetric distance-dependent com-
petition between all individual trees. The model has been
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fitted and validated against data from an experimental
Norway spruce (Picea abies) forest in Northern Sweden.

Material and methods

Overview

In the model used for the study, the development of a forest
stand after a single thinning was simulated for the stand’s full
rotation period, with evaluation of the effects from variations
in how the thinning was performed. The stand’s rotation time
was split into three phases: (1) thinning phase, (2) growth
phase and (3) clear-cut phase (Figure 1). The simulation
started at the initial stand age t0 (years), at which all trees
with a diameter at breast height over bark (DBH) of less
than 8 cmwere removed in order to simulate a removal of hin-
dering undergrowth. Next, but still under year t0, a commercial
thinning was performed. The selection of trees to be removed
was determined by the specified thinning procedure, based
on a different emphasis on three criteria: (1) spatial evenness
after thinning, (2) tree size preference for trees to remove and
(3) basal area reduction. The volume and value of the removed
trees were calculated (but not for trees removed as hindering
undergrowth, i.e. with a DBH , 8 cm). Costs for both the thin-
ning and undergrowth removal were calculated, assuming
that the operation was conducted using Nordic cut-to-
length machines (harvester and forwarder).

At the start of the growth phase, the maximum mean
diameter that could be sustained by the current stand
density was calculated in order to assess if self-thinning
would commence. Next, the annual increment in DBH and
height for each tree in the stand was calculated based on a
growth model that considered the distance-dependent com-
petition between all trees. The size of each individual tree was
updated, the net present value for the stand was calculated
for a rotation length equal to t0, and the stand age was
increased by one year. This procedure with growth and net
value calculations was repeated until the maximum net
present value was reached. This initiated the clear-cut
phase, in which the volume, value and costs of a final felling
at the given stand conditions were calculated. Besides the
net present value of the stand, the mean net production
was also calculated as the sum of the harvested timber

volume (i.e. not including undergrowth removal or self-thin-
ning) divided by stand age at the time of the clear-cut. The
model, with the variations in thinning criteria, was applied
to different initial stand configurations, based on data from
field measurements. The effects of the different emphasis
on thinning criteria were evaluated based on the total net pro-
duction and the total net value of the stands.

Spatial explicit growth model

We use an IBM to simulate the growth of each individual tree
in the initial plot. Let NT denote the number of trees in the
stand. Let I = {1, 2, · · ·NT } be a set of indices, and let each
individual tree in the stand be uniquely associated with one
index from I. The dynamics of diameter at breast height
(cm), DBHi,t , for each individual tree i at age t, is modelled
as a modified logistic growth function as in Kot (2001) see (1).

DDBHi,t = r · DBHi,t ·max 1− DBHi,t + CI(i, DBHt , Dist, u)
DBHmax

, 0
( )

.

(1)

Here DDBHi,t is the annual diameter increase, and r and
DBHmax are positive-valued model parameters. r is the
growth rate of the tree and DBHmax is the maximum DBH, a
tree can obtain in the absence of competitors. CI is the com-
petition index function (2). Let DBH be the set of diameters
for all trees, i.e. DBH = {DBH1, DBH2 · · · , DBHi , · · · , DBHNT }.
Dist is the set of all pairwise distances between the trees
in the stand, i.e. Dist = {disti,j|i = j, i, j [ I}, where

disti,j =
�����������������������
(xi − xj)

2 + (yi − yj)
2

√
, and the ordered pair (xi , yi)

denotes the position along the x- and y-axis of tree i. u is
the set of parameters for the competition index function,
u = {a, b, l}. The competition index (CI) models the inter-
action between the subject tree i and its nearest neighbours.
DDBHi,t denotes the annual diameter increment for the tree i
at age t. In our work we use a modified version of the crowd-
ing competition index (Canham et al. 2004),

CI(i, DBH, Dist, u) =
∑
j[I\{i}

l(DBHj/DBHi)
adist−b

i,j , (2)

as a proxy for the competition pressure that the subject tree is
exposed to by its closest neighbours. We define closest

Figure 1. Overview of modelling procedure. At the start of each simulation, an algorithm is used to identify a selection of trees to be removed in an initial thinning
operation. The selection is chosen such that the pre-set conditions for spatial evenness after thinning, the thinning ratio, and basal area after thinning are fulfilled.
The selected trees are removed from the stand and the growth simulation starts. In each simulation step the growth of all remaining individual trees in the stand is
calculated and the stand age is increased. If the mean diameter in the stand surpasses the maximummean diameter, for the given stand density, self-thinning occurs,
and tress are removed. The growth simulation ends when the maximum net present value of the stand is reached, at which the remaining trees are removed in a
clear-cut and the simulation ends.
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neighbours as the neighbours located in a radius of 8 m from
the subject tree. The stand is mirrored eight times around the
original stand. All individual trees in the mirrored stands are
the same size as the corresponding trees in the original
stand and the relative distances are also preserved. This is
carried out in order to deal with edge effects.

The annual tree height increment (m/year), denoted DH, is
modelled as a power law relation to the diameter increment,
as follows (3).

DHi,t = g(DDBHi,t)
d. (3)

Here, g, d are parameters.

Stem tapering and volume

To calculate the value of the harvested logs, the volume and
tapering of the stem were used. Stem tapering and volume
were modelled using the tree form function of Edgren and
Nylinder (1949) and the volume (in m3), Vol, was calculated
as the rotation volume of the tapering function. For further
information see the appendix. The diameter at any height of
the stem and volume was calculated as a function of the
total height of the tree, DBH, and the age of the tree.
Further information is provided in the appendix.

Net production and stand economy

We quantify the performance of a given thinning procedure
as the net production and net present value of the stand
on a per hectare basis. The net production was calculated
as the sum of the volume harvested during the thinning
operation and the clear-cut, divided by the rotation time
(i.e. stand age at the clear-cut). The total value of the
stand was determined as the net present value of the
stand, in Swedish krona (SEK) ha−1, which was calculated
as the sum of the net present value of all three simulated
operations (4).

VNet = e− ln (1+IR)·t0Vpre−thinning + e− ln (1+IR)·t0Vthinning

+ e− ln (1+IR)·TVclearcut. (4)

In (4), IR is the interest rate, which we assume to be 2%, t0
denotes the age of the stand at the start of the simulations,
Vpre−thinning is the value (or rather the cost) of the pre-commer-
cial thinning, Vthinning and Vclear−cut is the value of the thinning
and clear-cut, respectively, at the time they are conducted,
calculated according to (5). Here, T denotes the optimal
rotation time of the stand.

T was defined as the point in time when the income incre-
ment, due to size growth, no longer outweighs the cost
increase. If we fixate the thinning procedure (R, TR, and
basal area reduction) and initial time for thinning, then an
optimal clear-cut is performed when the increase in clear-
cut value (not the present value) falls below ln (1+ IR), math-
ematically: dVclear−cut/dt , ln (1+ IR) ⇒ dVNet/dt , 0; if not,
then the net present value will decrease with time.

Vpre−thinning is assumed to be −2,000 SEK ha−1, whereas
Vthinning and Vclear−cut were determined as the difference
between the value of trees removed and the harvesting and

forwarding costs (5).

V =
∑NR

i=1

[ p(DBHi)Voli − cHarvesting(Voli)Voli]

− cForwarding(Volperarea, Voltot, Volmean)Voltot. (5)

In (5), NR is the number of trees selected for removal,
p(DBHi) is the DBH-specific price for the tree i, Voli is the
stem volume of tree i, cHarvesting, cForwardning is the cost for
the harvester and forwarder operations, respectively. Voltot
is the total volume harvested (m3), and Volperarea is the
mean harvested volume per area (m3 ha−1), and Volmean is
the mean stem volume (m3) of the removed trees in the
stand. Hence, the value of a removed tree is determined by
its diameter and volume at the time of harvest, as well as
by the accumulated volume of all trees removed.

Harvesting costs are calculated on an individual tree basis,
through multiplying the tree volume dependent cost per m3

(SEK m−3) by the stem volume of the tree (in (5)). To calculate
the cost per m3 for a given stem volume in thinning (6) and in
clear-cut (7), the fixed hourly cost of the machine was divided
by the machine’s tree volume dependent productivity. The
hourly cost of the harvester was set to 1,000 SEK h−1 and
equations from Nurminen et al. (2006) were used to calculate
the harvester’s productivity (m3 h−1) as a function of the stem
volume (Vol).

Forwarding costs are calculated on a stand level, by divid-
ing the hourly cost of the machine by the average machine
productivity in the stand in thinning (8) and in clear-cut (9).
The hourly cost of the forwarder was set to 900 SEK h−1.
Models by Eriksson and Lindroos (2014) were used to calcu-
late the average forwarding productivity in the modelled
stands. However, the following parameters were assumed
and were the same for all modelled stands: mean extraction
distance = 420 m, adjustable load space = 0, load capacity =
12 m3 for thinning and 16 m3 for final felling, terrain rough-
ness = 1.7, slope = 1.7.

cHarvesting,thinning(Vol) = 1000/(0.383+ 135.896Vol

− 180.065Vol2), (6)

cHarvesting,clearcut(Vol) = 1000/(4.067+ 78.623Vol

− 18.507Vol2), (7)

cForwarding,thinning(Volperarea, Voltot, Volmean)

= 900/ exp [2.550+ 0.074 ln (Volperarea)

+ 0.046 ln (Voltot)+ 0.259 ln (Volmean)], (8)

cForwarding,clearcut(Volperarea, Voltot, Volmean)

= 900/ exp [2.392+ 0.094 ln (Volperarea)

+ 0.058 ln (Voltot)+ 0.176 ln (Volmean)] (9)

Definition of spatial evenness and emphasis on size.

We use the Clark-Evans nearest neighbour index (R) (Clark and
Evans 1954; Leopold et al. 1985) as a measure for spatial even-
ness. The measure is defined as the ratio between mean dis-
tance to nearest neighbour and the expected mean distance
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to nearest neighbour in a random distribution, see (10).

R =
∑NT

i=1 ri
�rNT

. (10)

Here, ri is the distance to the nearest neighbour, for the tree
i [ I, NT is the number of trees in the stand and �r is the
expected mean distance to the nearest neighbour in a
random distribution. We account for edge effects by using
the edge-corrected estimation of �r, described by Sinclair
(1985), see (11).

�r = 0.5
������
A/NT

√
+ (0.051+ 0.041/

���
NT

√
)L/NT . (11)

In (11), A is the stand area and L is the circumference of the
stand. A value of R = 1 means the given spatial distribution is
indistinguishable from a random distribution. For R > 1 the
distribution is more uniform (even) and for R < 1 the distri-
bution is aggregated (uneven).

We use thinning ratio (TR) as a measure for the preferred
size distribution. TR is defined as the ratio between the
mean diameter of the removed trees (DBHRe) and the mean
diameter of the remaining trees (DBHAT), see (12).

TR = DBHRe

DBHAT
. (12)

When TR is equal to 1 it implies that the selection of individual
trees is even, in terms of size; this implies that equal numbers
of smaller and larger trees were selected. A value larger than 1
implies that predominantly larger trees were selected for
removal (thinning from above). Consequently, a value lower
than 1 implies an emphasis on removing smaller trees (thin-
ning from below). In our simulations, we vary TR between
0.8–1.2 and R between 0.9 and 1.3.

Self-thinning

In order to account for self-thinning, we implement the algor-
ithm outlined by Pukkala et al. (1998). At the start of a growth
period, the mean diameter, dg (cm) is calculated. Using (13)
(Elfving 2010), we calculate the maximum number of stems
per hectare, Nmax, which can be sustained for the given
mean diameter.

ln (Nmax) = 12− 1.5 ln (dg). (13)

If the current stem density is larger than Nmax, trees are
removed until the stem density is lower than Nmax. The prob-
ability of survival for each tree determines which trees will be
removed. Based on the survival function from Pukkala et al.
(2013), the trees with the lowest probability of survival are
removed first.

Tree selection

To identify a selection of trees to harvest, such that the
requirements on the target thinning ratio (TRTarget) and
spatial evenness (RTarget) and basal area reduction (BATarget)
are fulfilled, we employ a Monte Carlo Markov Chain
(MCMC) method, namely the Metropolis—Hastings algorithm
(Gilks et al. 1996). The algorithm starts from an initial guess (an

initial tree selection) and updates this guess. The guess is
updated in such a way that it “moves” towards the selection
which best fulfils the thinning targets. However, with the
pre-set values for RTarget, TRTarget, and BATarget, the final selec-
tion of trees will not be unique, i.e. there is more than one
selection that fulfils the requirements. The algorithm pro-
duces a sample (a collection of different tree selections)
with values for spatial evenness, thinning ratio and basal
area reduction sufficiently close to RTarget, TRTarget, and
BATarget. For some combinations of RTarget, TRTarget, and BATarget
there is no tree selection fulling the defined requirements, i.e.
some combinations of thinning ratio, spatial evenness, and
basal area reductions were impossible to achieve. For each
sample point (for each tree selection), we calculate Vnet and
the final performance value associated with the particular
thinning operation as the mean net value, �VNet. The algorithm
is outlined in more detail in the appendix.

Data for model fitting

The data used in our study are taken from the experimental
study area of Flakaliden, in Västerbotten, Northern Sweden
(64°07’N, 19°27’E). The main purpose of the site was to
study the potential growth of a Norway spruce stand, when
it is not limited by nutrients, under the typical climate con-
ditions of that area. In 1963, four-year-old Norway spruces
were planted. The experiment started in 1986. By this time,
the site had a density of 2,400 stems per hectare, the mean
height was 2 m, and the mean DBH was 3.6 cm. At the end
of the experiment, it was estimated that the stand would
possess a dominant height of 18 m at a stand age of 100
years (site index G18), for the untreated forest area. The exper-
imental site was divided into 33 equally-sized plots, with a
dimension of 50 m × 50 m. In each parcel different treatments
were applied, such as nitrogen and wood ash fertilisation,
solid fertilisation, irrigation with liquid fertilisation, and
control zones in which no treatments were applied. In the irri-
gation treatment, the area was watered daily if the soil-water
potential was below a certain threshold from June–August.
The solid fertilised plots were given the same amount of nutri-
ents as in the liquid fertilised case, as a one-time application
each year. From 1986 to 2013, individual trees were measured
approximately every 2–4 years. The dimensions measured
were diameter at breast height and tree height. However,
tree height was only measured for around 20 sample trees
per hectare in all plots. Coordinates for all trees in each plot
are known. In 2003, thinning operations were carried out in
selected fertilised plots, in which 30% and 60% of the basal
area was removed. See Bergh et al. (1999) for further infor-
mation on the dataset.

Data for modelling – initial stand data

The data for the initial stand is taken from a study in which
detailed data from plots selected to represent forest stands
at the time of the first commercial thinning operation were
collected (Bredberg 1972). Among other data, height, diam-
eter and the coordinates of each individual tree in the stand
were recorded. For our simulations we wanted data for pure
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spruce stands, a condition met by four stands, which conse-
quently were used the simulations. Overview data for the
selected stands are given in Table 1. Table 2 shows the
stand characteristics after pre-commercial thinning (after
removing trees with DBH < 8 cm). In our simulations, we
assume all trees in the stands to be spruce trees.

Fitting and validation of growth model

We used the data from the stand subjected to liquid fertilisa-
tion to fit and validate our model. We chose these plots
because they include data for thinned and non-thinned
stands. The data were divided into two parts: one part is
used for the model fitting and the other for model validation.
Plots with no thinning, and with 30% and 60% thinning inten-
sity were represented in both sets. For the diameter incre-
ment model, the fitted model parameters are depicted in
Table 3. The simulated diameter and heights and the actual
data are compared in Figure 2.

Simulation cases

We divide the simulation studies into three cases to study
different aspects: spatial evenness, thinning ratios, and thin-
ning ratio and spatial evenness in conjunction.

Case 1: Here we study the effect of spatial evenness on net
production and net present value. We set the thinning ratio to
1 and the values for spatial evenness tested were 1, 1.2, and
1.4. Basal area reductions tested for were 30% and 50%.

Case 2: Similar to case 1 but with the focus now on thin-
ning ratios. We test for the thinning ratios 0.8, 1, and 1.2.
The R-value is set to 1.2 and the basal area reductions
tested for were 30% and 50%. Beside these cases, we also
simulate the unthinned case.

Case 3: In the final simulation case we study how changing
the R-value and TR-value in conjunction will increase the net
production and net present value. We vary the R-value from
0.7 to 1.3 and the TR-value from 0.9 to1.6; the basal area
reductions were set to 30%. For every initial stand, we
record the lowest value in regard to net production and net
present value. The increase is measured as the percentage
increase in relation to the lowest values.

Results

Higher spatial evenness increases net production and
stand economy

From the results of simulation case 1 we observe that the net
production increase with the spatial evenness (see Figure 3),
e.g. for initial plot GA502 we observe an increase from
14.2 m3year−1ha−1 to 14.5 m3year−1 ha−1, when increasing
the spatial evenness (R-value) from 1.0 to 1.4. The mean net
production increase was 2% for all plots when the spatial
evenness was increased from 1.0 to 1.4. As with net pro-
duction, the net present value also rises with spatial evenness.
The largest increase we could detect was for the initial plot
GA604, with a basal area reduction of 50%, where the net
present value increased from 132,000 SEK ha−1 to
137,000 SEK ha−1 (r value changes from 1 to 1.4). The mean
net present value increase for all plots was 2.5%.

Optimal thinning ratio varies with initial stand
characteristics

Simulation case 2 shows that thinning increases net
production for all initial plots (Figure 4), e.g. from
13.7 m3year−1ha−1 when no thinning is carried out (basal
area reduction 0%) to 14.3 m3year−1ha−1 for the initial plot
GA502. If we look at the difference between a thinning inten-
sity of 30% versus 50%, we can only observe a marginal

Table 1. Initial plot characteristics.

Stand
Basal area
[m2 ha−1]

Age
[year]

Number of
stems per ha

Mean
diameter [cm]

Mean
Height [m]

Dominant
height [m]

Stand area
[ha]

Proportion Pine/Spruce/
Broad-leaf (% of trees)

Start
R-value

GA_502 31.2 33 2,470 12(3.6) 12.7(2.2) 16.7 0.1 0/99.6/0.4 1.22
GA_601 33.8 29 2,200 13.3(4.3) 12.9(2.8) 17.5 0.1 0/96.3/3.7 1.25
GA_602 33.0 25 2,860 12(3.2) 11.3(2.1) 14.8 0.1 0/99.6/0.4 1.33
GA_604 35.3 26 3,360 11(3.6) 11.3(2.2) 16.2 0.1 0/98.8/1.2 1.43

Note: Standard deviation for diameter and tree height are given in parenthesis.

Table 2. Stand characteristics after pre-commercial thinning.

Stand Basal area [m2/ha] Number of stems per ha Mean diameter [cm] Mean Height [m] Start R-value

GA_502 30.1 2,190 12.9(3.3) 13.1(1.7) 1.21
GA_601 32.9 1,930 14.3(3.7) 13.7(2.1) 1.26
GA_602 31.5 2,450 12.5(2.6) 11.9(1.5) 1.31
GA_604 32.5 2,610 12.2(3.2) 12.1(1.7) 1.37

Note: Standard deviation for diameter and height are given in parenthesis.

Table 3. Model parameters from fitting.

Model parameter Value

Diameter increment model
rSpruce [annual

−1] 0.067
DBHMax,Spruce [cm] 35
Competition index
λSpruce [m

β cm−(α−1)] 0.42
α [-] 0.43
β [-] 1.4
Height increment model
γ [m annualδ−1 cm−δ] 0.64
δ [-] 0.57

Note: These are used for all simulations.
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difference. While net production consistently increased, the
maximum relative increase was only 1.8%. There was no
obvious trend between various thinning ratios, i.e. if a
higher or lower thinning ratio results in better net production.
For instance, in GA502 (14.3 m3year−1ha−1 for TR 0.8 vs
14.5 m3year−1ha−1 for TR 1.2), thinning from above is superior

while in GA602 (15.3 m3year−1ha−1 vs 15.0 m3year−1ha−1), we
see the opposite trend. However, the actual difference
between the thinning ratios for a given basal area reduction
is low; in most cases, less than 1% and at most around 2%.
We observe similar trends for the net present value, that thin-
ning substantially improves the net present value but with

Figure 2. The diameter model explains 93% of variation. Results from fitting and validation of DBH model and tree height model. All pictures show simulated
model data against actual data. (a)-(b) shows the result from the fitting of the DBH and height model. For (a) MSE = 0.38 R2 = 0.97 and for (b) MSE = 8.7 R2 =
0.58. (c)–(d) shows the results from the validation of the fitted models (DBH model and tree height model, respectively). For (c) MSE = 0.44 R2 = 0.93 and for (d)
MSE = 8.0 R2 = 0.57.

Figure 3. Net production and net present value increase with spatial evenness. The figure depicts the stand economy and net production response to change in basal
area reduction and spatial evenness. The basal area is reduced by 30% and 50%. The target thinning ratio (TR) was set to 1 and the spatial evenness was set to 1 (blue
bar), 1.2 (red bar) and 1.4 (yellow bar). Results for GA502 and GA601, with spatial evenness set to 1.4 and basal area reduction set to 30%, is missing because no tree
selection could be found to fulfil these conditions.

194 P. FRANSSON ET AL.



little effect from thinning intensity or thinning ratio. The
difference between non-thinned and thinned stands was sub-
stantial, e.g. for GA502 the net present value increases from
93,000 SEK ha−1 if not thinning to 120,000 SEK ha−1 when
thinning, meaning an increase of 30%.

Optimal choice of size and evenness emphasis can
increase net production and present value by 8%

From the results above, we can see that changing thinning
ratio or spatial evenness has an impact on the overall

stand performance, i.e. net production and stand value.
The results from simulation case 3 (see Figure 5) show that
the maximum increase in mean net production and net
present value are 5.7% and 8.0%, respectively. The
maximum increase varies among the different initial plots,
e.g. for plot GA502, the maximum increase of net production
was around 4.1%, 8.0% for GA601, 2.1% for GA602 and 1.7%
for GA604. The general trend is: higher thinning from above
(higher thinning value) – and spatial evenness result in
greater performance. However, just as in simulation case 2,
there are exceptions.

Figure 4. Thinning increases net production and net present value. The figure illustrates how the net present value and net production for the different initial stands
change with basal area reduction and thinning ratio. The target spatial evenness (R) was set to 1.2, the thinning ratio was set to 0.8 (blue bar), 1 (red bar) and 1.2
(yellow bar), and the basal area reduction was set to 0%, 30% and 50%, respectively. The first row depicts the net production and the second row shows the corre-
sponding net present value. Results for GA602, with thinning ratio 1.2 and basal area reduction of 30%, is missing because no tree selection could be found to fulfil
these conditions.

Figure 5.We get a maximum increase of 8% in net production and net present value by changing the thinning ratio and spatial increment. The colours indicate the
relative increase in net production and net present value respectively, for a given pair of R- and TR-values, compared to the lowest value. The relative increase is
given as a percentage increase. White means no tree selection could be found that satisfied the thinning criteria. The basal area reduction is set to 30%. The thinning
ratio(TR) varies from 0.7 to 1.3, and spatial emphasis(R) from 0.9 to 1.6.
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Optimal rotation time increases with increased
thinning ratio and decreases with spatial evenness

In regard to the optimal rotation time, the results from case 3
show that the timing varies between the different stands: the
rotation time varies from 70 years to 80 years (Figure 6). As
thinning from above increases, so does the optimal rotation
time (Figure 6). The optimal rotation time decreases slightly
with spatial evenness.

Discussion and conclusion

From our simulation work, we found that increased spatial
evenness after thinning will improve the net production and
net present value of the stand. With regard to the thinning
ratio, we could not identify a clear trend. Depending on the
initial stand, a higher thinning ratio (thinning from above)
would result in higher net production and net present
value, while for other initial stands a lower thinning ratio (thin-
ning from below) would be the better choice. When holding
the basal area reduction constant and varying the thinning
ratio and spatial evenness in conjunction, we found that we
could achieve an improvement of 8%, in relation to the
worst case, in net production and net present value. We
found that the optimal rotation time increased with increased
spatial evenness and thinning ratio.

From the results, we can see that a higher spatial even-
ness, after thinning, will improve the overall performance
of the stand. This means that for a given stand density, the
mean distance to the nearest neighbour should be high,
i.e. trees should be kept in even spatial patterns. This will
promote net production and stand economy and is
perhaps not surprising. A higher spatial evenness means
that, on average, we expect an increase in distance to the
nearest neighbour, which also results in more space for
most trees. However, it should be noted that if the distance
to nearest neighbour is too high (i.e. low stand density), it
could negatively impact the wood quality, e.g. increased
branching, and productivity (Wallentin 2007). Mäkinen
et al. (2006) conducted an empirical comparison between
selected thinning (more spatially even) and systematic thin-
ning (less spatially even) at the same thinning intensity for
stands of Scots pine and Norway spruce. They found that
the net production was lower for the systematic thinning

treatment, which agrees with our findings. However, they
reported that the difference was small.

In our simulation, we found no consistency regarding
whether a lower or higher thinning ratio (i.e. thinning from
below or above) would result in higher net production.
Overall, the maximum increase was less than one percent
for a given basal area reduction, indicating that all selected
thinning ratios result in equal production. Empirical studies
have reported that thinning from below results in higher
net production (e.g. Mielikäinen and Valkonen 1991), since
self-thinning increases following a thinning from above
(Nilsson et al. 2010). Besides the thinning ratio, we can
clearly infer that thinning has a positive impact on net pro-
duction; a thinning procedure will recover volumes that
would otherwise be lost in self-thinning. This is in agreement
with what other studies have reported, e.g. Nilsson et al.
(2010). However, other studies have found the net production
to be highest for unthinned Norway spruce stands, e.g.
Mäkinen and Isomäki (2004). In most of the simulation
results, thinning from above resulted in the highest net
present value, due to higher income in the initial thinning pro-
cedure as mainly larger trees are removed. This is in agree-
ment with results from other studies (e.g. Hyytiäinen et al.
2004). When looking at stand economy, the different thinning
ratios result in minor changes in net present value. However,
the difference between thinned and non-thinned stands was
greater (around 30%), reaffirming the well-established knowl-
edge that thinning has a positive impact on stand economy
(e.g. Hyytiäinen et al. 2004; Wallentin 2007). When changing
the proportion of basal area reduction (within the 0%–50%
range), we see only minor changes in both net present
value and net production.

Looking at optimal rotation time, spatial evenness appear
to have only a minor impact on optimal rotation time.
However, a small trend can be detected: an increase in
spatial evenness will decrease the rotation time. This is
because of the increase in net production. For the thinning
ratio, we can see a clearer trend, in which the optimal rotation
time increases with the thinning ratio. This is because a higher
thinning ratio means that mainly larger trees are removed,
resulting in a longer growth period for the residual trees,
before reaching the critical threshold.

Although we established that changing spatial evenness
and the thinning ratio will alter overall net production and

Figure 6. Optimal timing for clear-cut increases with thinning ratio. The figure shows the time of the optimal clear-cut (year), in terms of stand net value, depending
on the selected thinning ratio (TR) and target spatial evenness (R) after thinning. The basal area reduction is set to 30%. t0 denotes the stand age at the thinning.
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consequently the value of the stand, the maximum improve-
ment varies greatly among the different initial plots. For a
given basal area reduction (30% for our simulations), we
obtain a maximum increase in net production and the net
present value of 5.8% and 8.0%, respectively (Figure 5), for
initial plot GA502. In contrast, for plot GA604, the maximum
improvement was 2.1%. Thus, our chosen thinning variables
impact net production and net present value, but the magni-
tude of improvement depends on the initial stand character-
istics. From the four selected initial plots, we can see a
difference between GA502 and GA601, which had the
highest increase (4.1% and 8.0%, respectively), compared to
GA602 and GA604, with a maximum improvement of 2.1%
and 1.7%, respectively. Looking at the stand characteristics
(Table 2), we can immediately detect differences between
them. Firstly, the stem density is lower, and secondly, the
mean diameter and associated standard deviation is higher
for GA502 and GA601. Consequently, the stands have a
fewer number of trees and the size variation is greater, com-
pared to GA602 and GA604. Thus, stands GA502 and GA601
are more heterogeneous, suggesting that the decision on
size and evenness emphasis is more important in stands
with heterogeneous tree sizes. This is a possible explanation
as to why the number of potential combinations of spatial
evenness and thinning ratio are lower for GA602 and GA604
(Figure 5). This is an interesting hypothesis for further
research.

From an economic perspective, we see an increase in net
present value by changing the spatial evenness and thinning
ratio. However, the accuracy of the economic analysis greatly
depends on the choice of cost estimates, timber prices, inter-
est rates, etc. (Solberg and Haight 1991; Valsta 1992a; Hyytiäi-
nen et al. 2004). Apart from these variables, we did not
consider any aspects of stem quality, such as straightness,
branches etc., which also affects the stand economy. While
the growth model in our investigation was spatially explicit,
the cost functions were not. Specifically, the equations used
for calculating the productivity of the harvesters by Nurminen
et al. (2006) are based on data from conventional thinning
from below and might not fully take into consideration the
modelled variations. The effect of thinning ratio variations
are probably rather mild since the used equations take tree
size into consideration. However, the effects of basal area
reduction and spatial evenness might be less adequately mir-
rored. Since dense stands are likely to require more careful
and slow crane work and low levels of basal area reduction
requires much machine relocation per harvested volume, it
can be expected that low levels of basal area reduction and
low spatial evenness should result in a higher harvesting
costs than estimated here.

For future studies, it would be interesting to incorporate
these abovementioned aspects into the model framework.
In our model work, we limited the thinning by fixating the
time of the first thinning, as provided by the initial data.
Further, we have only considered one thinning. If the objec-
tive is to find the optimal thinning, the number of thinnings
and the timing of these would need to be subject to optimis-
ation. These aspects can be easily implemented into our
model. We can even go one step further and let the timing,

in our simulations, of the harvesting of each individual tree
be subject to optimisation.
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Appendix

Volume price list

The volume price list used in the simulations are listed in Table A1.

Stem tapering and volume function
Equation (A3) describes the under-bark diameter (cm), Dub,i , at a relative
height i(i = 0 means ground level and i = 1 means tree top), as a function
of base diameter Dub,0 and the relative diameter in percent (RDub,i), i.e.
RDub,0 = 100. RDub,i is calculated by using Equation (A6). RDub,i is calcu-
lated as a function of the tree form factor (F), see (A8), and the inflection
point (iv ), see (A7). F is estimated by using the tree height (H), the under-
bark form factor (fub), see (A9) and the under-bark base diameter (Dub,0).
Dub,b is estimated from the under-bark diameter at breast height
(Dub,BH) according to (A5), and ub,BH is calculated as DBH subtracted by 2
times the bark thickness (BT), see (A11). The function for calculating BT
is given by (A10). Volume (m3), Vol, is calculated as the rotation volume

of the tapering function (A4). Constants for tapering functions are listed
in Table A2.

Tree selection method
The Metropolis—Hastings algorithm (Gilks et al. 1996) is used to find a
tree selection, such that the requirements on the target thinning ratio
(TRTarget), spatial evenness (RTarget) and basal area reduction (BATarget)
are fulfilled. The algorithm is used for producing a sample from a compli-
cated target distribution, P(yi ). In our work, we use a softmax-type function
as our target distribution, see (A1).

P(yi) = e−f (yi )/T∑
yj[Y e

−f (yj )/T
. (A1)

In (A1) yi , a specific tree selection, i.e. yi tells us, for each tree in the
stand, if the tree is harvested or not. We represent yi as a vector of
length NT (number of trees in the stand), each element corresponds to
a specific tree in the stand and the value is either 1 or 0 (1 means that
the corresponding tree is removed in the thinning, and 0 if not). Y
denotes the set of all tree selections (the set of all yi ’s). T is a positive
number. In our simulations we used T = 500. Analogous to the Boltzmann
distribution, T can be interpreted as the temperature of the system and
controls the variance in the sample: the variance increases with T . The
function f (yi) is the sum squared of the difference between the thinning
ratio TR(yi), spatial evenness R(yi ), basal area reduction BA(yi) and the
targets (TRTarget, RTarget, and BATarget, respectively), see (A2).

f (yi) = (TR(yi)− TRTarget)
2 + (R(yi )− RTarget)

2 + (BA(yi )− BATarget)
2. (A2)

One of the properties of P(yi ) is that tree selections with small values of
f (yi) (i.e. closer to the target values) have a higher probability. This ensures
that the selection with the highest probability will be the one that is
closest to fulfilling the pre-set thinning targets.

In order to run the Metropolis algorithm, we need a proposal distri-
bution, G( · | · ), which helps us identifying new thinning candidates
given a previous candidature, and a function p( · )/ P( · ). We chose
G( · | · ) as a function in which an element in yi is selected at random
from a uniform distribution, and the element value is switched (from 0

Table A1. Volume prices as a function of a tree’s
diameter over bark in breast height (DBH).

DBH (cm) SEK/m3fub

8 300
10 300
12 300
14 365
16 415
18 445
20 470
22 495
24 515
26 535
28 555
30 565
32 575
34 585
36 590
38 595
40 600
42 600
44 600
46 605
48 605
50 605
52 600
54 600
56 595
58 590
60 590

198 P. FRANSSON ET AL.



to 1 or vice versa), i.e. we select a tree at random and if the tree was pre-
viously selected for harvesting, we propose a new selection in which this
tree will remain after thinning, and vice versa. We let
p( · ) = exp (−f (yi )/T ), thus circumventing the problem of calculating
the sum in the denominator in (A2). The algorithm starts with an initial
guess y0. Given y0, we propose a new guess y∗ (a new selection) at
random from the distribution G(y∗|yi). If f (y∗) , f (y0), meaning y∗ is
closer to the thinning requirements. Then we accept y∗ as our new
guess y1. If this is not the case, then we decide by chance if we will
accept y∗ as our new guess. The probability of accepting y∗ is
a = p(y∗)/p(yi). This procedure is repeated until we reach the
maximum number of iterations, Nmax. The algorithm is outlined in
Figure A1.

Table A2. Functions and constants for stem tapering and volume.

Stem tapering and volume function

Dub,i = Dub,0 · RDub,i

100
(A3)

Volub =
	i
0 [p(0.01Dub,bRDub,i)

2Hdi] (A4)

Dub,0 ≈ 100
Dub,BH

RDub,1.3/H
(A5)

RDub,i =
R log [1+ (1− i)g], 1 ≥ i . 0.6
Q log [1+ (1− i)b], 0.6 ≥ i . iv
RDub,b − q log (1+ ai), iv ≥ i ≥ 0

⎧⎨
⎩ (A6)

iv = 0.08631

(1− F)0.5
(A7)

F ≈ 0.239+ 0.01046H − 0.003263Dub,BH + 0.4929fub/1000 (A8)

fub = 463.55+ 699.14/H + 34.36H/Dub,BH (A9)

Dub,BH = DBH − 0.2BT (A10)

BT = exp [m− k1H + k2 log (H)+ k3 log (DBH)+ k4Age− k5 log (Age)− k6Age2] (A11)

Stem tapering function constants

F β γ q Q R

0.5 - 1.671 16.104 – 103.06
0.55 0.62 1.422 14.883 286.36 140.91
0.6 1.594 1.976 13.784 131.04 127.89
0.65 3.240 2.906 12.906 102.7 110.68
0.7 6.320 3.759 12.099 76.543 105.23
0.75 13.036 4.026 11.321 59.096 112.59
0.8 32.012 3.593 10.340 45.754 134.76

Bark thickness function constants

m K1 K2 K3 K4 K5 K6
4.89838 0.02696 0.13091 0.79496 0.09884 2.16144 0.00050328

Note: α = 10,000 in the taper function.

Figure A1. Metropolis algorithm.
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