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Abstract. In general, multistage stochastic optimization problems are formulated on the basis
of continuous distributions describing the uncertainty. Such “infinite” problems are practically im-
possible to solve as they are formulated, and finite tree approximations of the underlying stochastic
processes are used as proxies. In this paper, we demonstrate how one can find guaranteed bounds,
i.e., finite tree models, for which the optimal values give upper and lower bounds for the optimal
value of the original infinite problem. Typically, there is a gap between the two bounds. However,
this gap can be made arbitrarily small by making the approximating trees bushier. We consider ap-
proximations in the first-order stochastic sense, in the convex-order sense, and based on subgradient
approximations. Their use is shown in a multistage risk-averse production problem.
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1. Introduction. In this paper, we consider a multistage stochastic optimiza-
tion problem of the form

(1.1) v(P ) := min
x0,...,xT

{E[Q(x0, ξ1, x1, . . . , ξT , xT )] : xt �Ft = σ(ξ1, . . . , ξt), xt ∈ Xt},

where Q(·) is some cost function, ξ = (ξ1, . . . , ξT ) is the stochastic scenario process
defined on a probability space (Ξ,F , P ), where Ξ = XTi=1Ξi and F = (F1, . . . ,FT )
is the filtration generated by projections of Ξ onto Xti=1Ξi for each t. The decision
process is x = (x0, . . . , xT ) and the notation xt � Ft means that xt is measurable
w.r.t. to Ft. This constraint is called the nonanticipativity constraint.1 Xt is the
set of constraints for the decision variables xt at stage t = 1, . . . , T , which may be
incorporated into the objective function Q by adding the convex indicator function

IXt(xt) =

{
0 if xt ∈ Xt,
∞ otherwise.

It is well known that in the case of a general nondiscrete process ξ, problem (1.1) is
unsolvable and some approximations are needed.

The goal of this paper is to show how one can construct finite processes ξ =

(ξ
1
, . . . , ξ

T
) and ξ = (ξ1, . . . , ξT ) with respective distributions P and P such that
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both processes ξ and ξ take only finitely many values and are tree processes.2 Then,

solving the main problem (1.1) for the finite tree probabilities P and P one gets for
the value function the inequality

(1.2) v(P ) ≤ v(P ) ≤ v(P )

for certain classes of cost functions Q. Small corrections of the bounds are allowed,
as presented in our main Proposition 3.5. Notice that the bounding tree processes
incorporate the nonanticipativity constraints by construction.

The procedure of approximation of the process ξ by tree processes is typically
known as the scenario tree generation. Many are the papers dealing with scenario
tree generation and the calculation of the approximation error associated with the
bounding approach. In this paper, we deal with scenario generation under dominance,
since our construction of “upper” and “lower” trees allows one to run the very same
optimization program on the two trees to get the bounds as error estimates.

Given the solutions of the problem on the two trees, we are also interested in find-
ing good solutions for the continuous problem. If the gap between the two solutions
is not sufficiently small, one may use finer approximations to improve the bounds. It
is assumed in this paper that arbitrarily many paths of the stochastic process ξ can
be generated. Our bounds are based on the realizations of a large number of sample
paths of ξ.

Review of existing literature. One way to obtain valid bounds is to replace
the solution of the original big stochastic optimization problem associated with a large
discrete scenario tree with an aggregation of repeated solutions of smaller problems.
These techniques are used in [2, 27] for two-stage stochastic programs and are ad-
dressed in [3, 9, 20, 21, 22, 28, 29] for the multistage ones. In addition, in [16] the
author elaborates an approximation scheme that integrates stage-aggregation and dis-
cretization through coarsening of sigma-algebras to ensure computational tractability,
while providing deterministic error bounds.

An alternative approach is to construct not just approximating scenario trees,
but upper and lower bounds for the optimal value of the original continuous problem
in terms of the underlying uncertainty. The advantage of this approach is that it can
be refined whenever the gap between the bounds is not sufficiently small.

Two-stage programs. For two-stage programs, the problem reduces to finding
good finite discretizations of a probability measure. Many authors have treated the
so-called generalized moment problem, i.e., to find extremals of sets of probability
measures, which are characterized by some but not full information, such as mo-
ments or expectations of other functions. Quite generally, Ermoliev, Gaivoronski,
and Nedeva [8] have shown that minimizing an expectation among all probabilities
fulfilling ` inequality constraints leads to an argmin probability with a support on
maximally `+ 1 points, i.e., one gets finite scenario models “automatically.” Bounds
on the expectation of a convex function are developed in [1, 4, 5, 6, 7] for the two-
stage case. In particular, in [6] Edirisinghe and Ziemba propose tight upper and lower
bounds in the case of multivariate random variables for two-stage stochastic programs
using first and cross moments, also considering the case of unbounded domains. Typ-
ically, however, the minimizing probability measure that sits on finitely many points
depends on the considered convex function. Our Example 2 shows such a situation.

2A process η = (η1, . . . , ηT ) is called a tree proces, if the conditional distribution of (η1, . . . , ηt−1)
given ηt is degenerated, i.e., sits on just one path for all ηt and all t.
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456 FRANCESCA MAGGIONI AND GEORG C. PFLUG

Multistage programs. In [5] Edirisinghe applies two-stage bounds-based distribu-
tional approximations (i.e., moment-based approximations derived as solutions to cer-
tain generalized moment problems) to a multistage stochastic linear program, relaxing
nonanticipativity constraints; however, nonanticipativity is regained progressively via
a disaggregation procedure. In [7] Edirisinghe and Ziemba propose tight upper and
lower bounds to stochastic convex programs in the specific case of random right-hand
sides. Using a constraint aggregation procedure, a group of stages from the end of the
multistage stochastic program are aggregated to form a single stage and error bounds
on the usual mean model are developed.

On the other hand, barycentric bounds that entail the construction of lower and
upper scenario trees were proposed in [10, 11] and also [12, 15]. These authors ob-
served that for convex minimization problems in both the random parameters and
decision variables, one has to concentrate the probability mass on the barycenters of
the partition covering the support of the distribution (a discretization of the under-
lying probability space) to get a lower bound. This is justified by Jensen’s inequality.
For concave functions in the random parameters, one has to distribute the proba-
bility mass to the extreme points to get a lower bound, which is a generalization
of the Edmundson–Madansky inequality. Let us call these methods balayage.3 It
means that the probability mass is swept as if by a broom (in French, balai) either
in the center of the domain or at its corners. Such an approach (without naming it
balayage) appears in [11, 12]. These authors considered a mixed type of objective,
which is concave in one random variable, say η, and convex in another one, say ξ, and
assumed that they follow a block-diagonal auto-regressive process. For upper bounds,
one has to use the balayage measure for the convex part and the barycentric measure
for the concave part. In contrast, the barycentric measure for the convex part and
the balayage measure for the concave part provide a lower bound. The bounds can be
made arbitrarily tight by successively partitioning the domain of the random vectors,
typically by simplices. In [12] the authors discretized the conditional distributions
and in a second step the transition probabilities were combined to form a discrete
scenario tree. We demonstrate in Examples 5 and 6 that if the conditions required
in [11, 12] on the random process are not satisfied, this leads to an approximation
but not to a valid bound. In [15] barycentric discretizations were adopted in a more
general setting investigating convex multistage stochastic programs with a generalized
nonconvex dependence on the random variables.

The novelty of our approach. In this paper, we generalize the well-known
bounding ideas of the balayage [10, 11, 12, 15] to not necessarily Markovian scenario
processes and derive valid lower and upper bounds for the monotonic and convex cases
in both the random parameters and decision variables.

We construct new discrete trees directly from the simulated data of the whole
scenario process and not from the discretization of the conditional distributions as
done before in the literature, e.g., in [7] and [10], by means of the concept of stochastic
dominance of probability measures. We show in Example 5 that it is not sufficient
to use a stepwise procedure of discretizing first the distribution of ξ1 and then the
conditional distributions ξ2 given the previously determined finitely many values for
ξ1 to get a valid bound.

By constructing upper and lower trees, we take care of the fact that the scenario
tree approximation keeps the nonanticipativity requirements of the original problem.

3The word “balayage” was introduced by Choquet; see, for instance, [23].
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Our bounds are the optimal values of the problem at hand on finite scenario trees
and therefore are easy to get without changing the optimization model. Moreover, we
relate the solution of the approximating tree to the solution of the original continuous
problem and vice versa; that is by solving the upper and lower tree approximations, we
automatically get ε-solutions, i.e., near optimal solutions for the original problem. We
use rectangles and not simplices for the dissection of the range of the scenario process.
While for a fixed stage, if the ξ1 takes values in Rm, then the range may be dissected
into simplices, if we consider two subsequent stages, we always use rectangles, i.e.,
sets of the form S1 × S2, where S1 and S2 are simplices. However, to make the
notation simple, we consider here the case in which all ξt are univariate, i.e., the
simplices are intervals. If [a1, a2] is an interval for ξ1 and [b1, b2] is an interval for ξ2,
then [a1, a2]× [b1, b2] is the rectangle for [ξ1, ξ2]. Notice that points in the interior of
rectangles do not have a unique representation as a convex combination of the corners,
but for nonanticipative reasons we use product weights, as is explained later.

We review here a basic approximation result proved in [26], which will be needed
later.

Theorem 1.1. Suppose that Q(x0, ξ1, x1, . . . , ξT , xT ) is convex in all x and Lips-
chitz with Lipschitz constant L in ξ. Then the approximation error expressed in terms
of the absolute difference in optimal values |v(P )− v(P̃ )| can be bounded by

(1.3) |v(P )− v(P̃ )| ≤ L · d(P, P̃ ),

where d(P, P̃ ) is the nested distance between the two scenario models P and P̃ .
More generally, if the expectation E in (1.1) is replaced by a distortion functional

R(Y ) =
´ 1

0
F−1
Y (u)h(u) du, with FY being the distribution function of Y and h being

the nonnegative distortion function, then the assertion changes to

(1.4) |v(P )− v(P̃ )| ≤ L · sup
0≤u≤1

h(u) · d(P, P̃ ).

Remark. The (upper) average value-at-risk (conditional value-at-risk, expected
shortfall)

AV@Rα(Y ) = min

{
q +

1

1− α
E[Y − q]+ : q ∈ R

}
is a distortion functional with

h(u) =
1

1− α
1α≤u≤1,

where 1 is the indicator function and thus in (1.4) we have sup0≤u≤1 h(u) = (1−α)−1.

For the exact definition and properties of the nested distance d(P, P̃ ) we refer
the reader to the book [26]. The nested distance is based on minimal transportation
costs between the scenario processes ξ and ξ̃. Let us mention here that any feasible
transportation plan between the two processes leads to an upper bound in (1.3). Thus
a possible way of obtaining upper and lower bounds is as follows:

1. Find a finite scenario process ξ̃ with distribution P̃ and a feasible4 trans-
portation plan π between the infinite process ξ and the finite process ξ̃.

2. Solve the finite problem and find v(P̃ ).

4A transportation plan is feasible if it respects the filtration structure; see [26].
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3. According to Theorem 1.1 the bounds are then given by

(1.5) v(P̃ )− L · dπ(P, P̃ ) ≤ v(P ) ≤ v(P̃ ) + L · dπ(P, P̃ ),

where dπ is the distance calculated with the transportation plan π. Obviously
the best bounds are obtained for the optimal transportation plan, which
defines the nested distance, but any other transportation plan also leads to
guaranteed bounds.

However, it turns out that the bounds given in (1.5) are not very tight because
they do not use the stochastic dominance properties of probability measures, when
they are available. In this paper, however, we exploit these properties extensively.

The paper is organized as follows. In section 2 we describe the principles of
bounding for two-stage stochastic optimization problems. Section 3 contains the main
results for the multistage situation based on first-order and convex-order stochastic
dominance. An example of the construction of upper and lower trees is contained in
section 4. In section 5 we illustrate how to close the gap between upper and lower
bounds. Finally, we report numerical results on a multistage production problem in
section 6 and conclude the paper with section 7.

2. Bounding two-stage stochastic optimization problems. We consider
two-stage stochastic optimization problems where the cost function in (1.1) is of the
form Q(x0, ξ1, x1) containing just one single random variable ξ ≡ ξ1. We assume here
and in the following that the decisions x take values in Rd, while the random variables
ξ take values in Rm.

We recall the definition of first-order stochastic dominance and convex dominance
that will be useful for providing the bounds proposed in the paper.

Definition 2.1 (stochastic dominance). Let P , P̃ , and P̄ be probability distribu-
tions on Rm. Consider the following stochastic dominance relations.

(i) First-order stochastic dominance (FSD). P is dominated by P̃ in the first-
order sense, and we write

P ≺FSD P̃ ,

if
´
f(u) dP (u) ≤

´
f(u) dP̃ (u) for all nondecreasing integrable real-valued

functions f , i.e., for functions f for which u′ ≤ u′′ (componentwise) implies
that f(u′) ≤ f(u′′).

(ii) Convex stochastic dominance (CXD). P is dominated by P̄ in the convex-
order sense, and we write

P ≺CXD P̄ ,

if
´
f(u) dP (u) ≤

´
f(u) dP̄ (u) for all convex integrable f .

The relation ≺CXD is also known by the names Bishop–de Leeuw ordering or
Lorenz dominance. More details about order relations can be found in [24]. Typi-
cally, probabilities being smaller in convex ordering can be obtained by concentrating
the mass on the expectation (by virtue of using Jensen’s inequality [14]) and prob-
abilities being larger in convex ordering are obtained by moving the masses in a
mean-preserving way to the boundaries of the convex hull of the support of P (the
balayage as is done in the Edmundson–Madansky inequality [18, 19]). These simple
(and well-known) facts are the basis of the results of this paper.
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2.1. Bounds based on convex order for two-stage stochastic optimiza-
tion problems.

Lemma 2.2. Suppose the probability measure P can be written as P =
∑
i wiPi,

where wi are nonnegative weights with
∑
i wi = 1 and Pi are probability measures.

Then

(2.1) P :=
∑
i

wiδzi ≺CXD P,

where δzi is the point mass associated with the barycenter zi = E(Pi) of Pi.

Proof. Let f be convex and integrable. Thenˆ
f(u) dP (u) =

∑
i

wi

ˆ
f(u)dPi(u) ≥

∑
i

wif(E(Pi)) =

ˆ
f(u) dP (u).

Thus, if the support of the probability P , say Ξ, is partitioned into a finite union
of disjoint sets, Ξ =

⋃
iAi, and Pi are the conditional probabilities given Ai, i.e.,

Pi(B) = P (B ∩ Ai)/pi with pi = P (Ai), and if zi = E(Pi) are the barycenters, then∑
i piδzi≺CXDP (see Figure 2.1 for an example).
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Fig. 2.1. Example of a partition of a 2-dimensional support Ξ of P into a finite union of
disjoint sets Ai such Ξ =

⋃
i Ai with expectation E(Pi).

To get the inverse relation, suppose that the support of P is contained in the
union of closed convex polyhedral sets Ai such that their interiors are disjoint. Ai is
the convex hull of its extremal points, say {ei1, . . . , eiKi}. Each point u in the set Ai
can be written as

(2.2) u =
∑
k

wik(u)eik
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with wik(u) ≥ 0 and
∑
k w

i
k(u) = 1. If the Ai’s are simplices, then the representation

in (2.2) is unique, but uniqueness is not required here (see Figure 2.2 for an example).
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Fig. 2.2. Example of a partition of a 2-dimensional support Ξ of P into a finite union of
disjoint sets Ai such Ξ =

⋃
i Ai with extremal points {ei1, . . . , eiki} and P̄i a discrete nonnegative

measure sitting on the extremals of Ai.

Lemma 2.3. Let Pui =
∑
k w

i
k(u)δeik

5 (where the weights are defined in (2.2))

and let P̄i =
´
Ai
Pui dP (u), which is a discrete nonnegative measure sitting on the

extremals of Ai. Notice that the barycenter of Pui is u ∈ Ai. Let P̄ =
∑
i P̄i. Then P̄

is a probability measure with the property that P ≺CXD P̄ .

Proof. Let f be convex and integrable. Thenˆ
f(u) dP̄ (u) =

∑
i

ˆ
Ai

f(u) dP̄i(u) =
∑
i

ˆ
Ai

∑
k

f(eik)wik(u)dP (u)

≥
∑
i

ˆ
Ai

f

(∑
k

wik(u)eik

)
dP (u) =

∑
i

ˆ
Ai

f(u) dP (u)

=

ˆ
f(u)dP (u).

Remark (some facts about convex order on intervals). Let the probability P be
concentrated on the interval [a1, a2] and have mean µ. It is well known that the
one-point lower bound P and upper bound P are

(2.3) P = δµ and P =
a2 − µ
a2 − a1

δa1 +
µ− a1

a2 − a1
δa2 .

5As before δy is the point mass at y.
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Notice that, for any affine function f ,

ˆ
f(u) dP (u) =

ˆ
f(u) dP (u) =

ˆ
f(u) dP (u).

One might conjecture that there may be nice lower approximations based on convex
order such that equality holds even for quadratic functions, possibly by allowing the
lower bound to sit on two points. The answer however is negative, as can be seen
from the following example.

Example 1. Let P be the uniform distribution on [0, 1]. In order that a discrete
distribution in [0, 1] has second moment 1/3 (as the uniform distribution) it has to
sit with probability 1/2 on the points 1/2 −

√
1/12 and 1/2 +

√
1/12. Call this

distribution P1. However, P1 is not dominated according to the convex stochastic
sense by P , since taking the function f(u) = (1− 2u)+ we have

ˆ 1

0

(1− 2u)+ dP1 = 0.288 >

ˆ 1

0

(1− 2u)+ dP (u) = 0.25.

One may also see that lower bounds for
´
f(u) dP (u), under additional con-

straints than just the expectation constraint, may depend on f . Consider the following
example.

Example 2. Let the set of admissible probabilities P be discrete distributions
sitting on at most three points in [0, 1] such that the expectation is 1/2 and the
second moment is 1/3. Denote by #(supp(P )) the cardinality of the support of P .
We may show that the problem

argmin

{ˆ 1

0

u4 dP (u) : #(supp(P )) ≤ 3,

ˆ 1

0

u dP (u) = 1/2;

ˆ 1

0

u2 dP (u) = 1/3

}
has as solution P = 1/2δa + 1/2δ1−a with a = 1/2−

√
1/12. On the other hand, the

problem

argmin

{ˆ 1

0

− sin(u) dP (u) :

#(supp(P )) ≤ 3,

ˆ 1

0

u dP (u) = 1/2;

ˆ 1

0

u2 dP (u) = 1/3

}
has as a solution P = 1/6δ0 + 2/3δ1/2 + 1/6δ1.

This means that solving the generalized moment problem as in [4, 6, 7] will give a
bound for a specific fixed integrand, but not a dominating measure as in our approach.

Coming back to the case of a probability P on a general interval [a1, a2], if in
addition to the constraint that the expectation is µ one requires that the respective
lower and upper probabilities P and P satisfy

ˆ a2

a1

|u− µ| dP (u) =

ˆ a2

a1

|u− µ| dP (u) =

ˆ a2

a1

|u− µ| dP = d

and ˆ a2

µ

dP (u) =

ˆ a2

µ

dP (u) =

ˆ a2

µ

dP = β,
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then the solution is easily found: one has to consider the subintervals [a1, µ] and [µ, a2]
and find the two lower and upper bounds as in (2.3) for the two intervals and put
them together for a lower bound (which then sits on two points) and an upper bound
(which then sits on three points). Doing so, the lower bound is

P = (1− β)δµ− d
2(1−β)

+ βδµ+ d
2β
,

while the upper bound is

P =
d

2(µ− a1)
δa1 +

(
1− d

2(µ− a1)
− d

2(a2 − µ)

)
δµ +

d

2(a2 − µ)
δa2 .

See Ben-Tal and Hochman [1] for the same result obtained in a different way. Notice
that the refined bounds are simply obtained by dissecting the interval [a1, a2] into two
subintervals [a1, µ] and [µ, a2]. Thus the refined bounds proposed in [1] appear in a
natural way when the interval dissection is refined, and therefore they are included in
our approach.

Remark (orderings of probability measures and risk functionals). If f is nonde-
creasing and real valued, then P ≺FSD P̃ implies that P f ≺FSD P̃ f , where P f and
P̃ f are the respective image measures under f . Thus, if a risk measure ρ is monotonic
w.r.t. ≺FSD, then P ≺FSD P̃ and u 7→ Q(x, u) nondecreasing for all x implies that
ρP (Q(x, ·)) ≤ ρP̃ (Q(x, ·)). Hence also infx ρP (Q(x, ·)) ≤ infx ρP̃ (Q(x, ·)).

Likewise, if f is convex and real valued, then P ≺CXD P̄ implies that P f ≺CXD
P̄ f , where P f and P̄ f are the respective image measures under f . Thus, if a risk
measure ρ is monotonic w.r.t. second-order stochastic dominance, then P ≺CXD
P ′ and u 7→ Q(x, u) convex and nondecreasing for all x implies that ρP (Q(x, ·)) ≤
ρP̄ (Q(x, ·)). Hence, also infx ρP (Q(x, ·)) ≤ infx ρP̄ (Q(x, ·)).

3. Bounding multistage stochastic optimization problems. We consider
now a multistage stochastic optimization problem of the form (1.1), where the un-
certainty is described by a stochastic process ξ = (ξ1, . . . , ξT ). This process is char-
acterized by P1, the distribution of ξ1, and the conditional distributions ξt|(ξ1 =
u1, . . . , ξt−1 = ut−1) for all t > 1, denoted by Pt(·|u1, . . . , ut−1). As already men-
tioned in the introduction, our goal is

(i) to find tree processes P̄ and P such that with the value function v as in (1.1)
we have

v(P ) ≤ v(P ) ≤ v(P̄ ),

or with a possible small correction term ε,

v(P )− ε ≤ v(P ) ≤ v(P̄ ) + ε;

(ii) to be able to construct refinements of these bounds by considering bushier
trees, if the gap is considered too large;

(iii) to find approximate solutions for the infinite problem (1.1) based in the so-
lutions of the finite problem without solving the infinite problem.

3.1. Bounds based on first-order dominance. Stochastic first-order dom-
inance given in Definition 2.1 may be broken down in a multistage setting to the
conditional distributions. To this end, we introduce the following definition.
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Definition 3.1. We say that a process ξ is totally monotone if the conditional
distributions satisfy

ξt|(ξ1 = u′1, . . . , ξt−1 = u′t−1) ≺FSD ξt|(ξ1 = u′′1 , . . . , ξt−1 = u′′t−1)

whenever u′1 ≤ u′′1 , . . . , u′t−1 ≤ u′′t−1.6

Lemma 3.2. Let the two processes ξ and ξ̃ be totally monotone. Let in addition

(3.1) ξt|(ξ1 = u1, . . . , ξt−1 = ut−1) ≺FSD ξ̃t|(ξ̃1 = u1, . . . , ξ̃t−1 = ut−1).

Then P ≺FSD P̃ .

Proof. Let f be monotonic in all arguments and let P and P̃ be the two probability
distributions associated with the totally monotone processes ξ and ξ̃, which satisfy
(3.1). Consider

fT−1(u1, . . . , uT−1) :=

ˆ
f(u1, . . . , uT ) dP (uT |u1, . . . , uT−1)

and

f̃T−1(u1, . . . , uT−1) :=

ˆ
f(u1, . . . , uT ) dP̃ (uT |u1, . . . , uT−1).

Then fT−1 and f̃T−1 are monotonic in (u1, . . . , uT ) and by assumption fT−1 ≤ f̃T−1.
With a similar argument,

fT−2(u1, . . . , uT−2) :=

ˆ
f(u1, . . . , uT−1) dP (uT−1|u1, . . . , uT−2),

and the analogously defined f̃T−2 are again monotonic and satisfy fT−2 ≤ f̃T−2.
Continuing the integration to the end, one gets that

ˆ
f(·) dP (·) ≤

ˆ
f(·) dP̃ (·).

If the cost function Q(x0, ξ1, x1, . . . , ξT , xT ) is monotonic in (ξ1, . . . , ξT ), we can
apply Lemma (3.2) to problem (1.1) to construct upper bounds.

Example 3. Consider the following multistage stochastic optimization problem
with linear constraints in x:

min

{
c0(x0) + E

[ T∑
t=1

ct(xt, ξt)

]
: x ∈ X

}
,

6These are stronger assumptions than those introduced in the previous papers [13] and [17].
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where the feasible set X is given by

W0x0 ≥ h0,

A1 x0 +W1 x1 ≥ h1(ξ1),

A2 x1 +W2 x2 ≥ h2(ξ2),

...

AT xT−1 +WT xT ≥ hT (ξT ),(3.2)

x1 � F1,

...

xT � FT .

Then if u 7→ ht(u) and u 7→ ct(xt, u) are monotonically nondecreasing, then the cost
function Q(x0, ξ1, x1, . . . , ξT , xT ) is monotonic in (ξ1, . . . , ξT ). In addition, if c0 and
ct are monotonic in x and Wt are nonnegative, then Q(x0, ξ1, x1, . . . , ξT , xT ) is also
monotonic in x. For later use we may also state that if (x, u) 7→ ct(x, u) and u 7→ ht(u)
are convex for all t, then the cost function Q(x0, ξ1, x1, . . . , ξT , xT ) is jointly convex
in all arguments.

In the following, we elaborate the method for a three stage model; the gen-
eralization to more stages can be done analogously, but the notation is more in-
volved. Suppose that (ξ1, ξ2) take their values in a rectangle Ξ = [L1, U1] × [L2, U2].
Let L1 = a1 < a2 < · · · < ama+1 = U1 and, for each i = 1, . . . ,ma + 1, let
L2 = bi,1 < bi,2 < · · · < bi,mb+1 = U2. Define the rectangles Ai,j = [ai, ai+1] ×
[bi,j , bi,j+1], i = 1, . . . ,ma, j = 1, . . . ,mb. We assume that the scenario distribution
(ξ1, ξ2) has a density and therefore it does not matter that the rectangles are not
disjoint. Define pi,j = P (Ai,j). Let the finite tree process ξ̃ = (ξ̃1, ξ̃2) take in each

rectangle Ai,j the upper value ξ̃1 = ai+1 with probability
∑
j pi,j and the value on

the right ξ̃2 = bi,j+1 with probability pi,j/
∑
j pi,j conditional on ξ̃1 = ai+1. Then

ξ̃ = (ξ̃1, ξ̃2) := (ai+1, bi,j+1) is a finite tree process P̃ for which we solve the basic

problem (1.1). Let the respective solutions be x̃i1 and x̃i,j2 . We extend this to a
decision function on Ξ by setting

x̃1(u1) = x̃i1 when u1 ∈ Ai:= [ai, ai+1]

and
x̃2(u1, u2) = x̃i,j2 when (u1, u2) ∈ Ai,j .

We get

v(P̃ ) =

ˆ
Q(x0, u1, x̃1, u2, x̃2) dP̃ (u1, u2)

=
∑
i,j

pi,jQ(x0, ai+1, x̃
i
1, bi,j+1, x̃

i,j
2 )

≥
∑
i,j

ˆ
Ai,j

Q(x0, u1, x̃
i
1, u2, x̃

i,j
2 ) dP (u1, u2)

=
∑
i,j

ˆ
Ai,j

Q(x0, u1, x̃1(u1), u2, x̃2(u1, u2)) dP (u1, u2)

=

ˆ
(Q(x0, u1, x̃1(u1), u2, x̃2(u1, u2)) dP (u1, u2) ≥ v(P ).
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For establishing a lower bound we use the same setup as before. Let the finite
tree process ξ˜ = (ξ˜1, ξ˜2) take in each rectangle Ai,j the lower value ξ˜1 = ai with

probability
∑
j pi,j and the value on the left ξ˜2 = bi,j with probability pi,j/

∑
j pi,j

conditional on ξ˜1 = ai. Then ξ˜ = (ξ˜1, ξ˜2) := (ai, bi,j) is a finite tree process P˜ for

which we solve the basic problem (1.1). Furthermore, we have to assume that the
function Q(x0, ξ1, x2, . . . , ξT , xT ) is also monotonic in the x-variables. If x∗1(u1) and
x∗2(u1, u2) are the solutions of the infinite problem, we set

x+
1 (ai) = min

u1∈Ai
x∗1(u1),

x+
2 (ai, bi,j) = min

(u1,u2)∈Ai,j
x∗2(u1, u2).

Since these are feasible but not necessarily optimal solutions, we get, by the assumed
monotonicity,

v(P ) =

ˆ
Q(x0, u1, x

∗
1(u1), u2, x

∗
2(u1, u2)) dP (u1, u2)

≥
∑
i,j

ˆ
Ai,j

Q(x0, u1, x
+
1 (ai), u2, x

+
2 (ai, bi,j)) dP (u1, u2) ≥ v(P˜).

Notice that we have not only bounded the objective value, but also found an ε-solution
for the continuous problem if ε is the gap between the upper and the lower bound.

3.2. Bounds based on convex dominance. In this section we provide bounds
based on convex dominance for multistage stochastic programs. One might conjecture
that for two scenario processes, Pt(ut|u1, . . . , ut) ≺CXD P̄t(ut|u1, . . . , ut) for all t and
all (u1, . . . , uT ) is sufficient to entail P ≺CXD P̄ . However this is not true, as the
following example shows.

Example 4. Let ξ1 ∼ N(0, σ2
1) and ξ2|ξ1 ∼ N(exp(−ξ2

1/4), σ2
1). Similarly, ξ̄1 ∼

N(0, σ2
2) and ξ̄2|ξ̄1 ∼ N(exp(−ξ̄2

1/4), σ2
2). If σ1 < σ2, then ξ1 ≺CXD ξ̄1 and also

(ξ2|ξ1 = x) ≺CXD (ξ̄2|ξ̄1 = x) for all x. But (ξ1, ξ2) 6≺CXD (ξ̄1, ξ̄2), as can be seen
from the second moments of ξ2. Choose, e.g., σ1 = 1/2, σ2 = 1. Then

E(ξ2
2) = σ2

1 +
√

1/σ2
1 + 1/σ4

1 = 4.7221 > 2.4142 = σ2
2 +

√
1/σ2

2 + 1/σ4
2 = E(ξ̄2

2).

Notice also that a convex-order dominating discrete probability cannot be found
by choosing dominating discretizations for first components and for all conditional
distributions of the second component and concatenating them together, as as the
next example shows.

Example 5. Suppose that ξ1 is distributed according to Uniform[0, 1] and that
ξ2|ξ1 is distributed according to Uniform[ξ1(1 − ξ1), ξ1(1 − ξ1) + 1]. Let ξ̄1 take the
values 0 and 1, each with probability 1/2. Then ξ̄1 dominates ξ1 in convex order.
Likewise, for each u, let ξ̄2(u) take the values u(1 − u) and u(1 − u) + 1, each with
probability 1/2. Then the conditional distributions ξ2|ξ1 = u are dominated by ξ̄2(u)
for all u. But, if concatenating ξ̄1 with the conditional distributions ξ̄2(u), only the
conditional distributions for u = 0 and u = 1 are used, and one obtains that (ξ̄1, ξ̄2)
has a distribution that sits on all 4 edges of the unit square with equal probabilities
1/4. But this is not a convex dominant of (ξ1, ξ2), since

E(ξ2
2) = 16/30 > E(ξ̄2

2) = 1/2.
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The same example shows that concatenating lower bound approximations for the
conditional probabilities does not lead to a lower bound approximation for the total
probability. That is why, in our procedure, the full multistage sample is used to
generate the bounding trees and not just the conditional distributions. Notice that
this does not provide a counterexample for [11, 12], since in our example ξ2 depends
on ξ1 in a very nonlinear way. On the contrary, in [11] the authors assume that the
ξt are mutually independent, and the authors of [12] assume that the ξt follow an
autoregressive process (linear dependence on the past).

Again, we concentrate here on three-stage programs, noticing that the gener-
alization to more stages is straightforward, but needs complicated notation. Let
(ξ1, ξ2) 7→ Q(x0, ξ1, x1, ξ2, x2) be a convex function and let P be a probability mea-
sure on a bounded rectangle in R2. Notice that the extension to Rm×Rm is obvious,
so we omit it. As in (1.1), F1 is the σ-algebra generated by the first component in R2

and F is a Borel σ-algebra of R2. Our problem is to find

(3.3) v(P ) = min
x0,x1,x2

EP [Q(x0, ξ1, x1(ξ1), ξ2, x2(ξ1, ξ2))],

where x0 is deterministic, x1 is measurable w.r.t. F1, and x2 is measurable w.r.t. F .

3.2.1. Upper tree approximation based on convex-order stochastic dom-
inance. Upper bounds for minimization problems are always easy to obtain, since
every feasible solution constitutes an upper bound. If the basic problem P contains
continuous distributions, but the approximating problem P̄ is discrete, then one has
to construct a feasible solution for P out of one for P̄ . Suppose that P̄ is a scenario
tree with values zi1 in the second stage and zi,j2 in the third stage and x̄i1 and x̄i,j2

are its discrete solutions of the problem with P̄ as the distribution of the scenario
process. Then by any reasonable extension function one may construct a solution for
the continuous problem (3.3), for instance by setting

x̄1(ξ1) = x̄i1 if zi1 is the point that is closest to ξ1,

x̄2(ξ1, ξ2) = x̄i,j2 if (zi1, z
i,j
2 ) is the point that is closest to (ξ1, ξ2).

Obviously,

min
x0,x1(·),x2(·)

EP [Q(x0, ξ1, x1(ξ1), ξ2, x2(ξ1, ξ2))] ≤ EP̄ [Q(x0, ξ1, x̄1(ξ1), ξ2, x̄2(ξ1, ξ2))].

That is, any extension of a solution of any tree process P̄ leads to a valid upper bound.
However, notice that one has to evaluate the objective function for the scenario process
P and the solution x̄ in order to get the value of the upper bound.

We aim, however, at finding an upper bound, which can be calculated on a finite
tree without evaluating the continuous problem. A construction similar to the one
for P̄ in the two-stage case may be used.

Suppose that (ξ1, ξ2) take their values in a rectangle Ξ = [L1, U1]× [L2, U2]. Let
L1 = a1 < a2 < · · · < ama+1 = U1 and, for each i, let L2 = bi,1 < bi,2 < · · · <
bi,mb+1

= U2 as before. Define the rectangles Ai,j = [ai, ai+1] × [bi,j , bi,j+1], i =
1, . . . ,ma, j = 1, . . . ,mb. We assume that the scenario distribution (ξ1, ξ2) has a
density and therefore it does not matter that the rectangles are not disjoint. From
now on, we use the notation ei,jk for the four corners k = 1, . . . , 4 of the rectangle Ai,j ,
irrespective whether these are ai’s or bi,j ’s.

Notice there are infinitely many ways to represent a point in a rectangle as a
convex representation of the corners. However, if the rectangle represents the intervals
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for the second and the third stages, we will use a product form for the weights,
which implies that the weights for ξ1 do not depend on ξ2: let a typical rectangle be
Ai,j = [ai, ai+1]× [bi,j , bi,j+1]. Then, defining as in (2.3)

wai(ξ1) =
ai+1 − ξ1
ai+1 − ai

, wai+1(ξ1) =
ξ1 − ai
ai+1 − ai

,

for ai ≤ ξ1 ≤ ai+1 one has ξ1 = wai(ξ1)ai + wai+1
(ξ1)ai+1, and similarly for bi,j ≤

ξ2 ≤ bi,j+1. Then, for (ξ1, ξ2) in the rectangle Ai,j the weights are(
ξ1
ξ2

)
= wai(ξ1)wbi,j (ξ2)

(
ai
bi,j

)
+ wai+1

(ξ1)wbi,j (ξ2)

(
ai+1

bi,j

)
+wai(ξ1)wbi,j+1

(ξ2)

(
ai

bi,j+1

)
+ wai+1

(ξ1)wbi,j+1
(ξ2)

(
ai+1

bi,j+1

)
.(3.4)

In general notation, denoting the four corners by ei,j1 , ei,j2 , ei,j3 , ei,j4 we may equiva-
lently write

(ξ1, ξ2) =

4∑
i=1

wei,jk
(ξ1, ξ2)δei,jk

.

The contribution of the probability P with the weights on the corners is

wi,jk =

ˆ
Ai,j

wei,jk
(u1, u2) dP (u1, u2).

The numerical calculation of these integrals is nearly impossible, and therefore we
replace the exact calculation by a Monte Carlo integration: if (ξ(i), . . . , ξ(N)) are N
replications of samples from the stochastic process ξ, then the weights are defined as

wi,jk =

N∑
n=1

wei,jk
(ξ

(n)
1 , ξ

(n)
2 )1

(ξ
(n)
1 ,ξ

(n)
2 )∈Ai,j

.

Let Pi,j be the distribution P conditioned on the set Ai,j , i.e.,

Pi,j(D) =
1

pi,j
P (Ai,j ∩D),

with pi,j = P (Ai,j) and D any measurable set. We have that

P =
∑
i,j

pi,jPi,j .

Let P̄i,j be a probability measure sitting on the extremals (the corners) of Ai,j such
that Pi,j ≺CXD P̄i,j , as is constructed in Lemma 2.3. Then P ≺CXD P̄ by the
following lemma.

Lemma 3.3. If Pi,j ≺CXD P̄i,j for all i, j and

P =
∑
i,j

pi,jPi,j and P̄ =
∑
i,j

pi,jP̄i,j ,

then
P ≺CXD P̄ .
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Proof. Let f be convex. Then

EP (f) =
∑
i,j

pi,jEPi,j (f) ≤
∑
i,j

pi,jEP̄i,j (f) = EP̄ (f).

P̄ is a tree process and one may find the solution of the optimization problem
on this tree. Let x∗1(eik) and x∗2(ei,jk ) be a solution of this problem sitting on the

nodes eik, e
i,j
k of the tree. We construct a continuous extension of this solution, i.e.,

a nonanticipative solution x∗1(ξ1) and x∗2(ξ1, ξ2) for arbitrary values of the process
(ξ1, ξ2). If (ξ1, ξ2) ∈ Ai,j , then (ξ1, ξ2) =

∑
k w

i,j
k (ξ1, ξ2)ei,jk , while by construction

ξ1 =
∑
k w

i
k(ξ1)eik with wik(ξ1) =

∑
j w

i,j
k (ξ1, ξ2). Set x̄1(ξ1) =

∑
k w

i
k(ξ1)x∗1(eik) and

x̄2(ξ1, ξ2) =
∑
k w

i,j
k (ξ1, ξ2)x∗2(ei,jk ). By construction

v(P̄ ) = EP̄ [Q(x0, ξ1, x
∗
1, ξ2, x

∗
2)] ≥ EP [Q(x0, ξ1, x̄1(ξ1), ξ2, x̄2(ξ1, ξ2))].

That is, the constructed continuous solution leads to a lower bound for the objective
function. By replacing this solution with the optimal solution x∗1(ξ1), x∗2(ξ1, ξ2) of
the continuous problem, we see that v(P̄ ) ≥ v(P ), showing that we found a valid
upper bound. Notice that the constructed continuous solution is an ε-solution for the
continuous problem, if ε is the gap between the upper and the lower bound.

We finally illustrate the fact that upper bounds may be wrongly calculated when
one concentrates the tree construction on conditional distributions by the following
simple, but instructive, example.

Example 6. Let ξ1 be distributed according to Uniform[0, 1] and let the condi-
tional distribution ξ2|ξ1 be distributed according to Beta(0.01 + 0.36 · ξ1(1− ξ1), 0.3).
We consider the optimization problem

(3.5) v(P ) := min
x
{E(ξ2 − x)2 : x is measurable w.r.t. ξ1}.

Evidently, the minimal value v(P ) is the expected conditional variance of ξ2 given ξ1,
i.e., E(V ar(ξ2|ξ1)). A numerical calculation shows that v(P ) = 0.1065. Now, finding
the upper tree P̃ , given by ξ̃ = (ξ̃1, ξ̃2) by finding first the upper probability ξ̃1 sitting
on 0 or 1 and then the upper probability ξ̃2 given that ξ̃1 = 0 or 1, results in

P (ξ̃1 = 0) = P (ξ̃1 = 1) = 0.5, P (ξ̃2 = 0|ξ̃1) = 0.9678, P (ξ̃2 = 1|ξ̃1) = 0.0322.

However, constructing the tree P̄ , given by ξ̄ = (ξ̄1, ξ̄2) according to our method, we
get

P (ξ̄1 = 0) = P (ξ̄1 = 1) = 0.5, P (ξ̄2 = 0|ξ̄1) = 0.5655, P (ξ̄2 = 1|ξ̄1) = 0.4345.

Solving problem (3.5) for the tree P̃ gives the value v(P̃ ) = 0.0312, whereas solving
the same problem for the tree P̄ leads to the value v(P̄ ) = 0.2437. Thus, the wrong
construction P̃ does not result in an upper bound, while the correct construction P̄
does.

Again notice that Example 6 does not provide a counterexample to [11, 12] since
in [11] the authors assume that the ξt are mutually independent, and the authors of
[12] assume that the ξt follow an autoregressive process (linear dependence on the
past).
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3.2.2. Lower tree approximation based on convex-order stochastic dom-
inance. The problem of finding lower bounds is slightly more involved than finding
the upper bounds. We refer to the same construction of rectangles as before. Let
zi,j = (zi,j1 , zi,j2 ) be the barycenter of Pi,j and let P i,j = δzi,j .

By construction, P i,j ≺CXD Pi,j and by Lemma 3.3, P ≺CXD P .

Let FA be the σ-algebra generated by the sets Ai,j . Notice that for all integrable
functions f ,

E[f(ξ1, ξ2)|FA] =
∑
i,j

EPi,j (f)1Ai,j .

We now distinguish two cases.
• Case I. Conditionally on Ai, ξ2 is independent of ξ1.
• Case NI. The independence assumption is not satisfied.

Case I. In this case, the conditional expectations given Ai,j of all functions that
only depend on the first component ξ1 do not depend on j; in particular, zi,j1 = zi1 do
not depend on j.

The following proposition holds true in this case.

Proposition 3.4. Let P be the tree constructed using zi1 and zi,j2 with scenario
probabilities pi,j. Then v(P ) ≤ v(P ).

Proof. Let x1(ξ1), x2(ξ1, ξ2) be a solution of the infinite problem. Then

v(P ) = EP [Q(x0, ξ1, x1(ξ1), ξ2, x2(ξ1, ξ2))]

= EP
[
EP
[
Q (x0, ξ1, x1(ξ1), ξ2, x2(ξ1, ξ2)) |FA

]]
≥ EP

[
Q
(
x0,E(ξ1|FA),E(x1|FA),E(ξ2|FA),E(x2|FA)

)]
= EP

[
Q
(
x0, z

i
1, x

i
1, z

i,j
2 , xi,j2

)]
≥ v(P ),

where xi1 = E(ξ1|Ai) and xi,j2 = E(ξ2|Ai,j). The last inequality comes from the fact
that we have constructed a feasible solution for P , but this need not be the optimal
one. However, its optimal solution leads to a further lower bound for the problem
with P as the scenario process. Therefore P is a lower tree approximation.

Case NI. If the independence assumption is not valid, we use a different approach.

Assumption A. Since z 7→ Q(x, z) is convex and finitely valued, for every point z̄
we have

Q(x, z) ≥ Q(x, z̄) + 〈q(z̄|x), z − z̄〉,

where q(z̄|x) is a subgradient of z 7→ Q(x, z) at z̄ for fixed x. We assume that there
is a uniform bound C(z̄) for the norm of the subgradients q(z̄|x), i.e.,

sup
x
‖q(z̄|x)‖ ≤ C(z̄),

such that C(ξ1) is integrable.

Under Assumption A, for all ξ̄ we have

E[Q(x, ξ)] ≥ E[Q(x, ξ̄)] + E〈q(ξ̄|x), (ξ − ξ̄)〉
≥ E[Q(x, ξ̄)]− E(C(ξ̄)) · sup

ξ
‖ξ̄ − ξ‖.(3.6)
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The case of constraints of the form (x, z) ∈ B needs a little more attention. Suppose
that Q(x, z) = Q0(x, z) + IB(x, z), where Q0(x, z) is convex and finitely valued and
B is a convex set.

If (x, z̄) ∈ B and q(x, z̄) is a subgradient of z 7→ Q(x, z) at z̄ for fixed x, then
Q(x, z) ≥ Q(x, z̄) + 〈q(z̄|x), z − z̄〉 even if (x, z) /∈ B. Therefore (3.6) is a valid lower
bound for all values of ξ.

A similar argument holds for the three-stage case: if z1 7→ Q(x0, z1, x1, z2, x2) is
convex, with subgradient q(z1|x0, x1, x2, z2), then

EP [Q(x0, ξ1, x1, ξ2, x2)]

≥ E[Q(x0, ξ̄1, x1, ξ2, x2)] + E[〈q(ξ̄1|x0, x1, x2, ξ2), (ξ1 − ξ̄1)〉]
≥ E[Q(x0, ξ̄1, x1, ξ2, x2)]− EP (C(ξ̄1)) · sup

ξ1

‖ξ1 − ξ̄1‖,

where ξ̄1 = E(ξ1|FA).
Notice that instead of the inequality

(3.7) E[〈q(ξ̄1|x0, x1, x2, ξ2), (ξ1 − ξ̄1)〉] ≤ EP (C(ξ̄1)) · sup
ξ1

‖ξ1 − ξ̄1‖,

one could also use the inequality

(3.8) E[〈q(ξ̄1|x0, x1, x2, ξ2), (ξ1 − ξ̄1)〉] ≤ [EP (Cp(ξ̄1))]1/p · [EP (‖ξ1 − ξ̄1‖r)]1/r

for 1/p+ 1/r = 1.
For the construction of the lower approximating tree, as before let zi,j = (zi,j1 , zi,j2 )

be the barycenters of Pi,j . However, since the lower approximation has to be a tree,
we set

z̄i1 =

mb∑
j=1

pi,jz
i,j
2 .

Let P be the tree constructed using z̄i1 as first stage values and and zi,j2 as second
stage values with scenario probabilities pi,j . The notation of this tree as well as of
the decision tree is shown in Figure 3.1.

Proposition 3.5. Let P be the tree constructed using z̄i1 as first stage values and
and zi,j2 as second stage values with scenario probabilities pi,j. For the tree process P
we have that

v(P )−
∑
i

pi C(z̄i1) · sup ‖z̄i1 − z
i,j
1 ‖ ≤ v(P ).

Proof. As in Proposition 3.4, we have that

EP [Q(x0, ξ1, x1(ξ1), ξ2, x2(ξ1, ξ2))]

≥ EP [Q(x0, z
i,j
1 , xi1, z

i,j
2 , xi,j2 )]

= EP [Q(x0, z̄
i
1, x

i
1, z

i,j
2 , xi,j2 )] + EP [Q(x0, z

i,j
1 , xi1, z

i,j
2 , xi,j2 )]

− EP [Q(x0, z̄
i
1, x

i
1, z

i,j
2 , xi,j2 )]

≥ EP [Q(x0, z̄
i
1, x

i
1, z

i,j
2 , xi,j2 )]−

∑
i

pi C(z̄i1) · sup ‖z̄i1 − z
i,j
1 ‖.

Here we have used (3.7), but alternatively one may also use (3.8).
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Fig. 3.1. Left: the notation of the constructed scenario tree. Right: the pertaining decision tree.

If the zi,j1 do not coincide for different j but fixed i, then the correction term

∑
i

pi C(z̄i1) · sup ‖z̄i1 − z
i,j
1 ‖,

has to be subtracted. Otherwise the correction term disappears. Notice that the
correction term is small if the diameters of the rectangles are small.

4. Lower and upper scenario trees construction: An example. In order
to demonstrate the approach proposed in section 3 with a simple example, assume
that the distribution P of the scenario process is given by (ξ1, ξ2), where ξ1 ∼ P1 is
distributed according to a Beta(2, 2) distribution and ξ2|ξ1 ∼ P2(·|ξ1) is condition-
ally given ξ1 distributed according to Beta(2, 1.4−0.8·ξ1

0.3+0.4·ξ1 ). A sample of 5000 points
distributed according to P is shown in Figure 4.1.

For given integers ma and mb we define the sets Ai,j as the rectangles with vertices
[( i−1
ma

, j−1
mb

), ( i
ma
, j−1
mb

), ( i−1
ma

, j
mb

), ( i
ma
, j
mb

)] for i = 1, . . . ,ma + 1, j = 1, . . . ,mb + 1.

The upper approximation sits on the (ma + 1) · (mb + 1) points (i/ma, j/mb). The
lower approximation sits on some barycenters of the Ai,j . The probabilities are pi,j =
P (Ai,j).

If (u1, u2) is a point in the rectangle Ai,j defined before, then let Pi,j(u1, u2) be
a probability measure sitting on the vertices with probability

p

(
i− 1

ma
,
j − 1

mb

)
=

i
ma
− u1

i
ma
− i−1

ma

·
j
mb
− u2

j
mb
− j−1

mb

= (i−ma · u1)(j −mb · u2),

p

(
i− 1

ma
,
j

mb

)
=

i
ma
− u1

i
ma
− i−1

ma

·
u2 − j−1

mb
j
mb
− j−1

mb

= (i−ma · u1)(mb · u2 − j + 1),
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Fig. 4.1. 5000 points distributed according to the distribution P of the scenario process (ξ1, ξ2),
with ξ1 ∼ P1 distributed according to a Beta(2, 2) distribution and ξ2|ξ1 ∼ P2(·|ξ1) according to a

Beta(2, 1.4−0.8·ξ1
0.3+0.4·ξ1

) distribution.
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0.9

1

ξ
2

ξ 1

Fig. 4.2. The upper approximation P̄ based on convex stochastic dominance (left) and the
corresponding scenario tree structure (right).

p

(
i

ma
,
j − 1

mb

)
=

u1 − i−1
ma

i
ma
− i−1

ma

·
j
mb
− u2

j
mb
− j−1

mb

= (ma · u1 − i+ 1)(j −mb · u2),

p

(
i

ma
,
j

mb

)
=

u1 − i−1
ma

i
ma
− i−1

ma

·
u2 − j−1

mb
j
mb
− j−1

mb

= (ma · u1 − i+ 1)(mb · u2 − j + 1).

Notice that the expectation of Pi,j(u1, u2) is (u1, u2).
In order to estimate the upper and lower approximations P̄ and P , we use a large

sample of N random deviates (ξ
(n)
1 , ξ

(n)
2 ). Set

P̄ =
1

N

N∑
n=1

Pi,j(ξ
(n)
1 , ξ

(n)
2 ) · 1

(ξ
(n)
1 ,ξ

(n)
2 )∈Ai,j

.

P̄ is a finite process, and defines a tree process, which is the upper approximation. Fig-
ure 4.2 shows a construction of an upper approximation P̄ based on convex stochastic
dominance with the corresponding scenario tree structure with ma = 5 and mb = 3.
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ξ
2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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1

Fig. 4.3. The barycenters (black diamonds) and the modified barycenters (black squares) of the
lower approximation tree based on convex stochastic dominance (left) and the corresponding scenario
tree structure (right).

For the lower bound, the generation algorithm is a little more complicated. We

sample (ξ
(n)
1 , ξ

(n)
2 ), n = 1, . . . , N , from P and set

ni,j =
1

N

N∑
n=1

1
(ξ

(n)
1 ,ξ

(n)
2 )∈Ai,j

,

pi,j = ni,j/N,

zi,j1 =
1

ni,j

N∑
n=1

ξ
(n)
1 1

(ξ
(n)
1 ,ξ

(n)
2 )∈Ai,j

,

zi,j2 =
1

ni,j

N∑
n=1

ξ
(n)
2 1

(ξ
(n)
1 ,ξ

(n)
2 )∈Ai,j

,

z̄i1 =

∑
j pi,jz

i,j
1∑

j pi,j
.

Then P is defined as

P =
∑
i,j

pi,jδ(z̄i1,z
i,j
2 ).

P can be represented as a tree. Arcs (i, j) for which pi,j = 0 can be elimi-

nated. Figure 4.3 shows the barycenters (zi,j1 , zi,j2 ) (black diamonds) and the mod-

ified barycenters (z̄i1, z
i,j
2 ) (black squares) for the choice ma = 5, mb = 3, and the

distribution as in Figure 4.1.
Finally Figure 4.4 shows an upper approximation P̃ based on first-order stochastic

dominance with the corresponding scenario tree structure as described in section 3.1.
Similarly, a lower approximation P˜ based on first-order stochastic dominance can be
obtained by putting the weights to the left-lower corner of each rectangles in which
the support has been dissected.

5. Closing the gap between upper and lower bounds. By refinement of
the discretization, i.e., by letting the diameter of the boxes go to zero, we may get
an arbitrarily small gap between the upper and lower bounds under the additional
assumption of a growth condition. This is illustrated by the following proposition.
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Fig. 4.4. The upper approximation P̃ based on first-order stochastic dominance (left) and the
corresponding scenario tree structure (right).

Proposition 5.1. Suppose that the convex cost function Q satisfies the growth
conditions

Q(x, z) ≤ Q(x, z̄) + 〈q(z̄|x), z − z̄〉+ c‖z − z̄‖γ

for γ > 0 uniformly for all x ∈ X, where q(z̄|x) is a subgradient of z 7→ Q(x, z) at z̄.
Let A be a closed convex polyhedron and let zA be its barycenter under P . If P̄ is any
probability distribution whose support is contained in A and which also has barycenter
zA, then

0 ≤
ˆ
A

Q(x, z) dP̄ (z)−Q(x, zA) ≤ c · sup
z∈A
‖z − zA‖γ ,

uniformly for all x ∈ X. Thus the difference between the upper and the lower bound
can be controlled by making the diameter of A small.

Proof. By

Q(x, z) ≤ Q(x, zA) + 〈q(zA|x), z − zA〉+ c · ‖z − zA‖γ ,

taking the integrals w.r.t. P̄ one gets

0 ≤
ˆ
A

Q(x, z) dP̄ (z)−Q(x, zA) ≤ c · sup
z∈A
‖z − zA‖γ .

Thus, by making the diameter of all boxes smaller than ε/c
1/γ

, the gap between
the upper and the lower approximation will be smaller than ε, independently of the
decisions x. Therefore the gap for the optimal values v(P ) − v(P ) is also smaller
than ε.

6. Case study: A multistage production problem. This section presents
a simple multistage production problem adopted to test the bounds introduced be-
fore. The problem can be summarized as follows: consider a single product inventory
system, which is comprised of a warehouse and a factory. The planning horizon is T
periods. Random demands have to be satisfied from an inventory (the only random
quantities in the model). If the random demand exceeds the stock, it will be satisfied
by rapid orders from a different source, which come at a higher price. At each time
step (stage), orders can be placed. The goal is to minimize the total production cost
of the factory in the entire planning period.
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Let us assume the following notation.
Deterministic parameters:

ct is the cost of producing a unit of the product at the factory at time t = 0, . . . ,
T − 1;

bt is the procurement cost from another retailer for a unit of product at time
t = 1, . . . , T ;

st is the selling price at time t = 1, . . . , T ;
ht is the inventory holding cost for positive inventory from time t to t + 1,

t = 0, . . . , T − 1;
d is the final value of the inventory;
Pt is the maximal production capacity of the factory at time t = 0, . . . , T − 1;
v0 is the amount of the product in the warehouse at the beginning of the period 1.

Stochastic scenario process:

ξt is the demand for the product at time t = 1, . . . , T and all the demand must
be satisfied (the random scenario process);

ξt is the history of the demand for the product until time t.

Stochastic decision variables:

xt ≥ 0 is the amount of the product to be produced by the factory and used to satisfy
the demand at time t = 0, . . . , T − 1.

Auxiliary variables:

vt the amount of the product in the warehouse after sales are effectuated at
t = 1, . . . , T .

Notice that if vt is positive, vt = [vt]+, an inventory holding cost ht · [vt]+ will be
paid to carry the stock to the next step. If vt is negative, vt = [vt]−, a procurement
cost bt [vt]− to buy extra stock from another retailer will be paid. The final stock is
valuated with the value d [vT ]+.

The problem can be modelled as follows:

min E
[
c0 · x0 + h0 · v0 +

T−1∑
t=1

ct · xt(ξt) +

T−1∑
t=1

ht · [vt(ξt)]+ +

T∑
t=1

bt · [vt(ξt)]−

−
T∑
t=1

st · ξt − d · [vT (ξT )]+

]
,(6.1)

s.t. 0 ≤ x0 ≤ P0,(6.2)

0 ≤ xt(ξt) ≤ Pt, t = 1, . . . , T − 1,(6.3)

v1(ξ1) = v0 + x0 − ξ1,(6.4)

vt+1(ξt+1) =
[
vt(ξ

t)
]
+

+ xt(ξ
t)− ξt+1, t = 1, . . . , T − 1,(6.5)

vt(ξ
t) =

[
vt(ξ

t)
]
+
−
[
vt(ξ

t)
]
− , t = 1, . . . , T,(6.6) [

vt(ξ
t)
]
+
≥ 0, t = 1, . . . , T,(6.7) [

vt(ξ
t)
]
− ≥ 0, t = 1, . . . , T.(6.8)

The objective function (6.1) denotes the expected total cost obtained from production,
procurement from external retailers, and inventory holding while the last two terms are
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the respective profits from selling and for the final value of the inventory. Constraints
(6.2) and (6.3) impose lower and upper levels on the factory production. Finally,
constraints (6.4), (6.5), (6.6), (6.7), and (6.8) define the dynamics of the inventory
level and its definition.

6.1. Risk-aversion strategy: Including the average value-at-risk. Given
the confidence level α, we now introduce into model (6.1)–(6.8) the (upper) average
value-at-risk:

AV@Rα = min

{
y +

1

(1− α)
E([c0 · x0 + h0 · v0 +

T−1∑
t=1

ct · xt(ξt)

+

T−1∑
t=1

ht · [vt(ξt)]+ +

T∑
t=1

bt · [vt(ξt)]− −
T∑
t=1

st · ξt

−d · [vT (ξT )]+ − y]+) : y ∈ R
}
,(6.9)

where y represents the value-at-risk (V@R). If α = 0, then AV@R0 equals the expec-
tation and if α = 1, then AV@R1 is consistently defined as the essential supremum.

Introducing the auxiliary variable u(ξT ), the model (6.1)–(6.8) in a risk-aversion
strategy becomes

(6.10) min y +
1

(1− α)
Eu(ξT ),

s.t. u(ξT ) ≥ c0 · x0 + h0 · v0 +

T−1∑
t=1

ct · xt(ξt)

+

T−1∑
t=1

ht · [vt(ξt)]+ +

T∑
t=1

bt · [vt(ξt)]− −
T∑
t=1

st · ξt

−d · [vT (ξT )]+ − y,(6.11)

0 ≤ x0 ≤ P0,(6.12)

0 ≤ xt(ξt) ≤ Pt, t = 1, . . . , T − 1,(6.13)

v1(ξ1) = v0 + x0 − ξ1,(6.14)

vt+1(ξt+1) =
[
vt(ξ

t)
]
+

+ xt(ξ
t)− ξt+1, t = 1, . . . , T − 1,(6.15)

vt(ξ
t) =

[
vt(ξ

t)
]
+
−
[
vt(ξ

t)
]
− , t = 1, . . . , T,(6.16) [

vt(ξ
t)
]
+
≥ 0, t = 1, . . . , T,(6.17) [

vt(ξ
t)
]
− ≥ 0, t = 1, . . . , T,(6.18)

u(ξT ) ≥ 0.(6.19)

6.2. Computation of bounds for a multistage risk-averse production
problem. This section presents some computational tests on the three-stage (T = 2)
risk-averse production problem. We assume that the distribution P of the demand
scenario process is given by ξ2 = (ξ1, ξ2), where ξ1 ∼ P1 is distributed according
to a Beta(2, 2) distribution and ξ2|ξ1 ∼ P2(·|ξ1) is conditionally given ξ1 distributed

D
ow

nl
oa

de
d 

02
/2

6/
19

 to
 1

28
.2

52
.6

7.
66

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

GUARANTEED BOUNDS FOR STOCHASTIC PROGRAMS 477

Table 6.1
Production price ct, selling price st, inventory holding cost ht from time t to time t + 1, and

procurement cost bt for extra stock from another retailer at time t.

t ct st ht bt
0 3.5 – 2 –
1 3.6 10.7 1.9 8
2 – 10.5 – 8.1

Table 6.2
Scenario tree structures based on first-order stochastic dominance (FSD) and convex-order

dominance (CXD) adopted to compute the bounds.

Tree Number of scenarios Number of nodes

FSD-CXD T5,5 25 31

FSD-CXD T10,10 100 111

FSD-CXD T20,20 400 421

FSD T40,40 1600 1641

FSD T80,80 6400 6481

FSD T160,160 25600 25761

according to Beta(2, (1.4− 0.8 · ξ1)/(0.3 + 0.4 · ξ1)) in the range [0, 100]. The maximal
production capacity of the factory at each period t = 0, 1 is Pt = 567 units. The initial
inventory is v0 = 10, the final value of the inventory is d = 2 per unit, and the values
of production price ct, selling price st, inventory holding cost ht, and procurement
cost bt at time period t are presented in Table 6.1.

The linear problems derived from our case study were solved in the AMPL en-
vironment using the MOSEK solver with an interior-point algorithm. All the com-
putations were performed on a 64-bit machine with 12 GB of RAM and a 2.90 GHz
processor.

In order to find guaranteed bounds, we first consider two finite three-stage trees
P̃ = (ξ̃1, ξ̃2) and P˜ = (ξ˜1, ξ˜2) having the same structure T5,5: five branches from the

root and five from each of the second-stage nodes resulting in k = 5×5 = 25 scenarios
and 31 nodes. The two finite scenario trees have been built according to first-order
stochastic dominance, as described in section 3.1, providing respective upper and
lower bounds: they are obtained by dissecting the support into 25 rectangles Ai,j ,
i = 1, . . . , 5, j = 1, . . . , 5, and putting the weights respectively to the left and lower
corner (ai, bj) and to the up and right corner (ai+1, bj+1). Similarly, other pairs of
finite scenario trees with bushier tree structures T10,10, T20,20, T40,40, T80,80, and
T160,160 have been considered (see Table 6.2 for details). Lower and upper bounds
to the total cost of problem (6.10)–(6.19) by using the finite scenario trees based
on first-order stochastic dominance (FSD) are reported in Tables 6.3, 6.4, and 6.5
and Figures 6.1 and 6.2. As expected, the worst lower and upper bounds are given
by T5,5 with an absolute gap v(P̃ ) − v(P˜) of 137.5 but requiring the lowest CPU
time (0.0625 CPU seconds over 30 runs). Increasing the size of the scenario tree
significantly improves the bounds, monotonically reaching lower values of gaps of
up to 4.11 for the biggest scenario tree considered T160,160 (see Figure 6.1 in the
case of α = 0, where the bounds are plotted for increasing values of complexity of
calculation measured in CPU seconds). Similar results are obtained for different values
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Table 6.3
Lower bound objective function values and complexity of calculation (in CPS seconds) of finite

scenario tree structures, based on first-order stochastic dominance (FSD) for increasing values of α.

Trees v(P˜) CPU (s)

α = 0 α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9

TFSD5,5 361.66 379.61 414.36 450.22 479.13 514.65 0.062

TFSD10,10 399.09 415.49 447.27 479.49 514.06 565.42 0.078

TFSD20,20 416.66 433.89 464.34 495.87 531.56 582.08 0.093

TFSD40,40 424.98 441.91 472.85 503.94 539.45 589.18 0.156

TFSD80,80 427.86 445.24 477.25 509.58 545.95 593.42 0.375

TFSD160,160 430.71 448.02 479.51 511.47 547.34 596.37 3.406

Table 6.4
Upper bound objective function values and complexity of calculation (in CPS seconds) of finite

scenario tree structures based on first-order stochastic dominance (FSD) for increasing values of α.

Trees v(P̃ ) CPU (s)

α = 0 α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9

TFSD5,5 498.11 517.68 550.63 589.31 616.53 652.39 0.062

TFSD10,10 466.95 484.41 517.45 550.13 585.02 636.19 0.078

TFSD20,20 450.76 468.31 498.78 530.31 566.00 616.52 0.093

TFSD40,40 440.40 457.90 490.28 522.79 558.68 606.50 0.156

TFSD80,80 437.88 455.18 486.54 518.54 554.38 604.34 0.375

TFSD160,160 434.42 451.76 483.42 515.61 551.73 601.18 3.406

Table 6.5
Gaps of finite scenario tree structures based on first-order stochastic dominance (FSD) for

increasing values of α.

Trees
v(P̃ )−v(P˜)

v(P˜)

α = 0 α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9

TFSD5,5 0.377 0.363 0.328 0.308 0.286 0.267

TFSD10,10 0.170 0.165 0.156 0.147 0.138 0.125

TFSD20,20 0.081 0.079 0.074 0.069 0.064 0.059

TFSD40,40 0.036 0.036 0.036 0.037 0.035 0.029

TFSD80,80 0.023 0.022 0.019 0.017 0.015 0.018

TFSD160,160 0.008 0.008 0.008 0.008 0.008 0.008

of confidence level α (see Figure 6.2). The time required to solve the problem (see last
column of Tables 6.3 and 6.4) monotonically increases with the dimension of the tree,
reaching the highest value for T160,160 (3.40625 CPU seconds over 30 runs). Finally,

average relative gaps (v(P̃ )− v(P˜))/v(P˜) are reported in Table 6.5: as expected they
improve monotonically with the number of scenarios in the trees, ranging from 32%
for T5,5 to 0.8% for T160,160.
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CPU seconds
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Case α=0
lower bounds based on FSD
upper bounds based on FSD

T5,5
FSD

T160,160
FSD

T80,80
FSDT40,40

FSD

T20,20
FSD

T10,10
FSD

Fig. 6.1. Lower and upper bounds on the total cost of problem (6.10)–(6.19) with confidence
level α = 0 obtained by using the finite scenario trees based on first-order stochastic dominance for
increasing values of complexity of calculation measured in CPU seconds.
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Fig. 6.2. Lower and upper bounds on the total cost of problem (6.10)–(6.19) obtained by using
the finite scenario trees T5,5 and T10,10 based on first-order stochastic dominance.

We now consider lower and upper bounds built on convex stochastic dominance,
as described in section 3.2. They are obtained by dissecting the support into ma×mb

rectangles Ai,j , i = 1, . . . ,ma, j = 1, . . . ,mb, and respectively putting the weights to
the barycenter and to the four corners. In this way the bounds can be calculated on
two finite trees without evaluating the continuous problem.

Lower and upper bounds based on convex stochastic dominance (CXD) are re-
ported in Tables 6.6, 6.7, and 6.8 and Figures 6.3 and 6.4. Since ξ2 depends on ξ1,
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Table 6.6
Lower bound objective function values, errors c1

∑
i,j pi,j · |z̄i1 − z

i,j
1 |, and complexity of cal-

culation (in CPS seconds) of finite scenario tree structures based on convex stochastic dominance
(CXD) for increasing values of α.

Trees v(P ) Error CPU (s)

α = 0 α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9

TCXD5,5 424.74 442.55 473.21 509.15 535.18 571.15 0.0044 0.046

TCXD10,10 431.40 448.12 479.49 511.74 543.62 592.49 0.0031 0.059

TCXD20,20 431.40 448.21 479.81 512.43 549.41 597.81 0.0027 0.076

Table 6.7
Upper bound objective function values and complexity of calculation (in CPS seconds) of finite

scenario tree structures based on convex stochastic dominance (CXD) for increasing values of α.

Trees v(P̄ ) CPU (s)

α = 0 α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9

TCXD5,5 436.25 454.48 484.83 520.67 575.95 621.62 0.042

TCXD10,10 431.64 448.50 479.82 513.74 553.09 604.95 0.054

TCXD20,20 431.40 448.21 479.81 512.43 549.41 597.81 0.078

Table 6.8
Gaps of finite scenario tree structures based on convex dominance (CXD) for increasing values

of α.

Trees
v(P̄ )−v(P )

v(P )

α = 0 α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9

TCXD5,5 0.027 0.026 0.024 0.022 0.076 0.088

TCXD10,10 0.0005 0.0008 0.0006 0.003 0.017 0.020

TCXD20,20 0 0 0 0 0 0

the correction term described in section 3.2.2 for lower tree approximation should be
computed (see the third column of Table 6.6). This is obtained as follows: problem
(6.1)–(6.8) can be rewritten as

min E
[
c0 · x0 + h0 · v0 +

T−1∑
t=1

ct · xt(ξt) +

T−1∑
t=1

ht · [vt(ξt)]+ +

T∑
t=1

bt · [vt(ξt)]−

−
T∑
t=1

st · ξt − d · [vT (ξT )]+ + Ψ[x0, . . . , xT , ξ
T ]

]
,

where

Ψ[x0, . . . , xT , ξ
T ] =

{
0 if (x0, . . . , xT ) ∈ X,
∞ otherwise,
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α

0 0.1 0.3 0.5 0.7 0.9

T
ot

al
 C

os
t

400

450

500

550

600

650

lower bounds T
5,5
CXD

upper bounds T
5,5
CXD

lower bounds T
10,10
CXD

upper bounds T
10,10
CXD

lower=upper bounds T
20,20
CXD

Fig. 6.3. Lower and upper bounds to the total cost of problem (6.10)–(6.19) obtained by using
the finite scenario trees T5,5, T10,10, and T20,20 based on convex stochastic dominance (CXD).

with

(6.20) X :=



0 ≤ x0 ≤ P0,

0 ≤ xt(ξt) ≤ Pt, t = 1, . . . , T − 1,

v1(ξ1) = v0 + x0 − ξ1,
vt+1(ξt+1) =

[
vt(ξ

t)
]
+

+ xt(ξ
t)− ξt+1, t = 1, . . . , T − 1,

vt(ξ
t) =

[
vt(ξ

t)
]
+
−
[
vt(ξ

t)
]
− , t = 1, . . . , T,[

vt(ξ
t)
]
+
≥ 0, t = 1, . . . , T,[

vt(ξ
t)
]
− ≥ 0, t = 1, . . . , T.

Let P be the tree constructed using z̃i1 as first stage values and and zi,j2 as second
stage values with scenario probabilities pi,j . According to Proposition 3.5, we have
that the error made by the tree process P for our three-stage production problem
by collapsing zi,j1 in z̄i1, i = 1, . . . ,ma, is c1

∑
i,j pi,j · |z̄i1 − z

i,j
1 |. In the risk-averse

case we need just to divide the previous expression by the confidence level (1 − α).
Notice that if the demand at time 2 is independent of the demand at time 1, then
the error is null. The absolute gap between CXD lower and upper bounds based on
the simplest tree structure considered T5,5 reduces considerably compared to the one
obtained by first-order construction, passing, in the case of α = 0, from 136.44 to
11.5 units. Increasing the size of the scenario tree to T20,20 significantly improves the
bounds closing the gap (see Figure 6.4) from 34.1 for FSD and taking approximately
the same CPU time. Different values of confidence level α are considered in Figure 6.3
and relative gaps (v(P̄ )−v(P ))/v(P ) are reported in Table 6.8: results show that the
average gap reduces considerably, passing from 4% with TCXD5,5 to 0% with TCXD20,20 .

7. Conclusions. This paper develops lower and upper bounds for multistage
stochastic programs based on first-order stochastic dominance and convex-order dom-
inance of probability measures. The proposed method allows one to construct solu-
tions for the infinite problem by considering finite tree approximations as proxies,
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Fig. 6.4. Lower and upper bounds to the total cost of problem (6.10)–(6.19) with α = 0 obtained
by using finite scenario trees based on convex dominance (CXD).

and can even be made arbitrarily close by making the approximating trees bushier.
For illustration, numerical results on a multistage risk-averse production problem are
presented. Results show that the solutions based on convex-order dominance con-
struction outperform the ones obtained by first-order stochastic dominance, closing
the gap between upper and lower bounds within a limited computational complexity
and simple scenario tree structures.
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[28] B. Sandikçi and O. Y. Özaltin, A scalable bounding method for multistage stochastic integer
programs, SIAM J. Optim., 27 (2017), pp. 1772–1800.

[29] G. L. Zenarosa, O. A. Prokopyev, and A. J. Schaefer, Scenario-Tree Decomposi-
tion: Bounds for Multistage Stochastic Mixed-Integer Programs, Working paper, Depart-
ment of Industrial Engineering, University of Pittsburgh, Pittsburgh, PA, http://www.
optimization-online.org/DB HTML/2014/09/4549.html, 2014.

D
ow

nl
oa

de
d 

02
/2

6/
19

 to
 1

28
.2

52
.6

7.
66

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://www.optimization-online.org/DB_HTML/2014/09/4549.html
http://www.optimization-online.org/DB_HTML/2014/09/4549.html

	Introduction
	Bounding two-stage stochastic optimization problems
	Bounds based on convex order for two-stage stochastic optimization problems

	Bounding multistage stochastic optimization problems
	Bounds based on first-order dominance
	Bounds based on convex dominance
	Upper tree approximation based on convex-order stochastic dominance
	Lower tree approximation based on convex-order stochastic dominance


	Lower and upper scenario trees construction: An example
	Closing the gap between upper and lower bounds
	Case study: A multistage production problem
	Risk-aversion strategy: Including the average value-at-risk
	Computation of bounds for a multistage risk-averse production problem

	Conclusions
	References

