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Abstract: Reinforcement Learning (RL) systems are trial-and-error learners. This feature altogether with delayed 

reward, makes RL flexible, powerful and widely accepted. However, RL could not be suitable for control of 

critical systems where the learning of the control actions by trial and error is not an option. In the RL literature, 

the use of simulated experience generated by a model is called planning. In this paper, the 

planningByInstruction and planningByExploration techniques are introduced, implemented and compared to 

coordinate, a heterogeneous multi-agent architecture for distributed Large Scale Systems (LSS). This 

architecture was proposed by (Javalera 2016). The models used in this approach are part of a distributed 

architecture of agents. These models are used to simulate the behavior of the system when some coordinated 

actions are applied. This experience is learned by the so-called, LINKER agents, during an off-line training. 

An exploitation algorithm is used online, to coordinate and optimize the value of overlapping control variables 

of the agents in the distributed architecture in a cooperative way. This paper also presents a technique that 

offers a solution to the problem of the number of learning steps required to converge toward an optimal (or 

can be sub-optimal) policy for distributed control systems. An example is used to illustrate the proposed 

approach, showing exciting and promising results regarding the applicability to real systems.

 

  INTRODUCTION 

RL is a well-known and formally studied family of 
learning techniques. Moreover, depending on the 
formulation of the problem and the richness of 
experience data, the chances of convergence are high. 
One of the main characteristics of RL is that the 
agents learn by trial and error discovering which 
actions yield the maximum reward by trying them. 
However, it is also this characteristic what makes RL 
unsuitable for controlling critical time-varying 
systems where good performance is crucial all the 
time, and the cost of this learning curve of the agent 
can be too high. 

Currently, some algorithms implement planning 
techniques such as Dyna-Q and Prioritized Sweeping. 
Some examples of applications of Dyna-Q algorithm 
are (Tateyama et al. 2007), (Hwang et al. 2015) and 
(Hwang et al. 2017). Moreover, for Prioritized 
Sweeping see (Zajdel 2018) and (Desai and Patil 
2017). In these cases, the planning techniques are used 
to simulate experience generated by a model. Here 
two planning techniques are introduced aiming to 
work cooperatively and coordinated getting a 
heterogeneous multi-agent architecture for Large 
Scale Systems (LSS). 

These planning techniques were specially 
developed to fit into the LINKER Architecture (LA) 
introduced in (Javalera 2016) as the MA-MPC 
architecture. First descriptions and applications of 
this architecture were presented in (Javalera et al. 
2010), and the use of this architecture and 
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methodology to the Barcelona Drinking Water 
Network is described in (Morcego et al. 2014). In all 
these applications the agents implement a control 
technique called "Model Predictive Control (MPC)," 
therefore the name of the architecture. However, this 
work is called LINKER architecture, since the 
algorithms and architecture can be applied to other 
types of agents as well, not just MPC. 

Reinforcement learning (RL) works based on 
experience, which, in LA is used aiming to reduce the 
requirement of iterative methods, facilitating that the 
system behaves almost like a reactive system with 
reduced response time. Another relevant feature of 
RL exploited by the LINKER Architecture is that it 
explicitly considers the whole problem of a goal-
directed agent interacting with an uncertain 
environment. Moreover, this is in contrast with many 
approaches that consider sub-problems without 
addressing how they might fit into a larger picture. 
Even more, this is important for the LINKER 
Architecture because it is distributed control 
architecture of LSS, where some of its control 
variables overlap between sub-systems; this issue is 
aboard in the next section.  

This paper aims to explain how using the 
proposed learning techniques and the LINKER 
Architecture, and is possible to integrate agents of a 
distributed system with LINKER agents trained with 
the proposed planning techniques. Each LINKER 
agent calculates the value of shared variables between 
overlapping systems looking for the global optimum 
of the relation and coordinating its process with the 
other agents of the system obtaining an overall good 
performance.  This work also proposes a solution that 
makes possible to achieve the benefits of RL 
techniques in critical systems that cannot afford to 
pay the learning curve of a learner agent. Even more, 
this is made using a meaningful reinforcement given 
by the distributed agents that try the actions in its 
internal model in offline training. Once all the 
functions learned are evaluated and approved, the 
LINKER agents use an online optimization algorithm 
that can also have adaptation properties. 

Another contribution of this paper is to compare 
two learning techniques. In the first one, the actions 
used in training are dictated by a teacher that, in this 
case, is the centralized MPC (Model Predictive 
Control) controller. In second one a learning 
technique where actions are randomly selected. The 
LINKER agent explores actions trying and evaluating 
it, through the interaction with the agents that directly 
control the model. An illustrative example is 
developed using both techniques. 

The structure of the paper is as follows: Section 2 
introduces the problem statement. Section 3 presents 
the model driven control and the model driven 
integrated learning. Section 4 presents the planning 

by instruction while Section 5 presents the planning 
by exploration. Section 6 uses an application case 
study to illustrate the performance of the proposed 
architecture and approaches. Finally, Section 7 
summarizes the main conclusions and describes the 
future line of research. 

  PROBLEM STATEMENT  

In order to describe the learning techniques 
mentioned above, it is necessary to explain the 
underlying problem, which is the distributed control 
problem that the LINKER architecture addresses. 
This architecture is applied to a LSS. 

In order to control an LSS in a distributed way, 
some assumptions have to be made on its dynamics, 
i.e. on the way the system behaves. Let us assume first 
that the system can be decomposed into n sub-
systems, where each sub-system consists of a subset 
of the system equations and the interconnections with 
other sub-systems. The problem of determining the 
partitions of the system is not addressed in this work.  
The set of partitions should be complete. This means 
that all system states and control variables should be 
included at least in one of the partitions. 

 
Definition 1. System partitions. P is the set of 

system partitions and is defined by 
 

𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑖}  (1) 
  

Where each system partition (subsystem) pi, i =
{1…n} is described by a model. In this example, a 
deterministic linear time-invariant (LTI) model is 
used to represent a drinking water distribution 
network; this type of model can also be used for other 
type of LSS where there is a network of connected 
nodes and an element that flows in the network that 
should be distributed to fulfill certain demands. This 
model is expressed in discrete-time as follows 
 
𝑥𝑖(𝑘 + 1) = 𝐴𝑖𝑥𝑖(𝑘) + 𝐵𝑢𝑖(𝑘) + 𝐵𝑑,𝑖𝑑𝑖(𝑘) 
𝑦𝑖(𝑘) = 𝐶𝑖𝑥𝑖(𝑘) + 𝐷𝑢,𝑖𝑢𝑖(𝑘) + 𝐷𝑑,𝑖𝑑𝑖(𝑘) 

 

(2) 

 
The model describes the topology and dynamics 

of the network. Variables x, y, u, d are the state, 
output, input and disturbance vectors (for this case, 
the demands) of appropriate dimensions, 
respectively; A, B, C and D are the state, output, input 
and direct matrices, respectively. Sub-indexes u and 
d refer to the type of inputs the matrices model, either 
control inputs or exogenous inputs (disturbances). 
Control variables are classified as internal or shared 
variables.  



 

 
Definition 2. Internal Variables. Internal 

variables are control variables that appear in the 
model of only one subsystem in the problem. The set 
of internal variables of a partition i is defined by 
equation 3: 

 
𝑈𝑖 = {𝑢1, 𝑢2, … , 𝑢𝑛𝑖} (3) 

 
Definition 3 Shared Variables. Shared variables are 

control variables that appear in the model of at least 
two subsystems in the problem. Their values should 
be consistent in the subsystems they appear. They are 
also called negotiated variables because their values 
are obtained through a negotiation process. Vij  is the 
set of negotiated variables between partitions i and j, 
defined by equation 4 
 

𝑉𝑖𝑗 = {𝑣1, 𝑣2, … , 𝑣𝑛𝑖𝑗} (4) 
 

Each subsystem i is controlled by a controller (agent) using: 

▪ the model of the dynamics of subsystem i given 

by eq. (2); 

▪ the measured state xi(k) of subsystem i; 

▪ the exogenous inputs di(k) of subsystem i over a 

specific horizon of time; 

As a result, each agent calculates directly the 
internal control actions, ui(k), of subsystem i. Figure. 
1 on the left shows a sample system divided into three 

partitions. Subsystem 1 has two shared variables with 
sub-system 2 and subsystem 2 has one shared variable 
with sub- system 3. The relations that represent those 
variables are shown on the right as lines. The problem 
consists in optimizing the manipulated variables of 
the global system using a distributed approach, i.e. 
with three local control agents that should preserve 
consistency in the shared variables. In order to solve 
the problem described above, a new framework has 
been developed. This framework comprises a 
methodology, the so called the LINKER 
methodology and the architecture. The methodology 
helps to implement the architecture 

    A MODEL DRIVEN 

CONTROL AND A MODEL 

DRIVEN INTEGRATED 

LEARNING  

The LINKER architecture integrates a model driven 
control and a model driven learning process. In order 
to perform the negotiation of the shared variables, the 
Linker agent learns to think globally, by means of an 
offline training where negotiator and agents interact 
and accumulate meaningful experience. This offline 
training is made using a model of each sub-system 

Figure 2: The problem of distributed control. 



 

environment computing value functions (Q-tables) 
whose optimality and efficiency are proved in the 
experimentation phase, in order to be used later in the 
negotiation process. This allows eliminating iterative 
communication between agents in the negotiation 
process, increasing efficiency, decreasing time of 
response and making it safe to implement.  

Figure 2 shows the integration of the models in 
the agents in the planning process. The Linker agent 
assigns the values of V to the related agents. Each 
related agent has its own reference, disturbance 
model and plant model according to Eq. 2. The local 
controller takes V as constraints, computes vector c 
and applies the control action to the plant model 
producing y and e. e is an error vector that indicates 
to the Linker how good the actions (V) were. In order 
to evaluate that, it is necessary to calculate the state 
of both agents. This is made based in the cost function 
of the agents, as for example, 

 
where 

Jx(i) =  e⃗ T(i) wx e⃗ (i)   and  
 J∆u(i) =  ∆u⃗⃗ ⃗⃗  T(i)w∆x∆u⃗⃗ ⃗⃗  (i)                               (7) 

 
The  reward (r), is calculated using the states of 

both MPC agents with the equation: 
                    σ = ρ − s1 − s2                            (8) 
 

where σ represents the reward r and ρ is a constant 
that satisfies: 
 

                                s1 + s2 < ρ                                    (9) 
  

Given that s1 and s2 represents a sum of quadratic 
errors (5), (6), the reward will be always positive. 
With a smaller sum of errors the reward will be larger 
and vice versa. s1 and s2 have to be discretized in order 
to be use in  
 
               Q(s´1, a´, s´2) ← r+∝ Q(s1, a, s2)            (10) 
 
that is the function that updates each Q-table where 
the parameters ∝ rates past experience. 

The purpose of this three-dimensional matrix is to 
map the state agent 1 (s1) and the state of agent 2 (s2) 
to a single action. The coordination feature of the 
Linker agent lies on the fact that, in exploitation, the 
Linker agent will map to an optimal (or sub-optimal) 
action every s1 and s2 eliminating with this conflicts 
between agents assigning the value of shared 
variables. 

s1 = ∑  
Hp
i=0 J(i) = ∑  

Hp
i=0 Jx (i) + ∑  

Hp
i=0  J∆u(i)  

s2 = ∑  
Hp
i=0 J(i) = ∑  

Hp
i=0 Jx (i) + ∑  

Hp
i=0  J∆u(i)  

 
(5) 

 
(6) 
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Figure 3: Integration of the models of agents in the planning process 



 

The Linker uses this simulated experience and 
updates the Q-values in the Q-tables, one for each 
shared variable of the vector V in order to improve its 
policy. All this process is implemented through the 
PlannigByInstruction and PlanningByExploration 
behaviors of the Linker that will be explained in 
further detail in next section. 

The integration of RL with the LTI model in this 
approach offers high cohesion to the system.  The 
support that the LTI model (2) offers is deterministic, 
descriptive and highly trusted. So, the integration of 
these techniques coupled by the implementation of 
the methodology makes the planning process efficient 
and reliable. 

The policy obtained is evaluated in the 
experimentation phase. The fact that the policy is 
obtained offline is a very important characteristic of 
this approach due to the critical nature of LSS. The 
use of a standard trial-and-error technique of RL 
would make the implementation of this approach 
unfeasible. If the learning process is driven from real 
experience in the plant, the system will be unfeasible 
most of the time at the beginning of the process and 
the actuators can be damaged. That is why, in this 
framework, in order to arrive to the implementation 
phase, the optimality of the obtained policy has to be 
tested beforehand. 

  PLANNING BY INSTRUCTION  

In contrast to some IA learning methods, like 
supervised learning, in this work, the term instruction 
refers to the way in which the action is selected in the 
learning process, and not to the type of the feedback 
used. So, PlannigByInstruction behavior (PBIB) is a 
learning behavior that implements a specific 
combination of choosing actions and providing 
feedback.  

4.1 Description of the approach 

The purpose of this learning behavior is to obtain an 
optimal policy (Q), constructing a knowledge base 
based on the evaluation of actions given by a teacher. 
This teacher has to be a trustable controller, like a 
centralized MPC or the actions taken by a human 
expert. These actions are simulated in the model 
system and the result (states sa1 and sa2, (5), (6)) is 
evaluated obtaining a reward (r) (8) that is used to 
obtain the new Q-value (10). nit iterations are made 
for the complete control horizon with random initial 
conditions. This behavior is performed offline in the 
training phase of the LINKER methodology. 
Assuming that there is a single negotiation variable, 

the PlanningByInstruction behavior algorithm 
describes the training algorithm that the NA executes 
in order to update its Q-table by this learning 
behavior   

In this algorithm, sa1 and sa2 represents the states 
(5), (6) of agent1 and agent2 (the two agents that 
share that particular negotiation variable). Va1 and Va2 

are the internal representations of the shared variable 
in Agent1 and Agent2 (sub-indices a1 and a2 
respectively) for k instant. teacherAction is the action 
dictated by the teacher. 
 

 

Define 𝜌, n,  sa1 ← random, sa2 ← random, 

controlHorizon, teacherAction (1-control horizon),  k=1 

loop while iterations ≤ n 

   loop while k ≤ controlHorizon 

   Va1 (k) ← teacherAction (k) 

          Va2 (k) ← teacherAction (k) 

sa1 ← send Va1 (k) to agent1, agent1 set the 

action Va1 (k) and calculates its internal variables, 

apply all the controls (actions) obtained (and 

given) for step k to its LTI model of its partition 

and calculates sa   using  (5). 

sa2 ← send Va2 (k) to agent2, agent2 set the 

action Va2 (k) and calculates its internal variables, 

apply all the controls (actions) obtained (and 

given) for step k to its LTI model of its partition 

and calculates sa2 using (6). 

    r  ← ρ- sa1 - sa2 

Q (sa1’, teacherAction (k)’, sa2’ )← r +α Q(sa1, 

teacherAction (k), sa2) 

sa1’← sa1 

sa2’← sa2 

k=k+1 

end loop 

iterations=iterations+1 

end loop 

 

     PLANNING BY 

EXPLORATION 

Learning by exploration is the main type of learning 
technique used in RL. It is based on trying random 
actions from a deterministic and finite set, in order to 
obtain a feedback that represents how good the taken 
action was. Learning by exploration in LSS can be a 
difficult task because of the size and complexity of 
these systems. The PlanningByExploration behavior 
(PBEB) implements learning by exploration 
combined with selective feedback. The use of 
selective feedback reduces drastically the time of 



 

training needed in order to obtain an optimal policy 
(Q) and the difficulty to find a good parameterization 
of the learning process in the experimentation phase.  
The purpose of this learning behavior is to obtain an 
optimal policy (Q), constructing a knowledge base 
based on the exploration of a deterministic and finite 
set of actions. These actions are simulated in the 
model system and the result (states sa1 and sa2) is 
evaluated and only in case a feasible solution for both 
agents (agent1 and Agent2) is found, the feedback is 
selected for leaning. For those cases, a reward (r) is 
obtained and used to calculate the new Q-value (10). 
nit iterations are made for the complete control 
horizon with random initial conditions. This behavior 
is performed offline in the training phase of the 
LINKER methodology. Assuming that there is a 
single negotiation variable, the 
PlanningByExploration behavior algorithm 
describes the training algorithm that the LINKER 
executes in order to update its Q-table by this learning 
behavior: 

 

Define 𝜌, n,  sa1 ← random, sa2 ← random, 

controlHorizon, k=1 

loop while iterations ≤ n 

   loop while k ≤ controlHorizon 

  a ← random (a) ∈ A  Q (s1′,a, s2′) 

  Va1 (k) ← a 

   Va2 (k) ← a 

sa1 ← send Va1 (k) to agent1, agent1set the action 

Va1 (k) and calculates its internal variables, apply 

all the controls (actions) obtained (and given) for 

step k to its LTI model of its partition and 

calculates sa1  using  (5). 

sa2 ← send Va2 (k) to agent2, agent2set the action 

Va2 (k) and calculates its internal variables, apply 

all the controls (actions) obtained (and given) for 

step k to its LTI model of its partition and 

calculates sa2 using (6). 

if agent1 and agent2 have a feasible solution 

r  ← ρ- sa1 - sa2 

Q (sa1’, a’, sa2’ )← r +α Q(sa1, a, sa2) 

sa1’← sa1 

sa2’← sa2 

    else 

sa1’← random 

sa2’← random 

    end if 

    k=k+1 

end loop 

iterations=iterations+1 

end loop 

     ILLUSTRATIVE 

APPLICATION 

This section shows an example of the optimization of 
a water distribution network using the proposed 
architecture. The partitioning of the network obeys a 
geographical criterion, so it has been divided in two 
partitions, north and south (see Figure 3).     The tanks 
x1 and x2 will belong to the north sector where a local 
control is required. The tanks x3 and x4 will belong to 
the south sector, with its corresponding local 
controller. 

There are two supply sources and four demand 
points, one for each tank. Typically the demands have 
a sinusoidal behavior throughout the day that try to 
emulate the actual demand behavior. The system shall 
operate in a distributed way but looking for global 
optimum in the controlled tank levels, satisfying the 
demand points of both subsystems, and avoiding 
collisions or conflicts among them.  

 
It is expected that the performance of the tank 

levels follow a reference variable in time, but without 
performing drastic actions in the actuators. The target 
control is defined as follows: For each tank (x1, x2, x3, 
x4)   there is a given reference that describes the 
desirable behavior of the levels of these tanks. These 
levels will be achieved through the manipulation of 
the control variables (u1, u2,…,u8 ) with minor 
variations over time. 

Figure 4: Water network considered as case study. 



 

6.1 Using PBIB 

6.1.1 Training 

Figure 4 shows a representation of the Q-values 
calculated in different phases of the training of the 
variable u5. The Q-table contrast the error of M1 and 
M2 (or the discretize state of each agent) with the 
action taken.  

In order to use only positive errors, in Fig. 4, 
errors range from 0 to 200. Negative errors range 
from 0 to 99, 100 corresponds 0 and from 101 to 200 
are range the positive errors. Actions are ranging from 
0 to 100. As it can be appreciated in the figure, the 
states visited in this training tend to be denser near the 
optimum state (100). This is because all the actions 
were dictated by the teacher, the centralized system. 
Making a comparison between sub-figures (a), (b), (c) 
and (d) it can be seen that the Q-values cloud is 
spreading on the axis of the actions and becomes 
denser as the training progresses. It is important to 
notice that the only random factor in this training 
(using PBIB) are the initial states of  A1 and A2. The 
fact that in this training instructed learning is used 
makes it fast and efficient. The Q-values stored in 
these Q-tables represents meaningful and evaluated 
experience (because of the accumulation of the 
rewards). 

It can be noticed that between section c and d of 
the Fig. 4 there is not much difference. This is one of 
the factors that can show that no more iterations are 
needed. Additionally, the results of the exploitation 
phase are necessary in order to determinate that the 
training phase is finished. Similar results are obtained 

for the rest of the Q-tables. A training based on PBIB 
can be also used as a good start (or seed) before a non-
instructed learning technique.  

6.1.2 Simulation 

As it was mentioned before, in order to know if the 
training phase is finished it is necessary to evaluate 
the Q-tables making test and exploiting. In order to 
do that, the greedy behavior has to be implemented. 
The algorithm of greedy behavior is shown below. 
 
 

Q (s1,a, s2) ∀ s ∈ S, a ∈ A 

observe initial state, s1,s2 

loop 

a ←max a ′∈ A  Q (s1′,a, s2′) 

      s1 ← send Va1 (k) to agent 1 

           s2 ← send Va2 (k) to agent 2 

s1←s1′ 

s2← s2′ 

end loop 

 

 
 

This algorithm observes the state of the agents s1 
and s2 (in a discretized way) and maps it to the action 
that maximizes the accumulated Q-value. Figure 6 
shows the resulting  actions of the shared variables 
applied in the simulations shown above. It can be 
notice that the ones calculated by the Linker (blue) 
vary les over time than the ones calculated with a 
centralized MPC (green). This is archived without 
sacrificing performance.   
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Q-table Negotiation variable u5 training of 200 

iterations 

(c) 

Q-table Negotiation variable u5 training of 300 

iterations 

(d) 

 

6.1.3 Performance analysis and validation 

 
Table 1 shows the average absolute error of the output 
of 30 simulations. The first column was calculated 
with a training of 50 iterations, next ones with 100 
iterations, 200 and 300 iterations. The sum of the 
error A1 and error A2  provides the total error. It can 
be seen how the error in the LINKER system (the first 
three) decreases as the iterations of the training 

progresses. Also it can be noticed that between 200 
and 300 iterations there is not much difference in the 
error.  The analysis of this table and the differences 
between the resulting Q-tables is useful to establish 
when the training is completed. The results shown in 
Figure 5 show, that the LINKER system using 
Instructed learning by implementing the 
PlanningByInstruction behavior (PBIB) has a better 
performance than the centralized MPC solution  from 
iteration 200.
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𝐽∆𝑢 50 it 100 it 200 it 300 it 

Centralized MPC 4,666e-05 6,333e-05 5,000e-05 6,333e-05 

LINKER 0,0140833 0,0153533 0,0116933 0,0155466 

Figure 4: Different phases of the training using PBIB of the variable u5. 

 

Table 1: Accumulative ∆u between trainings 



 

 
 

 

 
𝐽𝑒 50 

 it 
100 
it 

200 
it 

300 
it 

A1 62,36     24,04 18,07 17,14     
A2 60,11 24,23     17,20     17,37     
LINKER 
(PBIB) 

122,47 48,27 35,27 34,49     

Centralized 
MPC 

45,91 
 

44,08 45,04 44,71 

 
Table 2 shows the accumulative ∆u objective applied 

by the LINKER and the centralized MPC solution in 30 
simulations.  The first column was calculated with a 
training of 50 iterations, next ones with 100, 200 and 300 
iterations. 
 

The results of this example shows that a system with 
multiples dependences between its components can be 
governed efficiently using distributed agents and, even 

more, it can increase its performance using the LINKER 
architecture implementing instructed learning by the 
PBIB behavior.  

It can also be observed that the actions calculated by 
the LINKER (the shared variables) vary less over time 
without sacrificing performance. But the accumulative 
control effort is minor compared with the centralized 
MPC. 

Other experiments have been carried varying the 
weights of the parameters 𝑤∆𝑥 and 𝑤𝑥  of Eq. (7). Making 
the same changes in the teacher (the centralized MPC) 
and performing a new training, the Linker adapts to the 
new parameterization providing similar results than ones 
obtained with the ones used. 
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Table 2: Average of absolute error between increasing 

iterations during training with PBIB 

  

  

Figure 5: Results of the Linker agents (blue) compared with the centralized MPC (green) solution. The red line is the 

reference, purple x min, cyan x max. 



 

6.2 Using PBEB 

6.1.1. Training              
The training implements the PlanningByExploration 
behavior. Many experiments were made in this phase. 
First experiments were made using just explorative 
learning. Then, the PlanningByExploration behavior 
(PBEB) was implemented varying the number of the 
iterations in the training. Then, PBEB with selective 
penalization of reward was implemented.  All training 
was made for the complete control horizon (24 hrs.) for 
each shared variable. Random initial conditions were set 
for each complete horizon. During training, the Q-table 
for each shared variable was filled with the Q-values 
calculated for all states visited.   

The learning behavior PlanningByExploration, 
selects the actions that leads to a feasible solution of the  
related MPC agents. In this experiment, PBEB with 
selective penalization of reward was implemented 
applying a penalization in the opposite case, this means 
that if there is no feasible solution for the local agents, a 
negative reward was assigned (-1000). This negative 
reward ensures that the Q-value of state-action-state that 
leads to critical states stays low and accelerates 
drastically the training process allowing the LINKER 
system to improve the centralized MPC solution from the 
iteration 20 (see Table 3). 

 
The experimentation made on this example shows 

that using just using exploration, the system cannot 
recover from states related to unfeasible solutions. In 
addition, these states have high frequency of visits 
because it is more likely that the random action selected 
were not the good one. This affects negatively the 
learning process because the accumulation of many 
small rewards becomes in larges Q-values. 

In order to solve that issue, selective feedback was 
applied. This reduces drastically the iterations needed 
using just exploration and the Q-values result more 
reliable. Moreover, the use of a negative reward in the 
selected actions that lead to unfeasible states also provide 

a huge improvement. After assigning the negative 
reward, s’1 and s’2    are set to random in order to continue 
the learning process effectively. 

With these conditions a training of 100 iterations was 
carried out. Figure 6 (a) shows a color representation of 
the Q-values calculated in the learning process. The Q-
table allows to present the error of A1 and A2 (or the 
discretize state of each agent) with the action taken. In 
order to use only positive errors, the errors are scaled 
from 0 to 200. Negative errors are scaled from 0 to 99, 
100 is 0 while values from 101 to 200 correspond to 
positive errors. Actions are ranging from 0 to 100.  The 
figure compares the Q-tables obtained using PBEB (a) 
and (PBIB) (b). From Figure 6 (a), it can be noticed that 
the cloud of data spreads all over the action axis, 
meaning that all actions were explored. Fig. 6 (b) shows 
the Q-table of  shared variable u5  with a training of 300 
iterations using PBIB. In this Q-table, the cloud of Q-
values is more compact because its training only tried the 
actions dictated by the teacher (in this case, centralized 
MPC).  

6.2.1 Simulation 

In other to know if the training phase is finished it is 
necessary to evaluate the elements of the Q-table by 
means of testing and exploiting. The simulation process 
implements the greedy behavior (described above).  

The simulation results presented in Figure 7 allow to 
compare the LINKER using PBEB (blue line) and the 
centralized solution (green line) with the same random 
initial conditions and references (red line), obtained after 
a training of 100 iterations using PBEB with selective 
penalization of reward explained above. Notice that the 
reference is variable in time. The parameters of MPC 
agents and the centralized MPC system are the same.  

𝐽𝑒 20 it 50 it 100 it 

A1 17,2429    15,8219    16,3230    

A2 18,3069    17,5714 16,3808    

LINKER 35,5499    33,3932 32,7038    

Centralized 
MPC 

45,3116     43,7657 42,8805     

Table 3: Comparison of the average absolute error between 

local agents, LINKER system and centralized MPC solution 

with trainings of 20, 50 and 100 iterations. 

 

 

 (a)  (b) 

 

0

50

100

0

50

100

150

200
0

50

100

150

200

 

Action

QTable Negotiator 1 - Variable u5

Error Agent 1
 

E
rr

o
r 

A
g
e
n
t 

2

500

1000

1500

2000

2500

3000

3500

4000

0

50

100

0

50

100

150

200
0

50

100

150

200

 

Action

QTable Negotiator 1 - Variable u5

Error Agent 1
 

E
rr

o
r 

A
g
e
n
t 

2

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

x 10
7

Figure 6: Comparison of the resulting Q-Tables of the variable u5 using 

PBEB (a) and PBIB(b). 



 

From Figure 7, it can be noticed that both approach 
force the system to track the reference.
 

6.2.2 Performance analysis and validation 

Many simulations were made to assess the performance 
of the extended proposed approach. Table III shows the 
comparison of the average absolute error (with respect to 
the reference) of 30 simulations in the training process 
of the best Q-tables found, the ones obtained using PBEB 
with selective penalization of reward. Columns show the 
results of a training of 20, 50 and 100 iterations with 
random reference and initial conditions. From this table, 

it can be noticed that the LINKER solution improves the 
centralized solution since the first 20 iterations of the 
training and keeps improving slightly as iterations 
increase.  

It was observed that the actions calculated by the 
Linker (the shared variables) vary less over time without 
sacrificing performance. But, the accumulative control 
effort is grater compared with the centralized MPC. 
Other experiments were made increasing or decreasing 
the negative reward but for this problem the best 
negative reward was -1000.

 
 

  

Figure 7: Results of the MPC agents (blue) compared with the centralized MPC (green) solution. The red line is the 

reference, purple x min, cyan x max. 
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   CONCLUSION 

This article describes three behaviors that 
implemented in the LINKER architecture, they 
manage to separate the learning process of the 
optimization process, eliminating with this the cost of 
the number of learning steps necessary to converge 
towards an optimal (or can be sub -optimal) policy. 
Explorative training is usually exhaustive. In this 
work this complexity is reduced applying selective 
feedback (using PBEB) but the combination of the 
use of negative reward for the selected feedbacks not 
just improves the results compared to the centralized 
MPC but also the PlanningByInstruction Behavior 
(PBIB) and decrease drastically the iterations needed 
in the training phase. Table 4 shows the average 
absolute error with respect to the reference of 30 
simulations of the PBEB with selective penalization 
of reward and the PBIB. Random initial conditions 
and random references were use. The random cases 
calculated for PBEB with selective penalization of 
reward were different than the ones calculated for 
PBIB. The training of the PBEB with selective 
penalization of reward, involves 100 iterations while 
in the case of the PBIB uses 300 iterations.  

 PBEB selective 

reward 

PBIB 

A1 16,3230    24,04 

A2 16,3808    24,23     

LINKER 32,7038    48,27 

Centralized MPC 42,8805     44,08 

 
Table 5 shows the average 𝐽∆𝑢 obtained using the 
LINKER and the centralized MPC solution in the 
same experimentation conditions that those used to 
obtain the results presented in Table 4. 

Table 5. Comparison of the J_∆u between the PBEB with 

selective penalization of reward and PBIB 

 

Thus, the experimentation results obtained in this 

example show that PBEB with selective penalization 

of reward is a more efficient learning technique than 

PBIB due to the reduction of the error and the 

iterations needed in training. 

The training of the PBEB with selective 

penalization of reward and the LINKER framework 

was successfully applied into a more realistic case of 

study, the Barcelona drinking water network (DWN) 

case study (Morcego et al. 2014) and (Javalera et al. 

2019). This DWN in managed by Aguas de 

Barcelona, S.A. (AGBAR).   
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