

Reinforcement Learning Approach for Cooperative Control of Multi-

Agent Systems

Valeria Javalera-Rincon 1 , Vicenc Puig Cayuela 2, Bernardo Morcego Seix2, Fernando Orduña-

Cabrera1

1 Advanced Systems Analisys and Ecosystem Services and Management programs, International Institute for Applied

Systems Analysis, Schlossplatz 1, A-2361, Laxenburg, Austria.
2Advanced Control Systems Group, Universitat Politècnica de Catalunya (UPC), Rambla Sant Nebridi, 10, 08222

Terrassa, Spain.

javalera@iiasa.ac.at, {vicenc.puig, bernardo.morcego} @upc.edu, orduna@iiasa.ac.at

Keywords: Distributed Control, Intelligent Agents, Reinforcement Learning, Cooperative Agents.

Abstract: Reinforcement Learning (RL) systems are trial-and-error learners. This feature altogether with delayed

reward, makes RL flexible, powerful and widely accepted. However, RL could not be suitable for control of

critical systems where the learning of the control actions by trial and error is not an option. In the RL literature,

the use of simulated experience generated by a model is called planning. In this paper, the

planningByInstruction and planningByExploration techniques are introduced, implemented and compared to

coordinate, a heterogeneous multi-agent architecture for distributed Large Scale Systems (LSS). This

architecture was proposed by (Javalera 2016). The models used in this approach are part of a distributed

architecture of agents. These models are used to simulate the behavior of the system when some coordinated

actions are applied. This experience is learned by the so-called, LINKER agents, during an off-line training.

An exploitation algorithm is used online, to coordinate and optimize the value of overlapping control variables

of the agents in the distributed architecture in a cooperative way. This paper also presents a technique that

offers a solution to the problem of the number of learning steps required to converge toward an optimal (or

can be sub-optimal) policy for distributed control systems. An example is used to illustrate the proposed

approach, showing exciting and promising results regarding the applicability to real systems.

 INTRODUCTION

RL is a well-known and formally studied family of
learning techniques. Moreover, depending on the
formulation of the problem and the richness of
experience data, the chances of convergence are high.
One of the main characteristics of RL is that the
agents learn by trial and error discovering which
actions yield the maximum reward by trying them.
However, it is also this characteristic what makes RL
unsuitable for controlling critical time-varying
systems where good performance is crucial all the
time, and the cost of this learning curve of the agent
can be too high.

Currently, some algorithms implement planning
techniques such as Dyna-Q and Prioritized Sweeping.
Some examples of applications of Dyna-Q algorithm
are (Tateyama et al. 2007), (Hwang et al. 2015) and
(Hwang et al. 2017). Moreover, for Prioritized
Sweeping see (Zajdel 2018) and (Desai and Patil
2017). In these cases, the planning techniques are used
to simulate experience generated by a model. Here
two planning techniques are introduced aiming to
work cooperatively and coordinated getting a
heterogeneous multi-agent architecture for Large
Scale Systems (LSS).

These planning techniques were specially
developed to fit into the LINKER Architecture (LA)
introduced in (Javalera 2016) as the MA-MPC
architecture. First descriptions and applications of
this architecture were presented in (Javalera et al.
2010), and the use of this architecture and

mailto:javalera@iiasa.ac.at

methodology to the Barcelona Drinking Water
Network is described in (Morcego et al. 2014). In all
these applications the agents implement a control
technique called "Model Predictive Control (MPC),"
therefore the name of the architecture. However, this
work is called LINKER architecture, since the
algorithms and architecture can be applied to other
types of agents as well, not just MPC.

Reinforcement learning (RL) works based on
experience, which, in LA is used aiming to reduce the
requirement of iterative methods, facilitating that the
system behaves almost like a reactive system with
reduced response time. Another relevant feature of
RL exploited by the LINKER Architecture is that it
explicitly considers the whole problem of a goal-
directed agent interacting with an uncertain
environment. Moreover, this is in contrast with many
approaches that consider sub-problems without
addressing how they might fit into a larger picture.
Even more, this is important for the LINKER
Architecture because it is distributed control
architecture of LSS, where some of its control
variables overlap between sub-systems; this issue is
aboard in the next section.

This paper aims to explain how using the
proposed learning techniques and the LINKER
Architecture, and is possible to integrate agents of a
distributed system with LINKER agents trained with
the proposed planning techniques. Each LINKER
agent calculates the value of shared variables between
overlapping systems looking for the global optimum
of the relation and coordinating its process with the
other agents of the system obtaining an overall good
performance. This work also proposes a solution that
makes possible to achieve the benefits of RL
techniques in critical systems that cannot afford to
pay the learning curve of a learner agent. Even more,
this is made using a meaningful reinforcement given
by the distributed agents that try the actions in its
internal model in offline training. Once all the
functions learned are evaluated and approved, the
LINKER agents use an online optimization algorithm
that can also have adaptation properties.

Another contribution of this paper is to compare
two learning techniques. In the first one, the actions
used in training are dictated by a teacher that, in this
case, is the centralized MPC (Model Predictive
Control) controller. In second one a learning
technique where actions are randomly selected. The
LINKER agent explores actions trying and evaluating
it, through the interaction with the agents that directly
control the model. An illustrative example is
developed using both techniques.

The structure of the paper is as follows: Section 2
introduces the problem statement. Section 3 presents
the model driven control and the model driven
integrated learning. Section 4 presents the planning

by instruction while Section 5 presents the planning
by exploration. Section 6 uses an application case
study to illustrate the performance of the proposed
architecture and approaches. Finally, Section 7
summarizes the main conclusions and describes the
future line of research.

 PROBLEM STATEMENT

In order to describe the learning techniques
mentioned above, it is necessary to explain the
underlying problem, which is the distributed control
problem that the LINKER architecture addresses.
This architecture is applied to a LSS.

In order to control an LSS in a distributed way,
some assumptions have to be made on its dynamics,
i.e. on the way the system behaves. Let us assume first
that the system can be decomposed into n sub-
systems, where each sub-system consists of a subset
of the system equations and the interconnections with
other sub-systems. The problem of determining the
partitions of the system is not addressed in this work.
The set of partitions should be complete. This means
that all system states and control variables should be
included at least in one of the partitions.

Definition 1. System partitions. P is the set of

system partitions and is defined by

𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑖} (1)

Where each system partition (subsystem) pi, i =
{1…n} is described by a model. In this example, a
deterministic linear time-invariant (LTI) model is
used to represent a drinking water distribution
network; this type of model can also be used for other
type of LSS where there is a network of connected
nodes and an element that flows in the network that
should be distributed to fulfill certain demands. This
model is expressed in discrete-time as follows

𝑥𝑖(𝑘 + 1) = 𝐴𝑖𝑥𝑖(𝑘) + 𝐵𝑢𝑖(𝑘) + 𝐵𝑑,𝑖𝑑𝑖(𝑘)
𝑦𝑖(𝑘) = 𝐶𝑖𝑥𝑖(𝑘) + 𝐷𝑢,𝑖𝑢𝑖(𝑘) + 𝐷𝑑,𝑖𝑑𝑖(𝑘)

(2)

The model describes the topology and dynamics

of the network. Variables x, y, u, d are the state,
output, input and disturbance vectors (for this case,
the demands) of appropriate dimensions,
respectively; A, B, C and D are the state, output, input
and direct matrices, respectively. Sub-indexes u and
d refer to the type of inputs the matrices model, either
control inputs or exogenous inputs (disturbances).
Control variables are classified as internal or shared
variables.

Definition 2. Internal Variables. Internal

variables are control variables that appear in the
model of only one subsystem in the problem. The set
of internal variables of a partition i is defined by
equation 3:

𝑈𝑖 = {𝑢1, 𝑢2, … , 𝑢𝑛𝑖} (3)

Definition 3 Shared Variables. Shared variables are

control variables that appear in the model of at least
two subsystems in the problem. Their values should
be consistent in the subsystems they appear. They are
also called negotiated variables because their values
are obtained through a negotiation process. Vij is the
set of negotiated variables between partitions i and j,
defined by equation 4

𝑉𝑖𝑗 = {𝑣1, 𝑣2, … , 𝑣𝑛𝑖𝑗} (4)

Each subsystem i is controlled by a controller (agent) using:

▪ the model of the dynamics of subsystem i given

by eq. (2);

▪ the measured state xi(k) of subsystem i;

▪ the exogenous inputs di(k) of subsystem i over a

specific horizon of time;

As a result, each agent calculates directly the
internal control actions, ui(k), of subsystem i. Figure.
1 on the left shows a sample system divided into three

partitions. Subsystem 1 has two shared variables with
sub-system 2 and subsystem 2 has one shared variable
with sub- system 3. The relations that represent those
variables are shown on the right as lines. The problem
consists in optimizing the manipulated variables of
the global system using a distributed approach, i.e.
with three local control agents that should preserve
consistency in the shared variables. In order to solve
the problem described above, a new framework has
been developed. This framework comprises a
methodology, the so called the LINKER
methodology and the architecture. The methodology
helps to implement the architecture

 A MODEL DRIVEN

CONTROL AND A MODEL

DRIVEN INTEGRATED

LEARNING

The LINKER architecture integrates a model driven
control and a model driven learning process. In order
to perform the negotiation of the shared variables, the
Linker agent learns to think globally, by means of an
offline training where negotiator and agents interact
and accumulate meaningful experience. This offline
training is made using a model of each sub-system

Figure 2: The problem of distributed control.

environment computing value functions (Q-tables)
whose optimality and efficiency are proved in the
experimentation phase, in order to be used later in the
negotiation process. This allows eliminating iterative
communication between agents in the negotiation
process, increasing efficiency, decreasing time of
response and making it safe to implement.

Figure 2 shows the integration of the models in
the agents in the planning process. The Linker agent
assigns the values of V to the related agents. Each
related agent has its own reference, disturbance
model and plant model according to Eq. 2. The local
controller takes V as constraints, computes vector c
and applies the control action to the plant model
producing y and e. e is an error vector that indicates
to the Linker how good the actions (V) were. In order
to evaluate that, it is necessary to calculate the state
of both agents. This is made based in the cost function
of the agents, as for example,

where

Jx(i) = e⃗ T(i) wx e⃗ (i) and
 J∆u(i) = ∆u⃗⃗ ⃗⃗ T(i)w∆x∆u⃗⃗ ⃗⃗ (i) (7)

The reward (r), is calculated using the states of

both MPC agents with the equation:
 σ = ρ − s1 − s2 (8)

where σ represents the reward r and ρ is a constant
that satisfies:

 s1 + s2 < ρ (9)

Given that s1 and s2 represents a sum of quadratic
errors (5), (6), the reward will be always positive.
With a smaller sum of errors the reward will be larger
and vice versa. s1 and s2 have to be discretized in order
to be use in

 Q(s´1, a´, s´2) ← r+∝ Q(s1, a, s2) (10)

that is the function that updates each Q-table where
the parameters ∝ rates past experience.

The purpose of this three-dimensional matrix is to
map the state agent 1 (s1) and the state of agent 2 (s2)
to a single action. The coordination feature of the
Linker agent lies on the fact that, in exploitation, the
Linker agent will map to an optimal (or sub-optimal)
action every s1 and s2 eliminating with this conflicts
between agents assigning the value of shared
variables.

s1 = ∑
Hp
i=0 J(i) = ∑

Hp
i=0 Jx (i) + ∑

Hp
i=0 J∆u(i)

s2 = ∑
Hp
i=0 J(i) = ∑

Hp
i=0 Jx (i) + ∑

Hp
i=0 J∆u(i)

(5)

(6)

Qv1 Qv2 Qvn …

Local

controller

Disturbance

Model 1

 agent1 agent2

LINKER

V V d r1

c

y

d
r2

y

c
e2

Local

controller
Plant Model 2

Disturbance

Model 2

Plant Model 1

e1

Planning

Figure 3: Integration of the models of agents in the planning process

The Linker uses this simulated experience and
updates the Q-values in the Q-tables, one for each
shared variable of the vector V in order to improve its
policy. All this process is implemented through the
PlannigByInstruction and PlanningByExploration
behaviors of the Linker that will be explained in
further detail in next section.

The integration of RL with the LTI model in this
approach offers high cohesion to the system. The
support that the LTI model (2) offers is deterministic,
descriptive and highly trusted. So, the integration of
these techniques coupled by the implementation of
the methodology makes the planning process efficient
and reliable.

The policy obtained is evaluated in the
experimentation phase. The fact that the policy is
obtained offline is a very important characteristic of
this approach due to the critical nature of LSS. The
use of a standard trial-and-error technique of RL
would make the implementation of this approach
unfeasible. If the learning process is driven from real
experience in the plant, the system will be unfeasible
most of the time at the beginning of the process and
the actuators can be damaged. That is why, in this
framework, in order to arrive to the implementation
phase, the optimality of the obtained policy has to be
tested beforehand.

 PLANNING BY INSTRUCTION

In contrast to some IA learning methods, like
supervised learning, in this work, the term instruction
refers to the way in which the action is selected in the
learning process, and not to the type of the feedback
used. So, PlannigByInstruction behavior (PBIB) is a
learning behavior that implements a specific
combination of choosing actions and providing
feedback.

4.1 Description of the approach

The purpose of this learning behavior is to obtain an
optimal policy (Q), constructing a knowledge base
based on the evaluation of actions given by a teacher.
This teacher has to be a trustable controller, like a
centralized MPC or the actions taken by a human
expert. These actions are simulated in the model
system and the result (states sa1 and sa2, (5), (6)) is
evaluated obtaining a reward (r) (8) that is used to
obtain the new Q-value (10). nit iterations are made
for the complete control horizon with random initial
conditions. This behavior is performed offline in the
training phase of the LINKER methodology.
Assuming that there is a single negotiation variable,

the PlanningByInstruction behavior algorithm
describes the training algorithm that the NA executes
in order to update its Q-table by this learning
behavior

In this algorithm, sa1 and sa2 represents the states
(5), (6) of agent1 and agent2 (the two agents that
share that particular negotiation variable). Va1 and Va2

are the internal representations of the shared variable
in Agent1 and Agent2 (sub-indices a1 and a2
respectively) for k instant. teacherAction is the action
dictated by the teacher.

Define 𝜌, n, sa1 ← random, sa2 ← random,

controlHorizon, teacherAction (1-control horizon), k=1

loop while iterations ≤ n

 loop while k ≤ controlHorizon

 Va1 (k) ← teacherAction (k)

 Va2 (k) ← teacherAction (k)

sa1 ← send Va1 (k) to agent1, agent1 set the

action Va1 (k) and calculates its internal variables,

apply all the controls (actions) obtained (and

given) for step k to its LTI model of its partition

and calculates sa using (5).

sa2 ← send Va2 (k) to agent2, agent2 set the

action Va2 (k) and calculates its internal variables,

apply all the controls (actions) obtained (and

given) for step k to its LTI model of its partition

and calculates sa2 using (6).

 r ← ρ- sa1 - sa2

Q (sa1’, teacherAction (k)’, sa2’)← r +α Q(sa1,

teacherAction (k), sa2)

sa1’← sa1

sa2’← sa2

k=k+1

end loop

iterations=iterations+1

end loop

 PLANNING BY

EXPLORATION

Learning by exploration is the main type of learning
technique used in RL. It is based on trying random
actions from a deterministic and finite set, in order to
obtain a feedback that represents how good the taken
action was. Learning by exploration in LSS can be a
difficult task because of the size and complexity of
these systems. The PlanningByExploration behavior
(PBEB) implements learning by exploration
combined with selective feedback. The use of
selective feedback reduces drastically the time of

training needed in order to obtain an optimal policy
(Q) and the difficulty to find a good parameterization
of the learning process in the experimentation phase.
The purpose of this learning behavior is to obtain an
optimal policy (Q), constructing a knowledge base
based on the exploration of a deterministic and finite
set of actions. These actions are simulated in the
model system and the result (states sa1 and sa2) is
evaluated and only in case a feasible solution for both
agents (agent1 and Agent2) is found, the feedback is
selected for leaning. For those cases, a reward (r) is
obtained and used to calculate the new Q-value (10).
nit iterations are made for the complete control
horizon with random initial conditions. This behavior
is performed offline in the training phase of the
LINKER methodology. Assuming that there is a
single negotiation variable, the
PlanningByExploration behavior algorithm
describes the training algorithm that the LINKER
executes in order to update its Q-table by this learning
behavior:

Define 𝜌, n, sa1 ← random, sa2 ← random,

controlHorizon, k=1

loop while iterations ≤ n

 loop while k ≤ controlHorizon

 a ← random (a) ∈ A Q (s1′,a, s2′)

 Va1 (k) ← a

 Va2 (k) ← a

sa1 ← send Va1 (k) to agent1, agent1set the action

Va1 (k) and calculates its internal variables, apply

all the controls (actions) obtained (and given) for

step k to its LTI model of its partition and

calculates sa1 using (5).

sa2 ← send Va2 (k) to agent2, agent2set the action

Va2 (k) and calculates its internal variables, apply

all the controls (actions) obtained (and given) for

step k to its LTI model of its partition and

calculates sa2 using (6).

if agent1 and agent2 have a feasible solution

r ← ρ- sa1 - sa2

Q (sa1’, a’, sa2’)← r +α Q(sa1, a, sa2)

sa1’← sa1

sa2’← sa2

 else

sa1’← random

sa2’← random

 end if

 k=k+1

end loop

iterations=iterations+1

end loop

 ILLUSTRATIVE

APPLICATION

This section shows an example of the optimization of
a water distribution network using the proposed
architecture. The partitioning of the network obeys a
geographical criterion, so it has been divided in two
partitions, north and south (see Figure 3). The tanks
x1 and x2 will belong to the north sector where a local
control is required. The tanks x3 and x4 will belong to
the south sector, with its corresponding local
controller.

There are two supply sources and four demand
points, one for each tank. Typically the demands have
a sinusoidal behavior throughout the day that try to
emulate the actual demand behavior. The system shall
operate in a distributed way but looking for global
optimum in the controlled tank levels, satisfying the
demand points of both subsystems, and avoiding
collisions or conflicts among them.

It is expected that the performance of the tank

levels follow a reference variable in time, but without
performing drastic actions in the actuators. The target
control is defined as follows: For each tank (x1, x2, x3,
x4) there is a given reference that describes the
desirable behavior of the levels of these tanks. These
levels will be achieved through the manipulation of
the control variables (u1, u2,…,u8) with minor
variations over time.

Figure 4: Water network considered as case study.

6.1 Using PBIB

6.1.1 Training

Figure 4 shows a representation of the Q-values
calculated in different phases of the training of the
variable u5. The Q-table contrast the error of M1 and
M2 (or the discretize state of each agent) with the
action taken.

In order to use only positive errors, in Fig. 4,
errors range from 0 to 200. Negative errors range
from 0 to 99, 100 corresponds 0 and from 101 to 200
are range the positive errors. Actions are ranging from
0 to 100. As it can be appreciated in the figure, the
states visited in this training tend to be denser near the
optimum state (100). This is because all the actions
were dictated by the teacher, the centralized system.
Making a comparison between sub-figures (a), (b), (c)
and (d) it can be seen that the Q-values cloud is
spreading on the axis of the actions and becomes
denser as the training progresses. It is important to
notice that the only random factor in this training
(using PBIB) are the initial states of A1 and A2. The
fact that in this training instructed learning is used
makes it fast and efficient. The Q-values stored in
these Q-tables represents meaningful and evaluated
experience (because of the accumulation of the
rewards).

It can be noticed that between section c and d of
the Fig. 4 there is not much difference. This is one of
the factors that can show that no more iterations are
needed. Additionally, the results of the exploitation
phase are necessary in order to determinate that the
training phase is finished. Similar results are obtained

for the rest of the Q-tables. A training based on PBIB
can be also used as a good start (or seed) before a non-
instructed learning technique.

6.1.2 Simulation

As it was mentioned before, in order to know if the
training phase is finished it is necessary to evaluate
the Q-tables making test and exploiting. In order to
do that, the greedy behavior has to be implemented.
The algorithm of greedy behavior is shown below.

Q (s1,a, s2) ∀ s ∈ S, a ∈ A

observe initial state, s1,s2

loop

a ←max a ′∈ A Q (s1′,a, s2′)

 s1 ← send Va1 (k) to agent 1

 s2 ← send Va2 (k) to agent 2

s1←s1′

s2← s2′

end loop

This algorithm observes the state of the agents s1
and s2 (in a discretized way) and maps it to the action
that maximizes the accumulated Q-value. Figure 6
shows the resulting actions of the shared variables
applied in the simulations shown above. It can be
notice that the ones calculated by the Linker (blue)
vary les over time than the ones calculated with a
centralized MPC (green). This is archived without
sacrificing performance.

Q-table Negotiation variable u5 training of 50

iterations

(a)

Q-table Negotiation variable u5 training of 100

iterations

(b)

0

50

100

0

50

100

150

200
0

50

100

150

200

Action

QTable Negotiator 1 - Variable u5

Error Agent 1

E
rr

o
r

A
g
e
n
t

2

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

x 10
7

0

50

100

0

50

100

150

200
0

50

100

150

200

Action

QTable Negotiator 1 - Variable u5

Error Agent 1

E
rr

o
r

A
g
e
n
t

2

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

x 10
7

Q-table Negotiation variable u5 training of 200

iterations

(c)

Q-table Negotiation variable u5 training of 300

iterations

(d)

6.1.3 Performance analysis and validation

Table 1 shows the average absolute error of the output
of 30 simulations. The first column was calculated
with a training of 50 iterations, next ones with 100
iterations, 200 and 300 iterations. The sum of the
error A1 and error A2 provides the total error. It can
be seen how the error in the LINKER system (the first
three) decreases as the iterations of the training

progresses. Also it can be noticed that between 200
and 300 iterations there is not much difference in the
error. The analysis of this table and the differences
between the resulting Q-tables is useful to establish
when the training is completed. The results shown in
Figure 5 show, that the LINKER system using
Instructed learning by implementing the
PlanningByInstruction behavior (PBIB) has a better
performance than the centralized MPC solution from
iteration 200.

0

50

100

0

50

100

150

200
0

50

100

150

200

Action

QTable Negotiator 1 - Variable u5

Error Agent 1

E
rr

o
r

A
g
e
n
t

2

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

x 10
7

0

50

100

0

50

100

150

200
0

50

100

150

200

Action

QTable Negotiator 1 - Variable u5

Error Agent 1

E
rr

o
r

A
g
e
n
t

2

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

x 10
7

𝐽∆𝑢 50 it 100 it 200 it 300 it

Centralized MPC 4,666e-05 6,333e-05 5,000e-05 6,333e-05

LINKER 0,0140833 0,0153533 0,0116933 0,0155466

Figure 4: Different phases of the training using PBIB of the variable u5.

Table 1: Accumulative ∆u between trainings

𝐽𝑒 50

 it
100
it

200
it

300
it

A1 62,36 24,04 18,07 17,14
A2 60,11 24,23 17,20 17,37
LINKER
(PBIB)

122,47 48,27 35,27 34,49

Centralized
MPC

45,91

44,08 45,04 44,71

Table 2 shows the accumulative ∆u objective applied

by the LINKER and the centralized MPC solution in 30
simulations. The first column was calculated with a
training of 50 iterations, next ones with 100, 200 and 300
iterations.

The results of this example shows that a system with
multiples dependences between its components can be
governed efficiently using distributed agents and, even

more, it can increase its performance using the LINKER
architecture implementing instructed learning by the
PBIB behavior.

It can also be observed that the actions calculated by
the LINKER (the shared variables) vary less over time
without sacrificing performance. But the accumulative
control effort is minor compared with the centralized
MPC.

Other experiments have been carried varying the
weights of the parameters 𝑤∆𝑥 and 𝑤𝑥 of Eq. (7). Making
the same changes in the teacher (the centralized MPC)
and performing a new training, the Linker adapts to the
new parameterization providing similar results than ones
obtained with the ones used.

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

10

Time (hr)

V
o
lu

m
e
 (

m
3
)

Agent 1 - Output x1

MA-MPC

Cetralize MPC

Reference

x Max

x Min

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

10

Time (hr)

V
o
lu

m
e
 (

m
3
)

Agent 1 - Output x2

MA-MPC

Cetralize MPC

Reference

x Max

x Min

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

10
Agent 2 - Output x3

Time (hr)

V
o
lu

m
e
 (

m
3
)

MA-MPC

Cetralize MPC

Reference

x Max

x Min

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

10
Agent 2 - Output x4

Time (hr)

V
o
lu

m
e
 (

m
3
)

MA-MPC

Cetralize MPC

Reference

x Max

x Min

Table 2: Average of absolute error between increasing

iterations during training with PBIB

Figure 5: Results of the Linker agents (blue) compared with the centralized MPC (green) solution. The red line is the

reference, purple x min, cyan x max.

6.2 Using PBEB

6.1.1. Training
The training implements the PlanningByExploration
behavior. Many experiments were made in this phase.
First experiments were made using just explorative
learning. Then, the PlanningByExploration behavior
(PBEB) was implemented varying the number of the
iterations in the training. Then, PBEB with selective
penalization of reward was implemented. All training
was made for the complete control horizon (24 hrs.) for
each shared variable. Random initial conditions were set
for each complete horizon. During training, the Q-table
for each shared variable was filled with the Q-values
calculated for all states visited.

The learning behavior PlanningByExploration,
selects the actions that leads to a feasible solution of the
related MPC agents. In this experiment, PBEB with
selective penalization of reward was implemented
applying a penalization in the opposite case, this means
that if there is no feasible solution for the local agents, a
negative reward was assigned (-1000). This negative
reward ensures that the Q-value of state-action-state that
leads to critical states stays low and accelerates
drastically the training process allowing the LINKER
system to improve the centralized MPC solution from the
iteration 20 (see Table 3).

The experimentation made on this example shows

that using just using exploration, the system cannot
recover from states related to unfeasible solutions. In
addition, these states have high frequency of visits
because it is more likely that the random action selected
were not the good one. This affects negatively the
learning process because the accumulation of many
small rewards becomes in larges Q-values.

In order to solve that issue, selective feedback was
applied. This reduces drastically the iterations needed
using just exploration and the Q-values result more
reliable. Moreover, the use of a negative reward in the
selected actions that lead to unfeasible states also provide

a huge improvement. After assigning the negative
reward, s’1 and s’2 are set to random in order to continue
the learning process effectively.

With these conditions a training of 100 iterations was
carried out. Figure 6 (a) shows a color representation of
the Q-values calculated in the learning process. The Q-
table allows to present the error of A1 and A2 (or the
discretize state of each agent) with the action taken. In
order to use only positive errors, the errors are scaled
from 0 to 200. Negative errors are scaled from 0 to 99,
100 is 0 while values from 101 to 200 correspond to
positive errors. Actions are ranging from 0 to 100. The
figure compares the Q-tables obtained using PBEB (a)
and (PBIB) (b). From Figure 6 (a), it can be noticed that
the cloud of data spreads all over the action axis,
meaning that all actions were explored. Fig. 6 (b) shows
the Q-table of shared variable u5 with a training of 300
iterations using PBIB. In this Q-table, the cloud of Q-
values is more compact because its training only tried the
actions dictated by the teacher (in this case, centralized
MPC).

6.2.1 Simulation

In other to know if the training phase is finished it is
necessary to evaluate the elements of the Q-table by
means of testing and exploiting. The simulation process
implements the greedy behavior (described above).

The simulation results presented in Figure 7 allow to
compare the LINKER using PBEB (blue line) and the
centralized solution (green line) with the same random
initial conditions and references (red line), obtained after
a training of 100 iterations using PBEB with selective
penalization of reward explained above. Notice that the
reference is variable in time. The parameters of MPC
agents and the centralized MPC system are the same.

𝐽𝑒 20 it 50 it 100 it

A1 17,2429 15,8219 16,3230

A2 18,3069 17,5714 16,3808

LINKER 35,5499 33,3932 32,7038

Centralized
MPC

45,3116 43,7657 42,8805

Table 3: Comparison of the average absolute error between

local agents, LINKER system and centralized MPC solution

with trainings of 20, 50 and 100 iterations.

 (a) (b)

0

50

100

0

50

100

150

200
0

50

100

150

200

Action

QTable Negotiator 1 - Variable u5

Error Agent 1

E
rr

o
r

A
g
e
n
t

2

500

1000

1500

2000

2500

3000

3500

4000

0

50

100

0

50

100

150

200
0

50

100

150

200

Action

QTable Negotiator 1 - Variable u5

Error Agent 1

E
rr

o
r

A
g
e
n
t

2

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

x 10
7

Figure 6: Comparison of the resulting Q-Tables of the variable u5 using

PBEB (a) and PBIB(b).

From Figure 7, it can be noticed that both approach
force the system to track the reference.

6.2.2 Performance analysis and validation

Many simulations were made to assess the performance
of the extended proposed approach. Table III shows the
comparison of the average absolute error (with respect to
the reference) of 30 simulations in the training process
of the best Q-tables found, the ones obtained using PBEB
with selective penalization of reward. Columns show the
results of a training of 20, 50 and 100 iterations with
random reference and initial conditions. From this table,

it can be noticed that the LINKER solution improves the
centralized solution since the first 20 iterations of the
training and keeps improving slightly as iterations
increase.

It was observed that the actions calculated by the
Linker (the shared variables) vary less over time without
sacrificing performance. But, the accumulative control
effort is grater compared with the centralized MPC.
Other experiments were made increasing or decreasing
the negative reward but for this problem the best
negative reward was -1000.

Figure 7: Results of the MPC agents (blue) compared with the centralized MPC (green) solution. The red line is the

reference, purple x min, cyan x max.

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

10

Time (hr)

V
o
lu

m
e
 (

m
3
)

Agent 1 - Output x1

MA-MPC

Cetralize MPC

Reference

x Max

x Min

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

10
Agent 2 - Output x3

Time (hr)

V
o
lu

m
e
 (

m
3
)

MA-MPC

Cetralize MPC

Reference

x Max

x Min

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

10
Agent 2 - Output x4

Time (hr)

V
o
lu

m
e
 (

m
3
)

MA-MPC

Cetralize MPC

Reference

x Max

x Min

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

10

Time (hr)

V
o
lu

m
e
 (

m
3
)

Agent 1 - Output x2

MA-MPC

Cetralize MPC

Reference

x Max

x Min

 CONCLUSION

This article describes three behaviors that
implemented in the LINKER architecture, they
manage to separate the learning process of the
optimization process, eliminating with this the cost of
the number of learning steps necessary to converge
towards an optimal (or can be sub -optimal) policy.
Explorative training is usually exhaustive. In this
work this complexity is reduced applying selective
feedback (using PBEB) but the combination of the
use of negative reward for the selected feedbacks not
just improves the results compared to the centralized
MPC but also the PlanningByInstruction Behavior
(PBIB) and decrease drastically the iterations needed
in the training phase. Table 4 shows the average
absolute error with respect to the reference of 30
simulations of the PBEB with selective penalization
of reward and the PBIB. Random initial conditions
and random references were use. The random cases
calculated for PBEB with selective penalization of
reward were different than the ones calculated for
PBIB. The training of the PBEB with selective
penalization of reward, involves 100 iterations while
in the case of the PBIB uses 300 iterations.

 PBEB selective

reward

PBIB

A1 16,3230 24,04

A2 16,3808 24,23

LINKER 32,7038 48,27

Centralized MPC 42,8805 44,08

Table 5 shows the average 𝐽∆𝑢 obtained using the
LINKER and the centralized MPC solution in the
same experimentation conditions that those used to
obtain the results presented in Table 4.

Table 5. Comparison of the J_∆u between the PBEB with

selective penalization of reward and PBIB

Thus, the experimentation results obtained in this

example show that PBEB with selective penalization

of reward is a more efficient learning technique than

PBIB due to the reduction of the error and the

iterations needed in training.

The training of the PBEB with selective

penalization of reward and the LINKER framework

was successfully applied into a more realistic case of

study, the Barcelona drinking water network (DWN)

case study (Morcego et al. 2014) and (Javalera et al.

2019). This DWN in managed by Aguas de

Barcelona, S.A. (AGBAR).

ACKNOWLEDGEMENTS

This work was financed by the National Council of
Science and Technology (CONACyT) and PRODEP
of Mexico.

REFERENCES

Desai, R.M. and Patil, B.P., 2017. Prioritized Sweeping

Reinforcement Learning Based Routing for MANETs.

Indonesian Journal of Electrical Engineering and

Computer Science, 5(2), pp.383–390.

Hwang, K., Jiang, W. and Chen, Y., 2017. Pheromone-

Based Planning Strategies in Dyna-Q Learning. IEEE

Transactions on Industrial Informatics, 13(2), pp.424–

435.

Hwang, K.-S., Jiang, W.-C. & Chen, Y.-J., 2015. Model

learning and knowledge sharing for a multiagent system

with Dyna-Q learning. IEEE transactions on

cybernetics, 45(5), pp.964–976.

Javalera, V., 2016. Distributed large scale systems: a multi-

agent RL-MPC architecture. Universidad Politécnica

de Cataluña. Available at:

http://digital.csic.es/handle/10261/155199.

Javalera, V., Morcego, B. and Puig, V., 2010. Negotiation

and Learning in distributed MPC of Large Scale

Systems. In Proceedings of the 2010 American Control

Conference. pp. 3168–3173.

Javalera, V., et al. Cooperative Linker for the distributed

control of the Barcelona Drinking Water

NetworkProceedings of the International Conference of

Agents and Artificial Intelligence. 2019

Morcego, B. et al., 2014. Distributed MPC Using

Reinforcement Learning Based Negotiation:

Application to Large Scale Systems. In J. M. Maestre

& R. R. Negenborn, eds. Distributed Model Predictive

Control Made Easy. Dordrecht: Springer Netherlands,

pp. 517–533.

Tateyama, T., Kawata, S. and Shimomura, T., 2007.

Parallel Reinforcement Learning Systems Using

Exploration Agents and Dyna-Q Algorithm. In SICE

Annual Conference 2007. pp. 2774–2778.

Zajdel, R., 2018. Epoch-incremental Dyna-learning and

prioritized sweeping algorithms. Neurocomputing, 319,

pp.13–20.

 PBEB PBIB

Centralized MPC 0,0001 6,333e-05
LINKER 0,0107 0,0153533

Table 4: Errors between PBEB with selective penalization

of reward and PBIB

http://paperpile.com/b/xRaI75/EczV
http://paperpile.com/b/xRaI75/EczV
http://paperpile.com/b/xRaI75/EczV
http://paperpile.com/b/xRaI75/EczV
http://paperpile.com/b/xRaI75/YS0a
http://paperpile.com/b/xRaI75/YS0a
http://paperpile.com/b/xRaI75/YS0a
http://paperpile.com/b/xRaI75/YS0a
http://paperpile.com/b/xRaI75/4XIb
http://paperpile.com/b/xRaI75/4XIb
http://paperpile.com/b/xRaI75/4XIb
http://paperpile.com/b/xRaI75/4XIb
http://paperpile.com/b/xRaI75/wT0O
http://paperpile.com/b/xRaI75/wT0O
http://paperpile.com/b/xRaI75/wT0O
http://paperpile.com/b/xRaI75/wT0O
http://digital.csic.es/handle/10261/155199
http://paperpile.com/b/xRaI75/wT0O
http://paperpile.com/b/xRaI75/9VZT
http://paperpile.com/b/xRaI75/9VZT
http://paperpile.com/b/xRaI75/9VZT
http://paperpile.com/b/xRaI75/9VZT
http://paperpile.com/b/xRaI75/1b8G
http://paperpile.com/b/xRaI75/1b8G
http://paperpile.com/b/xRaI75/1b8G
http://paperpile.com/b/xRaI75/1b8G
http://paperpile.com/b/xRaI75/1b8G
http://paperpile.com/b/xRaI75/1b8G
http://paperpile.com/b/xRaI75/Kccd
http://paperpile.com/b/xRaI75/Kccd
http://paperpile.com/b/xRaI75/Kccd
http://paperpile.com/b/xRaI75/Kccd
http://paperpile.com/b/xRaI75/i0Iw
http://paperpile.com/b/xRaI75/i0Iw
http://paperpile.com/b/xRaI75/i0Iw

