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Abstract  
 
It is well-recognised that to achieve long-term sustainable and resilient land 
management we needs to understand the coupled dynamics of social and ecological 
systems. Land use change scenarios, will often aim to understand i) the behaviours of 
land management, influenced by direct and indirect drivers, ii) the resulting changes 
in land use and iii) the environmental implications of these changes. While the 
literature in this field is extensive, approaches to parameterise coupled systems 
through integration of empirical social science based models and ecology based 
models still need further development. We propose an approach to land use dynamics 
modelling based on the integration of behavioural models derived from choice 
experiments and spatially explicit systems dynamics modelling. This involves the 
specification of a choice model to parameterise land use behaviour and the integration 
with a spatial habitat succession model. 
  
We test this approach in an upland socio-ecological system in the United Kingdom. 
We conduct a choice experiment with land managers in the Peak District National 
Park. The elicited preferences forms the basis for a behavioural model, which is 
integrated with a habitat succession model to predict the landscape level vegetation 
impacts. The integrated model allows us to create projections of how land use may 
change in the future under different environmental and policy scenarios, and the 
impact this may have on landscape vegetation patterns. We illustrate this by showing 
future projection of landscape changes related to hypothetical changes to EU level 
agricultural management incentives.  
  
The advantages of this approach are, (i) the approach takes into account potential 
environmental and management feedbacks, an aspect often ignored in choice 
modelling, (ii) the behavioural rules are revealed from actual and hypothetical choice 
data, which allows the research to test the empirical evidence for various determinants 
of choice, (iii) the behavioural choice models generates probabilities of alternative 
behaviours which makes them ideally suited for integration with simulation models. 
 



The paper concludes that the modelling approach offers a promissing route for linking 
socio-economic and ecological features of socio-ecological systems. Furthermore, our 
proposed approach allows testing of the underlying socio-economic and 
environmental drivers and their interaction in real environmental systems.       
    
Key words: Systems dynamics modelling, Choice experiments, Integrated ecological-
economic modelling, Single Farm Payment, Habitat succession, Vegetation dynamics, 
Grouse, Land management, Uplands. 
 
 



 
Introduction 
 

An overarching aim of land use change modelling in environmental research is firstly 

to understand how the spatial and temporal patterns of land managers’ behaviours 

shape agricultural or forest systems (Agrawal et al., 2002). Secondly, how this leads 

to diverse environmental impacts; e.g. on biodiversity conservation (Drechsler, et al. 

2007), on water quality (Nainggolan et al., 2018) and on climate services (Zandersen, 

et al., 2016; Prestele et al., 2017). Furthermore, models might also be designed to 

inform policy debates by providing a framework to anticipate and test how land use 

patterns may change under different hypothetical future scenarios (e.g. Wolff et al, 

2018; Tieskens et al., 2017). Several interesting approaches have emerged to address 

different aspects of such research questions. In this paper, we focus on two of these, 

dynamic systems models and in particular agent based simulation models (ABMs) 

(An, 2012) and statistically based approaches using choice models (CMs) (Train, 

2009).  

 

In most cases, both ABMs and CMs have been used independently to understand the 

rationale and implications of land-use decisions.  Several key developments in the 

application of ABMs to model land-use patterns have emerged over a long period of 

time (see eg. Bousquet et al. 1998; Agrawal et al., 2002; Veldkamp and Verburg 

2004; Huber et al., 2018). These contributions have addressed interactions among 

individuals to simulate land-use decisions of individual agents. For example, 

Barreteau and Bousquet (2000) used an ABM to understand the influence of existing 

social networks on the viability of an irrigated farming system in the Senegal River 

Valley. However, it is acknowledged that it is still challenging to move beyond 

hypothetical landscapes, and parameterize and validate the interactions needed to 

model real landscapes (Huber et al., 2018). Never the less, a few studies have 

attempted to develop more realistic systems (see eg. Evans and Kelley 2004; Tieskens 

et al., 2017) and accounting for the role of decisions of heterogonous agents in land-

use changes (Huigen 2004). A similar line of land-use related contributions have 

sought to determine how new agricultural practices are adopted by a population of 

farmers to better understand diffusion of technology (Balmann 1997, Berger 2001, 

Polhill et al. 2001; Schreinemachers et al, 2011).  



 

Another research approach used to explain or predict land managers’ decisions is 

choice experiment (CE) designed to parameterise choice models (CMs). These have 

been used to understand and predict farmers’ land-use decisions under a variety of 

hypothetical scenarios using data based on individuals’ responses collected using 

questionnaires. One such example is the study by Baltas and Korka (2001) that used a 

nested discrete choice model to analyse land-use allocation under risk. A number of 

choice modelling applications have investigated the determinants explaining farmers’ 

participation in environmental programs that would eventually lead to changes in 

land-use (Cooper and Keim 1996, Vanslembrouck et al. 2002, Lynch et al. 2002, 

Shaikh et al 2007, Peterson et al. 2007, Vedel et al., 2015; Aslam et al., 2017).  These 

studies have determined the probability of farmers’ participation in hypothetical 

agricultural improvement programs and estimated their willingness to accept (WTA) 

compensation for participation in these programs. 

 

The two approaches outlined above, therefore, have complementary advantages for 

advancing how we integrate and model coupled social-ecological systems. The ABM 

has the advantage of being a dynamic framework, incorporating feedback 

mechanisms that allow behaviour to be investigated in coupled systems. However, the 

specification of human behaviour and its interaction with the natural resource is often 

highly abstract and few models in the literature are parameterised or validated using 

real spatially specific data. On the other hand, CMs have been developed to 

parameterise behavioural models and capture heterogeneity between agent types 

(Boxall and Adamowicz 2000, Milon and Scrogin 2006; Train, 2016). However, CEs 

have usually not been developed to analyse emergent system properties as agent. 

They are commonly assumed to be acting independently (perhaps with the exception 

of social interaction models e.g. Brock and Durlauf (2006)) and the dynamic 

environmental feedbacks are usually ignored. CMs do, however, have the potential to 

provide a theoretical and empirical foundation for the link between changing 

environments and the consequential responses of land managers. The combination of 

these two approaches to achieve a dynamically integrated model with empirically 

estimated behavioural rules, will, therefore, offer an advancement to modelling of 

land use dynamics. 

    



The combined use of ABMs and CMs appears to be rare in the literature on the 

environmental implications of land use decisions. One exception, is the study 

combining a catchment scale hydrological simulation model with a behavioural model 

of homeowners lawn watering behaviour to improve prediction of water demand 

(Conrad and Yates, 2018). However, there are studies that integrate the two 

approaches in other fields. Notably, in the field of transportation studies aiming to 

link individual road user behaviour wih aggregated traffic system dynamics (Dia 

2002, Takama and Preston 2008). Takama and Preston investigate the effect of a road 

user charging scheme for visitors to the Upper Derwent Valley in the Peak District 

National Park. The authors use an ABM to incorporate an interaction term that 

accounts for congestion thereby enhancing the discrete choice model. Dia (2002), 

uses a discrete choice survey to obtain each driver’s preferences and characteristics 

and each driver is then modelled as an agent. Agents interact with their environment 

and with other agents in the system by receiving and reacting to real-time traffic 

information.  In the outdoor recreation context, Hunt, Kushneriuk and Lester (2007) 

developed a landscape fisheries model by using information from a revealed 

preference choice model and agent based models. Revealed preference data from each 

angler’s trip and data on available fishing sites were used to parameterise an ABM for 

recreational fishing in Northern Ontario.   

 

Building on the previous work, we propose an integrated ABM and CM by using a 

choice experiment to parameterise land managers behaviour in an agent based 

simulation model. We apply this approach in the upland ecosystems of the United 

Kingdom where land management is dominated by sheep and game bird production. 

To characterise agent behaviour we conduct a choice experiment with land managers 

in the Peak District National Park. The choice experiment was designed to reveal 

preferences for alternative production strategies under alternative scenarios of future 

change and to investigate the dependence of such choices on the changing 

environmental characteristics across the individuals’ land management units. The 

choice data forms the basis for a behavioural model, which is integrated with a habitat 

succession model, to form an integrated model of landscape habitat dynamics. The 

integrated model allows us to evaluate future changes in land use and the way these 

changes impact the environment under different environmental and policy scenarios. 

The data stems from an earlier study by Chapman et al. (2009). However in this study 



we take the analysis further to improve understaning of the underlying drivers of the 

dynamics of the joint production system. Furthermore, we illustarte how the coupled 

model can be used to analyse potential impacts of agri-environmental policy reforms. 

We illustrate this by showing future projections of landscape changes related to 

hypothetical changes to the level of the current EU agricultural subsidies. This 

scheme is also known as the single farm payment (SFP), which is an area-based 

payment. The payment schemes are currently being revised (COM, 2017) and it is 

therefore interesting to understand the impacts of proposed changes.  

  

 

Methodology and Data 
 

The study site  

 

The Peak District National park was established in 1951 and was the UK’s first 

National Park. Its central location within easy reach of approximately 48% of 

England’s population makes it one of the world’s most visited national parks, with 

over 22 million visitor days a year (Peak District National Park, 2004).  In addition to 

visitors, 38,000 people live within the park boundaries (Office for National Statistics, 

2003) and 12% of them are employed in agriculture. However, agriculture is 

financially marginal, most farmers rely on government subsidies and 93% of the 

national park is designated as a “Less Favoured Area” (European Commission 

Directive 75/268) (Dougill et al, 2006). 

 

This study focused on the Dark Peak area in the north of the national park.  The Dark 

Peak covers more than half of the national park, is predominantly on acidic peat soils 

over millstone grit and supports over 17,000 hectares of heather moorland and almost 

16,000 hectares of blanket bog (Sustainable Uplands & Moors for the Future, 2007) 

(Figure 1).  Both of these habitats are recognized as internationally important. Both 

heather moorland and blanket bog are recognised as key biodiversity habitats (UK 

Biodiversity steering group, 1995), have been designated as Sites of Special Scientific 

Interest (SSSI) (English Nature, 2003) and are listed in the EU’s Habitats Directive 

(92/43/EEC) as requiring special conservation measures as Special Areas of 



Conservation (SAC) and Special Protection Areas (SPA).  Extensive sheep farming 

and grouse (Lagopus lagopus scoticus) moor management form the dominant land 

uses.  

 

FIGURE 1  

 

Sheep production has traditionally been subsidized by the European Union’s Common 

Agricultural Policy (CAP), while grouse production has not.  However, proposed 

changes to the single farm payment, SFP, scheme may shift the incentives to 

managing different types of production systems (COM, 2017). The key habitat 

management tool for grouse moors is rotational burning of heather to provide a 

mosaic of different age heather stands to maximise territories for grouse (Watson and 

Miller, 1976). 

 

Conceptual Model Overview  

 
We describe the upland system as a joint production system of sheep and grouse in 

which the farmer chooses stocking density throughout the year, whether or not to burn 

and the burning schedule. We focused on sheep and grouse as they have historically 

been, and still is, important for both the upland economy and the characteristic upland 

vegetation and landscape. By choosing the stocking densities and burning schedule 

the farmer impacts the costs of the production system as they arise from maintenance 

of the sheep flock, in particular over wintering, and the labour costs involved in 

heather moorland management. We refer to the combination of summer and winter 

sheep stocking density and the burning schedule as the “moorland management 

regime”, and the individual management characteristics (e.g. summer grazing density) 

as the management attributes. It is through the choice of moorland management 

regime that farmers impact their own livelihood, the broader upland economy and the 

upland environment, both the vegetation itself and other environmental variables such 

as water quality, carbon storage, biodiversity etc. The interdependence between the 

sheep and grouse relates to the abundance of the preferred habitat of sheep relative to 

grouse, which in turn is partially determined by the choice of management regime. 

 



The aim is to model the choices that farmers make both under current conditions and 

under hypothetical changes to the current situation to identify the preferable 

management regimes, from a farmers point of view, under varying environmental and 

economic conditions. It is important to note that we do not assume that farmers aim to 

maximise production or income from their land, we merely characterise the 

importance of environmental and economic factors for variation in land management 

choices across the landscape. In other words, we test whether we can estimate an 

attractiveness (or ‘utility’ using economic language) function of land management 

regimes by a combination of variables defining the moorland management regime, the 

environmental conditions of the land and the socio-economic conditions of the farmer. 

If actual and hypothetical choices are described well by the estimated model, this will 

help to understand better the spatial variation in management choices across the 

uplands and across upland farmers.   

 

In this study, we test four basic hypotheses/relationships: (i) Land managers will 

display their relative preference for grouse production by choosing land management 

regimes favouring diverse heather age distributions; (ii) optimal stocking density and 

optimal burning regime (as perceived by the land managers) will vary across the 

landscape reflecting the variation in the carrying capacity for sheep and grouse and 

the land manager’s desire to keep management costs low by reducing the number of 

wintering sheep and the area of burning; (iii) the extent to which management choices 

will vary with socio-economic characteristics of the land manager and the condition 

under which the land is managed, i.e. ownership or tenancy agreements; (iv) the 

robustness of the perceived optimal moorland management to changes in the level of 

the single farm payment, SFP.  

  

In the model, land managers choose the favoured management regime given the 

characteristics of the plot of land. This results in a change in vegetation cover (of 

predominantly heather and grass), which in turn changes the perceived optimal 

strategy of the land manager. We investigate the dynamics of the coupled system of 

land management choices and habitat response. We compare scenarios by testing the 

differences between simulation outputs when changing amount of the single farm 

payment. Changing the mean temperature uniformly across the landscape simulates 

the impacts that climate change may have. 



  

Data 

 

Data collected to characterise the land managers’ behaviour 

Face-to-face interviews were carried out with land managers in the Dark Peak area in 

2006 and 2007.  Potential respondents were identified using two methods.  An initial 

contact list was generated from meetings with key stakeholders in the Peak District 

National Park. This allowed the interviews to be targeted only to land managers 

within the Dark Peak area and reduced the number of redundant contacts.  Additional 

respondents were then identified using the snowball method (Bailey, 1982) where 

those taking part were then asked to identify others. It is important to note that land 

managers are often responsible for managing several areas with different management 

regimes. Therefore, each contact was asked separately about land management on all 

the different “land management units” under their control. We obtained complete 

observations of environmental and behavioural data for a total of 71 individual 

management units, representing 40% of the Dark Peak area.  This was accomplished 

in 25 face-to-face-interviews.  

 

Data were collected during the interviews using a standardised questionnaire based on 

both structured open-ended and closed-format questions. The questionnaire was 

piloted with key stakeholders before being used with respondents.  

 

The first part of the questionnaire focused on identifying the type of land ownership 

(private versus tenancy) and the dominant land management activity carried out by 

the respondent (grouse moor management versus sheep farming).  The extent of the 

land they managed was also identified using Ordnance Survey maps.  Land was 

categorised into unique management units, reflecting heather moorland, rough grazing 

and improved pasture and the geographical boundaries between management units 

were recorded. The second part of the questionnaire was carried out for each of the 

identified management units and used a choice card for respondents to characterise 

their management. Respondents were first asked to characterise their current 

management strategies according to the variables on the card (Table 1) and this was 

recorded in the questionnaire.  From this baseline respondents were then asked how 

their management would change under different hypothetical scenarios.  In this paper 



we focus on the scenario related to changes in the single farm payment.  In this 

scenario we asked land managers ‘What if the current business environment stayed 

the same but the payments you currently receive from the single farm subsidy scheme 

changed so that you received £X per hectare, would your management change?’ X 

was drawn randomly from the following set: 10, 20, 30, 40, and 60. The number of 

repetitions (variations in X) of this experiment varied between interviews, depending 

on the number of management units, to limit the total amount of time spent on the 

questionnaire by each respondent.  The maximum number of repetitions was four and 

the minimum two. This resulted in a total data set of 200 observations (Table 1).  

 

 

TABLE 1 

 

 

Data used for the habitat succession model. 

Spatially-referenced environmental data used in the habitat succession model is 

specified in Table 2 and model formulation is outlined in the following section. 

 

TABLE 2 

 

Model formulation and parameterisation 

 

The model consists of two integrated components, the behavioural model and the 

habitat succession model. In this section, both components are described individually 

and then their integration and joint simulation is outlined.  

 

Behavioural model 

The underlying premise of the models we set up is that land managers choose a land 

management regime to maximise the utility from the joint production of grouse and 

sheep.  

 

We use a random utility approach (Train, 2003) to model land managers choices 

between alternative management regimes.  This assumes, that a land manager chooses 

a management regime j (defined as a combination of management attributes) in an 



area from the set of possible regimes J with the highest expected utility from the 

chosen management regime.  A general representative utility function of management 

regime j chosen by land manager n, is specified as vnj. The utility function includes 

(1) regime characteristics, njx , (2) environmental characteristics, nz , independent of 

the land management choices and (3) policy environment conditions, ns , that are also 

independent of the choices the land manager makes. The expected utility that 

individual n gains from land management regime j is, therefore, comprised of a 

deterministic component (vnj ) and a random error component ( njε ) specified as:  

 

 

nj nj njU v ε= +           [1] 

 

where  1 2 3' ' z ' snj nj nj n nj nv = + +β x β x β x . 1β  is a preference parameter vector 

representing the importance of individual regime characteristics in land managers 

choices (ie. parameters measuring preference for stocking density and heather 

diversity), 2β  is the preference parameter vector accounting for variation across 

varying environmental conditions, and 3β  accounts for the variation in preference 

parameters with varying policy environments. The error component njε  is 

independently and identically distributed (iid) and follows a Type 1 extreme value 

distribution (Train, 2003).  

 

The probability that individual n chooses regime i can be derived given the parameter 

vectors 1β , 2β , 3β  using the multinomial logit model (MNL) specified as follows: 

exp( )Pr
exp( )

ni
ni

nj
j J

v
v

∈

=
∑

         [2] 

The parameters are derived using maximum likelihood estimation using the Gauss 

software, version 6.0. There is no information on the subset of land management 

regimes considered by the land manager on each plot of land. However, all 

alternatives are available to the land managers and the choice set is modelled as the 

chosen regime and a random selection of alternatives. The advantage of this approach 

is the reduction in computing effort. More importantly, this approach has been shown 



to generate very similar relative parameter estimates to those obtained when the 

estimation choice set is the same as the total potential choice sets (Parsons and Kealy, 

1992; Termansen et al., 2004). We test for parameter stability with increasing size of 

the choice set to ensure that the selected model specification is not dependent on the 

arbitrary choice of number of alternative regimes considered.  

 

Habitat Dynamics Model 

The habitat model is a spatially explicit grid based model of the dynamics of the 

moorland vegetation cover. Space is represented as a 100 × 100 m grid aligned to the 

Ordnance Survey British National Grid. The state of each grid cell is given by the 

cover of dwarf shrubs (predominantly heather Calluna vulgaris), bracken Pteridium 

aquilinum, graminoids (grasses, sedges and rushes) and bare peat. Dwarf shrubs are 

further divided into five growth phases based on the number of years since the last 

burn. The phases are newly burnt (0-2 years), pioneer (3-5 years), building (6-15 

years), mature (16-25 years) and degenerate (26+ years) (Barclay-Estrup and 

Gimingham 1969). It is assumed that dwarf shrubs will remain in the degenerate stage 

indefinitely if it is not burned, and that cells colonised by dwarf shrubs enter the 

pioneer stage. Aging and the choice of burning regime determine the diversity of the 

dwarf shrub habitat, represented in the model by the Shannon-Weaver diversity index 

(Shannon, 1948). 

The habitat dynamics is based on the model developed by Chapman et al. (2010). 

Changes in habitat cover are determined by competition between dwarf shrubs, 

bracken and graminoids. This is mediated by grazing pressure, dwarf shrub age 

distribution (determined by burning) and environmental gradients. We follow the 

work from Palmer et al. (2004) and assume that provided grazing pressure is 

sufficiently low, and the environment sufficiently suitable, dwarf shrubs will 

dominate graminoids and bracken, and will increase in cover. We, however, modify 

Palmer et al’s model for changes in dwarf shrub cover as a function of the proportion 

of annual productivity eaten by grazing sheep (the utilisation rate).  Modifications 

include accounting for variations in habitat quality, the composition of competing 

vegetation and the dwarf growth phase following the principles described in Chapman 

et al. (2010).  Habitat quality is determined by temperature, rainfall, topography and 



bedrock type. For a full specification of the vegetation dynamics refer to Chapman et 

al. (2010). 

Managers decide how many sheep to release onto each management unit during 

summer and winter, but these sheep are free to move through the unit and so stocking 

density is therefore not uniformly distributed. We assume that sheep are distributed 

across the cells in proportion to the cover of their preferred forage (graminoids, 

including those growing within other vegetation types, following Armstrong et al. 

1997a,b).  Once stock density through the year has been calculated, the grazing 

utilisation rate of dwarf shrubs is estimated using the Hill Grazing Management 

Model (HGMM; Armstrong et al. 1997a,b). The HGMM is a very complex model 

from which we are only interested in determining of sheep grazing pressure. We have, 

therefore, produced a HGMM-emulator by running the model for selected variations 

in inputs (summer and winter stocking densities, proportions of dwarf shrub in each 

growth phase and temperature) and modelled the resulting grazing pressure using 

multiple regression. Chapman et al. (2010) gives full detail of this procedure and the 

results obtained.    

Managed burning in each management unit is implemented in each year with a 

probability calculated as the inverse of the burning frequency given in the land 

management strategy.  Burning affects entire grid cells, and we assume that cells are 

eligible for burning if the area of dwarf shrubs exceeds a threshold of 0.3 ha, 

equivalent to the average size of a burning plot.  The land management strategy gives 

the proportion of the eligible cells that are burnt each time burning occurs.  These are 

selected as the oldest of the eligible cells.  We assume that the burn is controlled and 

at a low temperature so that it simply resets the age of the dwarf shrub to zero. 

Negative impacts on dwarf shrub regeneration of high temperature burns have not 

been included in the model. 

Simulation procedure 

Management decisions are made in each year with a probability of 0.2, i.e. every 5 

years on average.  Decisions are made by selecting a strategy from the observed set 

with a probability in proportion to the values of exp(vnj) (Equation 2) for all observed 

strategies, as determined by the choice model. 



Stocking densities are distributed in each land management unit according to habitat 

preference of sheep and the chosen burning events are simulated by updating the state 

of the burned patches.  

Models are initiated with the observed management strategies and vegetation cover 

and run to equilibrium over a 500 year transient.  Outputs are then collected over the 

next 500 years and include the frequencies with which each management unit chooses 

each observed strategy. These data are used to calculate the mean values of the 

management strategies, such as the stocking densities, and the proportion cover of 

each vegetation type across the simulated landscapes. 

Analysis of simulated data 

Ten replicate simulations are run to establish equilibrium conditions for each 

combination of single farm payment level and degree of climate change.  Climate 

change is modelled as a uniform increase in temperature by 0 to 3 degrees Celsius (in 

0.5 °C steps).  Generalised linear models are used to analyse the components of the 

mean strategies outputted for each combination. 

 

Results 

Behavioural model specification  

 

The selected model shows that farmers’ utility from land management is dependent on 

stocking density, heather diversity, elevation, costs associated with sheep farming and 

burning and subsidy received (Table 3). The analysis did not show any evidence of 

dependence of the tested socio-economic characteristics of the land manager. We 

define low SFP as payment below £20/ha and high SFP as payments above £60/ha, as 

these specifications had the best statistical fit to the observed data. Heather dominated 

land is defined as dwarf shrub occupying more than 50% of the management unit. 

This threshold was also estimated based on statistical fit.  

  

TABLE 3 

 



The probability of choosing a land management regime with a high stocking density 

increase with temperature reflecting the higher stocking densities in the valleys 

compared to the hilltops ( 2
2β  > 0, P < 0.05). This effect is augmented by a 

background level propensity to choose management regimes with low sheep stocking 

densities ( 1
1β  < 0, P < 0.05). It would be expected that land managers would attempt 

to avoid land management options that lead to high costs associated with wintering 

costs, however, we do not find this effect to be significant. For scenarios representing 

a reduction in the SFP, the probability of choosing management regimes with high 

stocking densities is reduced ( 1
3β  < 0, P < 0.05). Land managers display a preference 

for land management regimes with higher dwarf shrub diversity on dwarf shrub 

dominated land ( 1
2β  > 0, P < 0.05). High burning costs regimes are avoided, other 

aspect being equal ( 2
1β  < 0, P < 0.05).  For high SFP scenarios the probability of 

choosing management regimes generating high dwarf diversity increases ( 2
3β  > 0, P < 

0.05).     

 

Relative parameter stability to choice set specification show that this aspect of model 

estimation has little bearing on the final formulation (Figure 2). We illustrate this for 

two sets of relative parameters: (i) the parameter capturing the preference for heather 

diversity on heather dominated land ( 1
2β ) relative to the parameter capturing the 

farmers’ propensity to avoid burning costs ( 2
1β ); (ii) the parameter capturing the 

change in preference for stocking density under a reduction in the single farm 

payment to less than £20/ha ( 1
3β ) relative to the parameter capturing the disutility 

from occurring away wintering costs ( 3
1β ). 

 

FIGURE 2 

 

The analysis shows that when the size of the choice set is below approximately 50 the 

relative parameter values are not stable, but results seem to be unaffected by the size 

of the choice set for larger choice sets. The results reported (Table 3) and used for 

further analysis are the results for a model estimated with 100 alternatives. 

 



Predicted impact on stocking densities 

 

The generalised linear model fitted to simulated summer stocking densities 

(R2
adj = 0.816) showed significant effects of the size of the area of the management 

unit (t = 2.008, P = 0.045), current mean temperature (t = 72.30, P < 0.001), degree of 

warming (t = 218.0, P < 0.001) and single farm payment (P < 0.001 for both factor 

levels) (Table 4). Farmers apply on average a higher summer stocking density to 

larger management units with higher temperatures (i.e. areas at lower elevation or 

with more severe climate change).  Low levels of single farm payment are predicted 

to lead to a decrease in stocking density compared to the current levels (Figure 3a). 

High levels of the payment is also predicted to lead to reduced stocking densities 

compared to the current payment levels (P < 0.001), however this effect is only 

apparent when analysing the individual management unit data. The landscape mean 

over the 10 simulations is not different to the mean outcome under the current 

payments (Figure 3a). The simulations suggest that increasing temperature under 

climate change outweighs the differences resulting from changes in the single farm 

payment. However, as the management regimes do not include options above a 

stocking density of 3 sheep/ha, this prediction could be a result of this selection of 

choice set design (Figure 3a). Similar results hold for variation in the winter stocking 

densities, however, the effect of the size of management area is not significant (t = -

0.787, P = 0.432).  Furthermore, the mean effect from the 10 simulations of different 

levels of the single farm payment also suggests that only the low payment levels 

generate a significantly lower winter stocking density for some warming scenarios 

(Figure 3 b). 

 

TABLE 4 

 

FIGURE 3  

 
Predicted impact on burning activities 

 

Simulated proportions of time employing grouse moor management (strategies 

involving some burning) were analysed using a GLM with binomial error structure 

corrected for overdispersion (R2
adj = 0.405).  Under the current climate, managers 



mostly express a clear preference for either grouse moor management or sheep 

production (Figure 4a-c).  However, a reduced preference for grouse is seen at 

medium levels of SFP (t = -31.65, P < 0.001) and for large management units (t = -

4.083, P < 0.001) at currently high temperatures/low elevations (t = -23.41, P < 

0.001).  As the climate gets warmer, the preference grouse management also declines 

(t = -86.63, P < 0.001) and we see a shift away from managed burning towards 

grazing (Figure 4a-c).  However, there is only a small impact on the burning practices 

of management units that still engage in burning (Figure 4d). 

 

TABLE 4 

FIGURE 4 

 

Predicted impact on land cover 

 
The results on vegetation cover reflect both the natural habitat dynamics and the 

management responses. At current temperatures the proportions of dwarf shrub are 

inversely related to the summer grazing pressure determined by the SFP level, while 

the opposite is true for graminoids and bare peat, both of which are favoured by 

higher grazing (Figure 5a-c).  Bracken is not eaten by sheep so is relatively unaffected 

by grazing (Figure 5d).  However its habitat quality is strongly constrained by a need 

for high temperature and so warmer temperatures allow it to move up the hill and 

increase in cover.  Dwarf shrub quality peaks at moderate temperatures, so in theory 

warming should increase cover in the coldest sites but decrease it in the warmest.  

However, warmer temperatures also bring higher grazing pressure in the model, 

which offsets any gains in cover in the colder sites.  Graminoids and bare peat both 

favour colder temperatures, so a slight warming reduces their cover.  However, as the 

temperature increases further and dwarf shrubs are lost to overgrazing then 

graminoids and bare peat expand in cover.  At warmer temperatures, management 

converges away from burning for grouse moor and towards sheep production and so 

the responses of vegetation to variation in the SFP become smaller. 

 

FIGURE 5 

 

 



Discussion and conclusion 
 

Much work has been devoted to anticipate the affects of alternative reforms of the 

European agricultural policy schemes. Previous modelling studies from the UK 

uplands have shown a general trend towards extensification in the uplands as a result 

of decoupling production and subsidy payments with the introduction of the single 

farm payment (Oglethorpe 2005, Matthews et al. 2006, Svetlana et al 2008). 

Extensification includes a reduction in sheep and cattle densities and also a reduction 

in the average per hectare use of inorganic fertilizers, the movement to lower stocking 

densities and shifts away from traditional suckler beef systems to sheep systems. The 

substitution of cattle systems with sheep is thought to be due to the lower fixed costs 

(i.e. operations and contractor costs) associated with sheep systems (Matthews et al 

2006). The results of this study suggests, that even when subsidy payments are 

decoupled from agricultural production, the level of payments is likely to impact the 

priorities in land management, although this should not be the case if farmers were 

strictly profit maximising agents. Our analysis suggests that there are two competing 

explanations for the nature of the impact on land management of changes to the level 

of the single farm payments. These two competing explanations could broadly be 

defined as the payment scheme’s impact on: (i) the propensity to diversify to make up 

for lost earnings, and (ii) the economic capacity of land owners to maintain a given 

level of land management activity. Our analysis shows that a reduction in the single 

farm payment leads to a reduction in stocking density and an increase in burning 

activities. This result can be interpreted by combining the insights from the 

behavioural model and the vegetation dynamics model. The reduction in the single 

farm payment reduces the stocking density. This mainly results from the proportion of 

farmers giving up sheep production under this scenario. In turn, the reduced sheep 

density promotes dwarf shrub regeneration, and this leads to an increase in the utility 

from choosing a grouse production management strategy. Overall, the results suggest 

that reducing the single farm payment introduces a shift in land management priorities 

to a regime less dominated by sheep grazing and more dominated by grouse shooting. 

As the single farm payment is independent of the amount of production, this suggests 

that current management practices are not financially viable but maintained through 

the subsidy. An increase in the single farm payment also results in a shift away from 



sheep grazing towards grouse moor management. This suggests that under more 

favourable financial circumstances, expensive but valued management regimes 

become relatively more attractive and land managers chose to invest more in the 

generation of habitats for grouse production. Again this suggest that land managers in 

the upland are motivated not purely by financial objectives but still are impacted by 

the financial constraints under which they carry out their business operations. Taken 

together, these results suggest that “other factors” rather than just profit contribute to 

farmers’ utility, and therefore also important in determining land management 

decisions.  

 

In terms of understanding these other factors, there are at least two key fields that 

provide conceptual and empirical insights.  The first come from behavioural studies, 

considering in particular, why some farmers voluntarily sign up to some policies and 

not others (Potter and Gasson, 1988; Brotherton, 1989; Brotherton, 1991; Wilson 

1997; Zandersen, et al. 2016; Aslam et al. 2017).  The second field is based in rural 

sociology and seeks to account for the persistence of “middle-range” family farms 

that are too big to be a “hobby” farm but too small to be economically viable on their 

own.  In this case, family structure and employment mobility are seen as important 

factors that drive the decision to stay in farming (Munton and Marsden, 1991). In our 

study, we have not been able to quantify socio-economic characteristics favouring 

particular types of behaviours. However, the more qualitative studies from this study 

area, do give evidence of different land management groupings impacting on land 

management choices (Dougill et al., 2006). External industry factors, along the supply 

and demand chain may also be important factors of land management behaviour, e.g. 

work in Canada has showed that structural factors, such as the nature of the food 

processing industry (Fraser, 2006) and land tenure (Fraser, 2004) all have significant 

influences on the types of crops a farmer plants and the extent to which they engage in 

soil conservation practices.   

 

This study has also investigated the extent to which the interaction between the 

decision-making in various habitats and the vegetation dynamics are sensitive to 

climate change. The model predicts significant changes to both land management 

behaviour and vegetation cover. The system is predicted to shift towards a grazing-

based system, where stocking densities increase, dwarf cover declines resulting in a 



reduction in burning activities. It should however be noted, that in the vegetation 

models, temperature increases that pushed individual cells above the observed 

maximum temperature were treated as having the same effect as raising temperature 

to the observed maximum.  This was because nonlinear relationships fitted to local 

data could not be extrapolated to higher temperatures. This means that bracken may in 

reality continue to increase in dominance at high temperatures rather than reach an 

asymptote. Furthermore, the temperature dependency in the behavioural model is 

represented by a linear relationship, this may have resulted in unrealistic predictions 

of climate effects for lower elevation areas. Management decisions converge at high 

temperatures but this could be due to the fact that high stocking density options are 

not present in the choice set. This means that the increase in stocking densities might 

be even more severe that the simulated results indicate.  
           

The approach illustrated in this paper could potentially be improved to include more 

elaborated decision models given replications of the types of data we use here to a 

larger sample size. The relatively recent developments in discrete choice modelling to 

capture heterogeneity in preferences between individuals or groups of individuals, by 

application of the mixed logit model (Train, 2003) or the latent class models (Boxall 

and Adamowicz, 2000), offers interesting extensions of the approach we have 

proposed here. Furthermore, new developments in choice modelling over the last 

decade could potentially be used to model complex decision-making processes. This 

could potentially be achieved using hybrid choice models (Ben-Akiva et al., 2002; 

Hess and Beharry-Borg, 2012). 

 

The present paper has however made a contribution to the way in which discrete 

choice models of land use behaviour can be considered in an integrated model. Our 

approach allows the simulation of choices in response to the environmental 

consequences of past actions, a factor usually ignored in studies using choice 

modelling. Furthermore, the behavioural rules are revealed through empirical data 

rather than dictated through expert opinions, derived from the literature or simply 

assumed. This allows the research to test the statistical significance of various 

determinants of choice. Moreover, the behavioural choice model generates 

probabilities of alternative behaviours that makes it ideally suited for integration with 

simulation models.    
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TABLES 

 

Table 1 

 

Variable Description Source 
Land Holding, LH Geographical mapping of individual land holdings. Interviews 
Management Unit, MU Geographical mapping of areas with uniform management 

strategy. Digitised in ArcGIS. 
Interviews 

Tenancy, T Owned by land manager, land manager tenant on the land, land 
manager employed. 

Interviews 

Dominant land use 
DOM 

Land predominantly used for grazing, land predominantly used for 
grouse shooting, Land predominantly used for other purpose. 

Interviews 

Grazing time, GT The temporal extent of the grazing; no grazing, spring and 
summer, all year with 25% reduction in winter, all year.  

Interviews 
Choice card 

Stocking Rate, SR Stocking Rate when sheep are grassing the land; no grazing, 0.5 
sheep/ha, 1sheep/ha, 2 sheep/ha, 3 sheep/ha. 

Interviews 
Choice card 

Stocking Density, SD Average summer stocking density, calculated by combining GT 
and SR. 

Derived 

Burning Frequency, BF Frequency of burning in a management unit; every year, every 
other year, every third year, every fifth year, never. 

Interviews 
Choice card 

Burning Proportion, BP Proportion burned when management unit is burned; 0.5%, 10%, 
15% and 20% 

Interviews 
Choice card 

Shannon Diversity 
Index,  SH  

Shannon-Weaver’s Diversity Index of dwarf shrubs age 
distribution. Calculated from each management option 
(combination of BF and BP) in a simple dwarf shrub succession 
model on a 100×100 grid of  dwarf shrub.  

Derived 

Single Farm Payment,  
SFP 

Actual and hypothetical area payment independent of farming 
intensity; 0, 10, 20, 40, 60 £/ha 

Interviews 
 

SFPL Dummy variable for SFP, SFPL = 1 if SFP < L, otherwise SPFL = 
0 

Derived 

SFPM Dummy variable for SFP, SFPM = 1 if L < SFP < H, otherwise 
SPFM = 0 

Derived 

SFPH Dummy variable for SFP, SFPH = 1 if SFPH > H, otherwise SPFH 
= 0 

Derived 

Temperature, Temp Used as proxy for Elevation; to capture land carrying capacity. Met Office 
weather 
stations1 

Grass Proportion of gramionoids (grasses) in each MU LCM 
Heather Proportion of dwarf shrub in each MA LCM 
DH Dummy variable for Heather dominant MA; DH = 1 when Heather 

> 0.5, otherwise DH = 0. 
Derived 

Burning costs, BC Costs of burning measured as labour requirement per unit of land.  Interviews 
Wintering costs, WC Costs of keeping sheep off the moors over winter.  Interviews 

1 http://www.badc.nerc.ac.uk/data/ukmo-midas 

Table 2 

Variables Description Source 
LCM Land Cover Map in 2005 grouped into dwarf shrubs, bracken, 

graminoid, bare peat and bare rock, 5×5 m resolution.    
Chapman et al., 2010 

Slope Mean slope (degrees) derived from the NEXTmap Digital 
Elevation Model (5×5 m resolution) 

NEXTmap1  

Aspect Aspect (north, south, east, west) derived from the NEXTmap 
Digital Elevation Model (5×5 m resolution)  

NEXTmap1  

Rainfall Mean annual rainfall, interpolated at 100×100 m resolution. Met Office weather 

http://www.badc.nerc.ac.uk/data/ukmo-midas


stations2 
Temperature Mean annual temperature, interpolated at 100×100 m 

resolution.  
Met Office weather 
stations2 

Bedrock Bedrock classified as either sandstone or mixed. British Geological 
Survey bedrock 
map3  

Warming Additional degrees Celsius added to the mean annual 
temperature  

Scenario assumption 

1 http://www/neodc.rl.ac.uk; 2 http://www.badc.nerc.ac.uk/data/ukmo-midas; 
3 http://www.bgs.ac.uk/products/digitalmaps/home/html 
 

Table 3 

Variable Parameter Estimate t-statistics 
Stocking Density  1

1β  -3.828 -2.86 

Socking Density × SFPL  1
3β  -0.531 -3.01 

Shannon Diversity Index × Heather · DH  1
2β   4.266  4.62 

Shannon Diversity Index × SFPH   2
3β   0.959  2.60 

Burning Costs 2
1β  -0.019 -3.82 

Wintering Costs  3
1β  -0.015 -1.27 

Stocking Density × Temperature  2
2β   0.5356  3.05 

 

Table 4 
 
 Summer stocking densities Winter stocking densities 
Variable Estimates t-statistics Estimates t-statistics 
Intercept  -1.862 -44.396     0.183    17.192    
SFPM  0.439    79.922     0.0573    40.985    
SFPH  0.324    58.961     0.0627    44.837    
Warming  0.489    217.958     0.0584    102.301    
MU area  8.164×10-6    2.008    -8.132×10-7     -0.787     
Temperature  0.398    72.303     0.0518    37.018    
 
Table 5: 
 
Variable  Estimates t-statistics 
Intercept  4.742  21.780   
SFPM -0.973   -31.619   
SFPH  0.0606    2.357    
Warming -1.323  -86.538   
MU area -8.787×10-5    -4.080 
Temperature -0.672   -23.396   
 

http://www/neodc.rl.ac.uk
http://www.badc.nerc.ac.uk/data/ukmo-midas
http://www.bgs.ac.uk/products/digitalmaps/home/html
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(a) Low SFP
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(b) Medium SFP
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(c) High SFP
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Figure 5: 
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(a) Dwarf shrub
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(b) Bracken
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(c) Graminoid
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CAPTIONS 
 
TABLES 
 
Table 1: Data tested for the specification of the behavioural model 
 
Table 2: Data used to run the habitat succession model 
 
Table 3: Behavioural model specification (Choice set 100 alternative land 
management regimes) 
 
Table 4: Determinants of summer and winter stocking densities in land management 
units. Summer stocking density model, R2

adj = 0.8161, P < 0.001. Winter stocking 
density model, R2

adj = 0.5161, P < 0.001. 
 
Table 5: Binomial linear model of participation in managed burning. R2

adj = 0.405. 
Correction for over dispersion, k = 78.68075  
 
FIGURE 
 
Figure 1: Map of the open moorland within the Peak District and its location in Great 
Britain. To preserve confidentiality we are unable to show the exact location of the 
modelled management units.      
 
Figure 2: Relative parameter estimates in choice model related to stocking density 

1 3
3 1β β  and related to heather density 1 2

2 1β β  as a function of choice set size. 
Replication of estimations shown for choice set size 3, 10, 30, 50, 100, five 
replications for each choice set size. 
 
Figure 3: Responses of grazing strategies to joint variation in the single farm payment 
(SFP) and climate change.  Boxplots show equilibrium (a) summer sheep densities S 
(ha-1) and (b) winter stocking rates W (white, SFP < £20 ha-1; light grey, £20 < SFP < 
£60 ha-1; dark grey, SFP > £60 ha-1).  Boxplots show medians (thick lines), 
interquartile ranges (IQRs, boxes), ranges (whiskers) and ±1.58 IQR/√ n (notches) 
where n = number of datapoints of values for the mean values of individual 
management units.  .  If 2 notches do not overlap, this indicates that the medians are 
significantly different at P < 0.05.  Mean values for each management unit are 
calculated from the strategies chosen during 500 simulated years, following an initial 
500-year transient period.  Values from ten replicate simulations are used in the plots. 

Figure 4: (a-c) Violin plots showing the kernel density (indicated by width) of 
preference for grouse moor management for different temperature rises and levels of 
the single farm payment (SFP).  Preference is measured as the proportion of years in 
which management units employ a strategy involving burning.  (d) Boxplot of the 
mean percentage of the dwarf shrub burnt each year when management units employ 
strategies including burning, for variations in the single farm payment and climate 
change (all as in Figure 3). 
 



Figure 5:  Mean equilibrium areas of (a) dwarf shrub, (b) bracken, (c) graminoids and 
(d) bare peat for differing temperature rise and single farm payments (white = low, 
grey = medium, black = high).  Means are values from ten replicate simulations after 
1000 years. 
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