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A comparisn of relational databases, as known in Data Management, 
and logical databases, as used in Artificial Intelligence is made. This com- 
parison is then used to examine certain semantic issues raised by the 
Entity-Relationship Model. 
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RELATIONAL DATABASES. LOGICAL DATABASES AND 
THE ENTITY-RELATIONSHIPS APPROACH 

Ronald M. Lee 

I. INTRODUCrION 
In Artificial Intelligence (AI), the term database is often used to refer 

to a 'logical database' of predicate calculus assertions. In contrast to the 
'structured' databases of data management (DM), e.g., relational, net- 
work, the logical form has certain advantages: queries are data structure 
independent (there is no data structure), and automatic inferencing is 
supported (indeed, this is the motivation for using the predicate calculus 
in AI databases). O n  the other hand, logical databases have the disadvan- 
tage that they require a much more rigorous modeling of the environ- 
ment. In certain cases this leads to yet unsolved difficulties in logic and 
philosophy. 

In this paper, we compare the logical database form to that of one 
popular model of structured databases, the relational model Codd (1970). 

Aside from its popularity, the relational model, considered in combi- 
nation with the relational calculus (Codd 1971) helps to minimize the e 
syntactic differences of the two approaches. As will be seen, the funda- 
mental difference that remains is one of 'ontology'i.e., the fundamental 
objects assumed under each framework. I t  is this difference that 
accounts for the advantages and limitations of the logical approach. 

Based on t h s  comparison, we also examine the 'entity-relationship 
model' of Chen (1976) which, in prescribing a semantically motivated 
approach to the design of relational database, serves as an intermediate 
case to the other two approaches. 



For a broader comparison between the perspectives on databases in 
data management and artificial intelligence see the survey article by 
Wong e t  al. (1976). A more in-depth background on logical databases is 
given in Gallaire and Minker (1978) and other references suggested 
therein. For a good introduction to various theorem proving techniques 
used on logical databases, see the later chapters of Nilsson (1980). 

XI. PREDICATE CALCULUS 
a rudimentary familiarity with the predicate calculus (PC) is 

presumed. (For background, a suggested text is Suppes (1957)~) The 
notation used herein is as follows: 

Propositional and predicate constant names  are denoted as a capital 
letter, followed by zero or more other capital letters, digits or embedded 
hyphens. Predicates in addition have an argument list following the 
name. E.g., P, Q, RED( ), COMMON-STOCK. 

Individual and functional constant names  are denoted by the char- 
acter "@" followed by one or more lower case letters or digits or embed- 
ded hyphens. 

Individual variables are denoted as single lower case letters followed 
by an optional numeric subscript, e.g., x, y, 21, zz. 

Logical connectives: 

N negation 

& conjunction 

V inclusive disjunction 

W exclusive disjunction 

* implication 

C, e quivale nc e 

Quantifiers : 

'd unive rs a1 

3 existential 

Further syntactic rules of well formedness, inference rules and 
axioms could be given. However, since our use of the PC notation here is 
largely illustrative, we will omit these aspects. (They are in any case well 
studied and available in standard logic texts.) 



While the PC syntax will play a role later in this paper, the more fun- 
damental point at  present is the structure of predicate calculus systems. 

The syntax presented above is uninte7preted. That is, the range of 
the individual variables and the definitions of predicates, etc. is so far left 
unexplained. To construct a logical system using the PC, one begins first 
by defining a 'universe,' the set of objects which the subsequent logical 
statements are 'about.' This universe is defined eztra- Logically, i.e., in 
natural language. For instance, for a PC system applied to mathematics, 
the universe might be the integer numbers. For a system describing fam- 
ilial relations, the universe would be the set of people. 

This universe may be either finite or infinite, but it is presumed that 
each element therein is identifiable in that a unique name is potentially 
assignable to  each. 

The next step is that various primitive predicates and functions are 
introduced. These too are defined extra-logically. 

Next axioms are introduced which indicate the inter-dependence of 
these primitive predicates, constraining their manipulation. 

Also, logical definitions (within the PC) may introduce further 
derived predicates and functions. 

III. THE FtELATIONAL MODEL AND CALCULUS AS A LOGIC SYSlXP 
Codd's Relational Calculus (1971), one of a variety of retrieval 

languages for relational databases, is based on a predicate calculus syn- 
tax. 

However, if one consider the relational model and calculus together, 
we can regard them as a logical system. This is instructive for com- 
pareative purposes. 

However, because the RC was developed for data retrieval queries, it 
differs somewhat from the usual PC syntax, which is designated to 
express true/false assertions. 

Basically an RC query has two parts-'qualification expression' which 
selects some subset of tuples in the database, and a 'target list', which 
extracts certain attributes of these selected tuples to be returned to the 
user. 

It is the qualification expression part of the query which was a PC 
syntax. The tuples to be extracted correspond to unbound variables in 
this expression. 

This leads us to look first at the universe of the system. As seen in 
Codd (19711, the quantified variables range over tuples in the database. 
These ranges are often restricted to certain relations4 e., the relations 
serve the role of one-place predicates. 

Thus, while Codd uses the notation (x E R) to indicate that the range 
of variable x is limited to the tuples in relation R, an equivalent notation 
is ~ ( x ) .  



Beyond this, further restrictions of tuples are made by testing the 
vales of attributes, i.e., the 'columns' or data items within a tuple. Whle 
Codd's examples use only numeric data, we will assume date items to be 
classified as character or numeric. For character data, tests are limited 
to equality, whereas numeric tests may also include inequalities (greater 
than, less than, etc.). 

The tuples we are discussing are merely tuples of such data items. 
Thus these are tests on one or another position in the tuple. Since these 
positions are named, Codd uses a dot notation to express the test-e.g., 
x.COLOR = 'RED', y.AGE = 20. We are therefore comparing the content of 
these positions to some character or numeric data value. 

However, under the interpretation as a logical system, this is rather 
strange since the individuals of the system are assumed to be elemen- 
tary. Here, the individuals of the system are tuples, in turn composed of 
lower level elements the positions of the tuple. If we wish to recognize 
these in the calculus, then our variables should range over these positions 
as elementary objects. But this would be to ignore the principal value of 
the relational model, i.e., as a convenient s t r u c t u r i n g  of data. 

However, we can maintain the calculus with tuples as the basic indivi- 
duals if we regard the attribute values not as parts of the tuples. but as 
f u n c t i o n s  mapping from the tuple to a data value character string or 
number. Under this interpretation, an (equivalent) functional notation 
seems more appropriate-e.g., COLOR(x) = 'RED', AGE(y) = 20. 

Note that while we are still -maintaining the notion of a tuple as a 
locus of properties, we are now ignoring its existence as a structured data 
object. 

Thus, under this logical interpretation, the relational model and cal- 
culus is recast as a logical system whose principal universe is the set of 
database tuples, regarded as elementary (non-decomposable) objects. 
Two auxilliary universes are added, nurnbers and character strings, with 
functions mapping from the universe of tuples to each of these. This is 
sketched in Diagram 1. 

With t h s  extension to multiple universes, we must correspondingly 
extend the predicate calculus to a m u l t i -  s o r t e d  log ic .  Essentially, this 
involves only additional syntactic constraints on the calculus including 
typing of individual and functional constants, individual variables, quantif- 
iers, and the places of functions and predicates according to 

t = tuple 
c = character string 
n = number. 

A s  observed in Enderton (1 972), these additional syntactic con- 
straints of a multi-sorted logic can just as well be controlled withn the 
calculus itself, e.g., using predicates 

TUPLE (x) 



Diagram 1. 

so that  these extensions do not introduce any substantially different fac- 
tors from a logical standpoint. 

Thus far, we have merely re-interpreted the relational model plus 
calculus as a predicate calculus system. This is essentially only a syntac- 
tic transformation: any relational database can be so transformed and 
the information contained is identical. The important difference is that  
this form recognizes the tuple as a n  elementary individual rather than as 
a composite object with internal structure. 

a brief example may help illustrate the correspondence. Consider 
the following sample database: 

Under the logical interpretation, we must first assign names to  each of 
the tuples. Arbitrarily, we name these from top t o  bottom, left to right as 
t l ,  t2, t3, etc. 

In logical form the database is re-interpreted as follows: 

R(t2) & ~ ( t 2 )  = 6 & B(t2) = 'Y' & C(t2) = 3 



T(t6) & F(t6) = 5 & G(t6) = 'P' & H(t6) = 'M' 

T(t7) & F(t7) = 2 & G(t') = 'Q' & H(t7) = 'L'  

This translation could similarly be reversed. The single place predi- 
cates are relation names and the functional maps become attribute 
names and values. Note that it is the recognition of tuples as logical indi- 
viduals that allow recovery of the former data structure. 

N. LOGICAL DATABASES 
What we have called a 'logical database' is not presented in A1 by a 

single specification analogous to Codd's papers. These have evolved as 
part of efforts in automatic theorem proving and to a certain extent vary 
in their notation depending on their implementation framework (e.g., 
LISP, PLANNER, PROLOG). The predicate calculus, however, serves as the 
most frequently used abstract specification of their features. 

It should be noted that competing with these logical database forms 
are representations based on semantic networks. (This competition is a 
little reminiscent of the relational vs, network databases.) 

Among the semantic network representations, however, there is 
much less agreement about representational form, and so we have pre- 
ferred the predicate calculus. In any case, our comments about the 
differences between the structured database orientation of DM vs that in 
logical databases extend for the most part to semantic net type database 
as well. 

A logical database, as we have said, consists of a collection of predi- 
cate calculus assertions. The characteristics of objects and their rela- 
tionships are represented as predicates. (Functions, which map one or 
more individuals to another, are reparded as a special case of a multi- 
place predicate which defines a logical relation among individuals.) 

As we have seen, a relational database can also be transformed 
(without loss of information) into a predicate calculus syntax. There is 
however a fundamental difference in a logical database: the universe to 
which predicates are applied consists not of data objects (i.e., tuples), but 
of some set of objects or individuals in the external environment. For 
instance, consider a logical database that records familial relationships 
(e.g., of royal families). The universe in the case is the set of persons, liv- 
ing or dead. The basic predicates might be 



with various derived predicates such as the following: 

etc. 
These definitions are universal statements, i.e., which hold 

throughout the universe. Particular facts involve application of these 
predicates to individuals, e.g., 

MALE(c harles) 

~ A ~ ~ ~ T ( e l i z a b e t h ,  charles), 

etc. 
The important observation is that the range of variables and the 

application of predicates is to individuals in the external environment, 
not to data objects. 

V. THE ENTlTY-RELATIONSHIP MODEL 
Chen (1976) presented a modeling approach for relational databases 

called the Entity Relationship Model (ERM). The essence of this approach 
is to identify the types of objects (entities) in the environment whose 
characteristics are to be described in the database. Properties of single 
entities are described in 'entity relations' for which each tuple in the 
database corresponds to  an individual object the the environment. Pro- 
perties applying to more than one object are represented in 'relationship' 
relations. 

Ths is interesting in that it provides something of a bridge between 
the relational and logical forms presented here. The step of identifying 
the basic entities is roughly equivalent to defining the logical universe. in 
a logical terms, entity relation names correspond to single place predi- 
cates, relationship relation names correspond to multi-place predicates. 

For instance, suppose we are designing a vehcle registration data- 
base. The principal entities are vehicles and persons. The universe is 
thus the union of these two sets. The basic predicates are 



These logical variables range over the union of the sets of vehicles 
and persons or, isornorphically, the union of the tuples in the entity rela- 
tions VEHICLE and PERSON (but not over relationship relations-the 
tuples here do not have an  object counterpart). 

Thus, in the ERM perspective, the former universe of tuples is 
replaced by one of 'entities,' as shown in Diagram 2. 

YI. LOGICAL INTERPRETATION OF AlTRIBUTES 
In the ERM, relational attributes are treated as functional maps to 

'value sets'  of character strings or numbers, much as in or earlier refor- 
mulation of the relational model. This, in our view, misses the observa- 
tion that these attributes values are also qualities about the objects in 
the universe, potentially formalizable in the logical system. Rather than 
the usual character/number distinction, we classify these relational attri- 
butes according to the information they convey about the objects in the 
universe: as labels, numeric measures and predicate groups. 

A. Label Functions 
In both the relational model and Chen's interpretation of it, the 

notion of an identifying key plays an important role. In the relational 
model these are attributes which allow the unique identiflcation of each 
tuple. In the ERM, these are attributes which allow the unique identifica- 
tion of each entity. In logical form, this corresponds to a logical constant 
name. However, in both the RM and ERM, these identifiers are provided 
by outside sourcese .g . ,  social security number, part number, etc. In the 
logical form, the role of such identifiers is carried by the logical constant 
names. 

ENTITIES F 

NUMBERS 

Diagram 2 



However, a given object may have more than one such identifier- 
e.g., a car may have a manufacturer's identification code plus the license 
number assigned to it by the state. Further, such identifiers may change, 
e.g., a car gets a new license number, and we then need another mechan- 
ism to reflect the continued identity of the object. For this reason, we 
find it preferable to separate the roles of identification of objects within 
the system and the identifiers used by external parties. That is, logical 
constant names are taken to be 'internally generated' identifiers, i.e., 
invented for use within the logical database. 

Thus, in logical form, the unique characteristic of such 'key' attri- 
butes is not important. These are however useful to maintain in the data- 
base since they provide identifying information to external users. We 
therefore distinguish these types of data values as what we will call 
'labels' and relate them to logical individuals by means of 'label func- 
tions.' E.g., the social security number for an individual, a, might be 

A label, as we said, serves only as identifying information to external 
parties. While identifying keys are thus labels, there are also labels which 
are not uniquesly identifying, the most common example being the names 
of persons. For instance, for a person, Qb, we might have 

LAST-NAME (@b) = "CAESAR". 

Labels are denoted here within double quotes. 
These may be either characters, as with numeric identification 

codes. However, in the latter case, their role continues to be purely for 
identification-no arithmetic operations are allowed. 

B. Measurement Functions 
Label functions mapped from one or more entities to a character 

string. Correspondingly, a measurement function is a mapping from one 
or more entities to a number. 

To effectively make use of numbers in the calculus, it is useful to 
employ the typical inequality predicates: >, 1, <, S ,  and the numeric 
functions +, -, /, *, **. These enable such assertions as 



However, one additional feature that is useful to employ in the 
description of measurement is the addition of additional individuals (in 
the universe of entities) known as measurement  s tandards .  As the name 
suggests, these may be considered as actual objectse.g. ,  as kept by the 
National Bureau of Standards, or their indirect proxies. Thus, rather than 
refer to units of measure implicitly in the choice of function and predi- 
cate names, we can treat them explicitly as individuals in the calculus. 
For instance, 

WEIGHT# (@john, Qkg) > WEIGHT# (Bmary, Qkg). 

C. Predicate Groups 
So far, we have allowed for a) data used for identification of individu- 

als (as label function) and b) data indicating quantitative features of indi- 
viduals (as measure function). One other type- of data needs to be 
accounted for, namely that indicating qualitative features of individuals. 
Examples are the values of such attributes as COLOR, SHAPE, SEX, 
STATUS, etc. 

Note that the distinguishing feature here is not between character or 
num'eric data, but rather how the data is interpreted. For instance, 
COLOR might be indicated by a numeric code or by such character 
strings as "RED," "BLUE," etc. Yet, as a number, i t  is not intended for 
numeric manipulation, while as a character string, it conveys more than a 
simple l abe l i t  conveys, rather, a qualitative property of the object. This 
is the job of a simple predicate on entities. 

Thus, for instance, if COLOR is indicated by numeric codes, 0, 1, 2, 
etc. we may introduce the equivalences: 

etc. 
Correspondingly, if SHAPE were indicated as a character string, we 

might have 

SHAPE(x) = "ROUND" - ROUND(x) 

SHAPE(x) = "SQUARE" ++ SQUARE(x). 



Since these kinds of attributes are interpreted logically as simple 
predicates (rather than label or measure functions), we refer to them as 
predicate groups. 

However, in a relational database, collection of these descriptions 
under one (single valued) attribute conveys one additional piece of infor- 
mation; namely, that the corresponding predicates are mutually 
exclusive. Thus, the predicates in a predicate group have a correspond- 
ing assertion indicating their exclusive disjunction, e.g., of the form 

Wx HAS-COLOR(x) - WHITE(x) W RED(x) W BLUE(x) W etc. 

One further observation can now be made. Earlier, in the introduc- 
tion, we made the passing comment that logical databases are 'data 
structure independent.' This claim can now be seen more clearly in that 
in logical form, no distinction is made between relation names and the 
values of predicate group attributes--both are interpreted as predicates. 

For instance, one form of a personnel database might be 

EMPLOYEE(RANK, SSN, AGE, etc.) 

where RANK can be CLERK, DRIVER, MANAGER, etc. Alternatively, multiple 
relations could have been defined, e.g., 

CLERK (SSN, AGE, etc.) 

DRIVER (SSN, AGE, etc.) 

MANAGER (SSN, AGE, etc.) 

However, in logical form, under either interpretation, CLERK, DRIVER, 
MANAGER, etc. would be interpreted as predicates, with the accompany- 
ing assertion. 

W. CONCLUDING REXARKS: WHAT IS AN ENTITY? 
A frequent criticism of the Entity-Relationship Model is that it leaves 

unanswered the question. What is an entity? As we have seen, the Rela- 
tional Model avoids this issue entirely since it makes no semantic claims. 
Interpreted logically, its variables range over tuples, i.e., data objects, 
and the model makes no reference to other objects outside the universes 
of tuples, character strings and numbers. 

The entity-relationship model, on the other hand, prescribes that 
certain of these tuples (those in entity relations) designate objects in the 
environment. The remaining tuples, those in relationship relations, desig- 
nate relationships between these entities. The question arises, however, 
what constitu.te these basic entity classes, and how are these to be 



distinguished from their respective properties. Are physical objects the 
only legitimate entities? It seems not since we often want to designate 
things like departments, budgets, etc. as entities as well. 

How about colors, shapes, numbers, are these entities? In a hospital 
database, would a disease be an entity? 

As we have tried to show, part of the problem here lies in the data 
structure concept which the ERM has taken over from the relational 
model. The distinction between database structure vs. database content 
(i.e., data relations vs. data. tuples) is a useful one as regards simple and 
convenient arrangements of data, but introduces an artificial distinction 
from a modeling standpoint. (The world does not so conveniently divide 
itself between structure and content.) 

The problem is focused to a somewhat greater degree if we discard 
this distinction in favor of the logical interpretation introduced here. In 
this view, the problem is reduced to the definition of some universal con- 
cept of entity within which any additional properties, and relationship are 
ascribed by means of predicates and label and measurement functions. 
These latter can be viewed as essentially syntactic variants the normal 
predicate concept (e.g., view WEIGHT(x,@kg) = 10 as abbreviating 
WEIGHT-IN-KG-E QUAL- I o (x)) . 

The advantage of reformulating the ERM in these logical terms is that 
it frames the question of entity-hood in a form that has already been 
given a great deal of study, namely in formal philosophy and logic, under 
the heading of formal semantics. 

Actually, the problem for the ERM, indeed for databases more gen- 
erally, is considerably simpler than the form in which it is usually studied, 
namely in ordinary language discourse, where numerous secondary 
effects such as social roles, conversational context, connotations, etc. 
also to be considered. 

Nonetheless, the issue even in the constrained context of the ERM 
may still present fundamental difficulties, depending on the context of 
application. Probably the most thorough treatment of this issue is that of 
Strawson (1963). Relevant discussion is also to be found in Cresswell 
(1973) and Rescher (1975). 

These issues are also considered in depth in the work on CANDID (Lee 
(1981)), a knowledge representation language for administrative decision 
support applications. (The notation presented herein is part of that used 
in CANDID.) Aspects given special attention in that work are the temporal 
dependence in the definition of entities, and the creation of so-called 
'deontic' entities (comprising contractual and promissory objects). 
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