
Working Paper

Ronald M. Lee

December 1981
WP-81-164

RELATIONAL DATABASES. LOGICAL DATABASES AND
THE ENTITY-FtELATIONSHLPS APPROACH

International Institute for Applied Systems Analysis
A-2361 Laxenburg, Austria

NOT FOR QUOTATION
WITHOUT PERMISSION
OF THE AUTHOR

RELATIONAL DATABASES. LOGICAL DATABASES AND
THE ENTITY-RELATIONSHIPS APPROACH

Ronald M. Lee

December 1981
WP-81-164

Working Papers are interim reports on work of the International
Institute for Applied Systems Analysis and have received only
Limited review. Views or opinions expressed herein do not
necessarily represent those of the Institute or of its National
Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS
2361 Laxenburg, Austria

A comparisn of relational databases, as known in Data Management,
and logical databases, as used in Artificial Intelligence is made. This com-
parison is then used to examine certain semantic issues raised by the
Entity-Relationship Model.

CONTENTS

I. INTRODUCTION

11. PREDICATE CALCULUS

111. T H E RELATION MODEL AND CALCULUS AS
A LOGIC SYSTEM

N. LOGICAL DATABASES

V. T H E ENTITY-RELATIONSHIP MODEL

VI. LOGICAL INTERPRETATION O F ATTRIBUTES
A. L a b e l Function
B. M e a s u r e m e n t Functions
C. Predicate G r o u p s

VII. CONCLUDING REMARKS: WHAT I S AN ENTITY?

REFERENES

RELATIONAL DATABASES. LOGICAL DATABASES AND
THE ENTITY-RELATIONSHIPS APPROACH

Ronald M. Lee

I. INTRODUCrION
In Artificial Intelligence (AI), the term database is often used to refer

to a 'logical database' of predicate calculus assertions. In contrast to the
'structured' databases of data management (DM), e.g., relational, net-
work, the logical form has certain advantages: queries are data structure
independent (there is no data structure), and automatic inferencing is
supported (indeed, this is the motivation for using the predicate calculus
in AI databases). O n the other hand, logical databases have the disadvan-
tage that they require a much more rigorous modeling of the environ-
ment. In certain cases this leads to yet unsolved difficulties in logic and
philosophy.

In this paper, we compare the logical database form to that of one
popular model of structured databases, the relational model Codd (1970).

Aside from its popularity, the relational model, considered in combi-
nation with the relational calculus (Codd 1971) helps to minimize the e
syntactic differences of the two approaches. As will be seen, the funda-
mental difference that remains is one of 'ontology'i.e., the fundamental
objects assumed under each framework. I t is this difference that
accounts for the advantages and limitations of the logical approach.

Based on t h s comparison, we also examine the 'entity-relationship
model' of Chen (1976) which, in prescribing a semantically motivated
approach to the design of relational database, serves as an intermediate
case to the other two approaches.

For a broader comparison between the perspectives on databases in
data management and artificial intelligence see the survey article by
Wong e t al. (1976). A more in-depth background on logical databases is
given in Gallaire and Minker (1978) and other references suggested
therein. For a good introduction to various theorem proving techniques
used on logical databases, see the later chapters of Nilsson (1980).

XI. PREDICATE CALCULUS
a rudimentary familiarity with the predicate calculus (PC) is

presumed. (For background, a suggested text is Suppes (1957)~) The
notation used herein is as follows:

Propositional and predicate constant names are denoted as a capital
letter, followed by zero or more other capital letters, digits or embedded
hyphens. Predicates in addition have an argument list following the
name. E.g., P, Q, RED(), COMMON-STOCK.

Individual and functional constant names are denoted by the char-
acter "@" followed by one or more lower case letters or digits or embed-
ded hyphens.

Individual variables are denoted as single lower case letters followed
by an optional numeric subscript, e.g., x, y, 21, zz.

Logical connectives:

N negation

& conjunction

V inclusive disjunction

W exclusive disjunction

* implication

C, e quivale nc e

Quantifiers :

'd unive rs a1

3 existential

Further syntactic rules of well formedness, inference rules and
axioms could be given. However, since our use of the PC notation here is
largely illustrative, we will omit these aspects. (They are in any case well
studied and available in standard logic texts.)

While the PC syntax will play a role later in this paper, the more fun-
damental point at present is the structure of predicate calculus systems.

The syntax presented above is uninte7preted. That is, the range of
the individual variables and the definitions of predicates, etc. is so far left
unexplained. To construct a logical system using the PC, one begins first
by defining a 'universe,' the set of objects which the subsequent logical
statements are 'about.' This universe is defined eztra- Logically, i.e., in
natural language. For instance, for a PC system applied to mathematics,
the universe might be the integer numbers. For a system describing fam-
ilial relations, the universe would be the set of people.

This universe may be either finite or infinite, but it is presumed that
each element therein is identifiable in that a unique name is potentially
assignable to each.

The next step is that various primitive predicates and functions are
introduced. These too are defined extra-logically.

Next axioms are introduced which indicate the inter-dependence of
these primitive predicates, constraining their manipulation.

Also, logical definitions (within the PC) may introduce further
derived predicates and functions.

III. THE FtELATIONAL MODEL AND CALCULUS AS A LOGIC SYSlXP
Codd's Relational Calculus (1971), one of a variety of retrieval

languages for relational databases, is based on a predicate calculus syn-
tax.

However, if one consider the relational model and calculus together,
we can regard them as a logical system. This is instructive for com-
pareative purposes.

However, because the RC was developed for data retrieval queries, it
differs somewhat from the usual PC syntax, which is designated to
express true/false assertions.

Basically an RC query has two parts-'qualification expression' which
selects some subset of tuples in the database, and a 'target list', which
extracts certain attributes of these selected tuples to be returned to the
user.

It is the qualification expression part of the query which was a PC
syntax. The tuples to be extracted correspond to unbound variables in
this expression.

This leads us to look first at the universe of the system. As seen in
Codd (19711, the quantified variables range over tuples in the database.
These ranges are often restricted to certain relations4 e., the relations
serve the role of one-place predicates.

Thus, while Codd uses the notation (x E R) to indicate that the range
of variable x is limited to the tuples in relation R, an equivalent notation
is ~ (x) .

Beyond this, further restrictions of tuples are made by testing the
vales of attributes, i.e., the 'columns' or data items within a tuple. Whle
Codd's examples use only numeric data, we will assume date items to be
classified as character or numeric. For character data, tests are limited
to equality, whereas numeric tests may also include inequalities (greater
than, less than, etc.).

The tuples we are discussing are merely tuples of such data items.
Thus these are tests on one or another position in the tuple. Since these
positions are named, Codd uses a dot notation to express the test-e.g.,
x.COLOR = 'RED', y.AGE = 20. We are therefore comparing the content of
these positions to some character or numeric data value.

However, under the interpretation as a logical system, this is rather
strange since the individuals of the system are assumed to be elemen-
tary. Here, the individuals of the system are tuples, in turn composed of
lower level elements the positions of the tuple. If we wish to recognize
these in the calculus, then our variables should range over these positions
as elementary objects. But this would be to ignore the principal value of
the relational model, i.e., as a convenient s t r u c t u r i n g of data.

However, we can maintain the calculus with tuples as the basic indivi-
duals if we regard the attribute values not as parts of the tuples. but as
f u n c t i o n s mapping from the tuple to a data value character string or
number. Under this interpretation, an (equivalent) functional notation
seems more appropriate-e.g., COLOR(x) = 'RED', AGE(y) = 20.

Note that while we are still -maintaining the notion of a tuple as a
locus of properties, we are now ignoring its existence as a structured data
object.

Thus, under this logical interpretation, the relational model and cal-
culus is recast as a logical system whose principal universe is the set of
database tuples, regarded as elementary (non-decomposable) objects.
Two auxilliary universes are added, nurnbers and character strings, with
functions mapping from the universe of tuples to each of these. This is
sketched in Diagram 1.

With t h s extension to multiple universes, we must correspondingly
extend the predicate calculus to a m u l t i - s o r t e d log ic . Essentially, this
involves only additional syntactic constraints on the calculus including
typing of individual and functional constants, individual variables, quantif-
iers, and the places of functions and predicates according to

t = tuple
c = character string
n = number.

A s observed in Enderton (1 972), these additional syntactic con-
straints of a multi-sorted logic can just as well be controlled withn the
calculus itself, e.g., using predicates

TUPLE (x)

Diagram 1.

so that these extensions do not introduce any substantially different fac-
tors from a logical standpoint.

Thus far, we have merely re-interpreted the relational model plus
calculus as a predicate calculus system. This is essentially only a syntac-
tic transformation: any relational database can be so transformed and
the information contained is identical. The important difference is that
this form recognizes the tuple as a n elementary individual rather than as
a composite object with internal structure.

a brief example may help illustrate the correspondence. Consider
the following sample database:

Under the logical interpretation, we must first assign names to each of
the tuples. Arbitrarily, we name these from top t o bottom, left to right as
t l , t2, t3, etc.

In logical form the database is re-interpreted as follows:

R(t2) & ~ (t 2) = 6 & B(t2) = 'Y' & C(t2) = 3

T(t6) & F(t6) = 5 & G(t6) = 'P' & H(t6) = 'M'

T(t7) & F(t7) = 2 & G(t') = 'Q' & H(t7) = 'L'

This translation could similarly be reversed. The single place predi-
cates are relation names and the functional maps become attribute
names and values. Note that it is the recognition of tuples as logical indi-
viduals that allow recovery of the former data structure.

N. LOGICAL DATABASES
What we have called a 'logical database' is not presented in A1 by a

single specification analogous to Codd's papers. These have evolved as
part of efforts in automatic theorem proving and to a certain extent vary
in their notation depending on their implementation framework (e.g.,
LISP, PLANNER, PROLOG). The predicate calculus, however, serves as the
most frequently used abstract specification of their features.

It should be noted that competing with these logical database forms
are representations based on semantic networks. (This competition is a
little reminiscent of the relational vs, network databases.)

Among the semantic network representations, however, there is
much less agreement about representational form, and so we have pre-
ferred the predicate calculus. In any case, our comments about the
differences between the structured database orientation of DM vs that in
logical databases extend for the most part to semantic net type database
as well.

A logical database, as we have said, consists of a collection of predi-
cate calculus assertions. The characteristics of objects and their rela-
tionships are represented as predicates. (Functions, which map one or
more individuals to another, are reparded as a special case of a multi-
place predicate which defines a logical relation among individuals.)

As we have seen, a relational database can also be transformed
(without loss of information) into a predicate calculus syntax. There is
however a fundamental difference in a logical database: the universe to
which predicates are applied consists not of data objects (i.e., tuples), but
of some set of objects or individuals in the external environment. For
instance, consider a logical database that records familial relationships
(e.g., of royal families). The universe in the case is the set of persons, liv-
ing or dead. The basic predicates might be

with various derived predicates such as the following:

etc.
These definitions are universal statements, i.e., which hold

throughout the universe. Particular facts involve application of these
predicates to individuals, e.g.,

MALE(c harles)

~ A ~ ~ ~ T (e l i z a b e t h , charles),

etc.
The important observation is that the range of variables and the

application of predicates is to individuals in the external environment,
not to data objects.

V. THE ENTlTY-RELATIONSHIP MODEL
Chen (1976) presented a modeling approach for relational databases

called the Entity Relationship Model (ERM). The essence of this approach
is to identify the types of objects (entities) in the environment whose
characteristics are to be described in the database. Properties of single
entities are described in 'entity relations' for which each tuple in the
database corresponds to an individual object the the environment. Pro-
perties applying to more than one object are represented in 'relationship'
relations.

Ths is interesting in that it provides something of a bridge between
the relational and logical forms presented here. The step of identifying
the basic entities is roughly equivalent to defining the logical universe. in
a logical terms, entity relation names correspond to single place predi-
cates, relationship relation names correspond to multi-place predicates.

For instance, suppose we are designing a vehcle registration data-
base. The principal entities are vehicles and persons. The universe is
thus the union of these two sets. The basic predicates are

These logical variables range over the union of the sets of vehicles
and persons or, isornorphically, the union of the tuples in the entity rela-
tions VEHICLE and PERSON (but not over relationship relations-the
tuples here do not have an object counterpart).

Thus, in the ERM perspective, the former universe of tuples is
replaced by one of 'entities,' as shown in Diagram 2.

YI. LOGICAL INTERPRETATION OF AlTRIBUTES
In the ERM, relational attributes are treated as functional maps to

'value sets' of character strings or numbers, much as in or earlier refor-
mulation of the relational model. This, in our view, misses the observa-
tion that these attributes values are also qualities about the objects in
the universe, potentially formalizable in the logical system. Rather than
the usual character/number distinction, we classify these relational attri-
butes according to the information they convey about the objects in the
universe: as labels, numeric measures and predicate groups.

A. Label Functions
In both the relational model and Chen's interpretation of it, the

notion of an identifying key plays an important role. In the relational
model these are attributes which allow the unique identiflcation of each
tuple. In the ERM, these are attributes which allow the unique identifica-
tion of each entity. In logical form, this corresponds to a logical constant
name. However, in both the RM and ERM, these identifiers are provided
by outside sourcese .g . , social security number, part number, etc. In the
logical form, the role of such identifiers is carried by the logical constant
names.

ENTITIES F

NUMBERS

Diagram 2

However, a given object may have more than one such identifier-
e.g., a car may have a manufacturer's identification code plus the license
number assigned to it by the state. Further, such identifiers may change,
e.g., a car gets a new license number, and we then need another mechan-
ism to reflect the continued identity of the object. For this reason, we
find it preferable to separate the roles of identification of objects within
the system and the identifiers used by external parties. That is, logical
constant names are taken to be 'internally generated' identifiers, i.e.,
invented for use within the logical database.

Thus, in logical form, the unique characteristic of such 'key' attri-
butes is not important. These are however useful to maintain in the data-
base since they provide identifying information to external users. We
therefore distinguish these types of data values as what we will call
'labels' and relate them to logical individuals by means of 'label func-
tions.' E.g., the social security number for an individual, a, might be

A label, as we said, serves only as identifying information to external
parties. While identifying keys are thus labels, there are also labels which
are not uniquesly identifying, the most common example being the names
of persons. For instance, for a person, Qb, we might have

LAST-NAME (@b) = "CAESAR".

Labels are denoted here within double quotes.
These may be either characters, as with numeric identification

codes. However, in the latter case, their role continues to be purely for
identification-no arithmetic operations are allowed.

B. Measurement Functions
Label functions mapped from one or more entities to a character

string. Correspondingly, a measurement function is a mapping from one
or more entities to a number.

To effectively make use of numbers in the calculus, it is useful to
employ the typical inequality predicates: >, 1, <, S , and the numeric
functions +, -, /, *, **. These enable such assertions as

However, one additional feature that is useful to employ in the
description of measurement is the addition of additional individuals (in
the universe of entities) known as measurement s tandards . As the name
suggests, these may be considered as actual objectse.g. , as kept by the
National Bureau of Standards, or their indirect proxies. Thus, rather than
refer to units of measure implicitly in the choice of function and predi-
cate names, we can treat them explicitly as individuals in the calculus.
For instance,

WEIGHT# (@john, Qkg) > WEIGHT# (Bmary, Qkg).

C. Predicate Groups
So far, we have allowed for a) data used for identification of individu-

als (as label function) and b) data indicating quantitative features of indi-
viduals (as measure function). One other type- of data needs to be
accounted for, namely that indicating qualitative features of individuals.
Examples are the values of such attributes as COLOR, SHAPE, SEX,
STATUS, etc.

Note that the distinguishing feature here is not between character or
num'eric data, but rather how the data is interpreted. For instance,
COLOR might be indicated by a numeric code or by such character
strings as "RED," "BLUE," etc. Yet, as a number, i t is not intended for
numeric manipulation, while as a character string, it conveys more than a
simple l abe l i t conveys, rather, a qualitative property of the object. This
is the job of a simple predicate on entities.

Thus, for instance, if COLOR is indicated by numeric codes, 0, 1, 2,
etc. we may introduce the equivalences:

etc.
Correspondingly, if SHAPE were indicated as a character string, we

might have

SHAPE(x) = "ROUND" - ROUND(x)

SHAPE(x) = "SQUARE" ++ SQUARE(x).

Since these kinds of attributes are interpreted logically as simple
predicates (rather than label or measure functions), we refer to them as
predicate groups.

However, in a relational database, collection of these descriptions
under one (single valued) attribute conveys one additional piece of infor-
mation; namely, that the corresponding predicates are mutually
exclusive. Thus, the predicates in a predicate group have a correspond-
ing assertion indicating their exclusive disjunction, e.g., of the form

Wx HAS-COLOR(x) - WHITE(x) W RED(x) W BLUE(x) W etc.

One further observation can now be made. Earlier, in the introduc-
tion, we made the passing comment that logical databases are 'data
structure independent.' This claim can now be seen more clearly in that
in logical form, no distinction is made between relation names and the
values of predicate group attributes--both are interpreted as predicates.

For instance, one form of a personnel database might be

EMPLOYEE(RANK, SSN, AGE, etc.)

where RANK can be CLERK, DRIVER, MANAGER, etc. Alternatively, multiple
relations could have been defined, e.g.,

CLERK (SSN, AGE, etc.)

DRIVER (SSN, AGE, etc.)

MANAGER (SSN, AGE, etc.)

However, in logical form, under either interpretation, CLERK, DRIVER,
MANAGER, etc. would be interpreted as predicates, with the accompany-
ing assertion.

W. CONCLUDING REXARKS: WHAT IS AN ENTITY?
A frequent criticism of the Entity-Relationship Model is that it leaves

unanswered the question. What is an entity? As we have seen, the Rela-
tional Model avoids this issue entirely since it makes no semantic claims.
Interpreted logically, its variables range over tuples, i.e., data objects,
and the model makes no reference to other objects outside the universes
of tuples, character strings and numbers.

The entity-relationship model, on the other hand, prescribes that
certain of these tuples (those in entity relations) designate objects in the
environment. The remaining tuples, those in relationship relations, desig-
nate relationships between these entities. The question arises, however,
what constitu.te these basic entity classes, and how are these to be

distinguished from their respective properties. Are physical objects the
only legitimate entities? It seems not since we often want to designate
things like departments, budgets, etc. as entities as well.

How about colors, shapes, numbers, are these entities? In a hospital
database, would a disease be an entity?

As we have tried to show, part of the problem here lies in the data
structure concept which the ERM has taken over from the relational
model. The distinction between database structure vs. database content
(i.e., data relations vs. data. tuples) is a useful one as regards simple and
convenient arrangements of data, but introduces an artificial distinction
from a modeling standpoint. (The world does not so conveniently divide
itself between structure and content.)

The problem is focused to a somewhat greater degree if we discard
this distinction in favor of the logical interpretation introduced here. In
this view, the problem is reduced to the definition of some universal con-
cept of entity within which any additional properties, and relationship are
ascribed by means of predicates and label and measurement functions.
These latter can be viewed as essentially syntactic variants the normal
predicate concept (e.g., view WEIGHT(x,@kg) = 10 as abbreviating
WEIGHT-IN-KG-E QUAL- I o (x)) .

The advantage of reformulating the ERM in these logical terms is that
it frames the question of entity-hood in a form that has already been
given a great deal of study, namely in formal philosophy and logic, under
the heading of formal semantics.

Actually, the problem for the ERM, indeed for databases more gen-
erally, is considerably simpler than the form in which it is usually studied,
namely in ordinary language discourse, where numerous secondary
effects such as social roles, conversational context, connotations, etc.
also to be considered.

Nonetheless, the issue even in the constrained context of the ERM
may still present fundamental difficulties, depending on the context of
application. Probably the most thorough treatment of this issue is that of
Strawson (1963). Relevant discussion is also to be found in Cresswell
(1973) and Rescher (1975).

These issues are also considered in depth in the work on CANDID (Lee
(1981)), a knowledge representation language for administrative decision
support applications. (The notation presented herein is part of that used
in CANDID.) Aspects given special attention in that work are the temporal
dependence in the definition of entities, and the creation of so-called
'deontic' entities (comprising contractual and promissory objects).

REFERENCES

Chen, P.-S. C. 1976. The Entity-Relationship Model-Toward a Unified View
of Data. ACM Transactions on Database Systems 1 (1):9-36.

Codd, E.F. 1970. A Relational Model of Data for Large Shared Data Banks.
Communica t ions of the ACM 13(June):377-387.

Codd, E.F. 1971. A Data Base Sublanguage Founded on the Relational Cal-
culus. Proceedings of ACM SIGFIDET Workshop on Data Description,
Access, and Control, San Diego, California.

Cresswell, M.J. 1973. Logics and languages. London: Nethuen & Co. Ltd.

Enderton, H.B. 1972. A Mathematical Introduction to Logic. New York:
Academic Press.

Gallaire, H. and J. Minker. eds. 1978. Logic and Data Bases. New York
and London: Plenum Press.

Lee, R.M. 1981. CANDID Description of Commercial and Financial Con-
cepts: A Formal Semantics Approach to Knowledge Representation.
Forthcoming WP. Laxenburg, Austria: International Institute for
Applied Systems Analysis.

Nilsson, N.J. 1980. Principles of Artificial Intelligence. Palo Alto, Califor-
nia: Tioga Publishing Co.

Rescher, N. 1975. A Theory of Possibility-4 Constructivistic and Concep-
tualistic Account of Possible Individuals and Possible Worlds. Pitts-
burgh: University of Pittsburgh Press.

Strawson, P.F. 1963. Individuals& Essay in Descripdve Metaphysics.
Garden City, N.Y.: Doubleday and Co.

Suppes, P. 1957. Introduction to Logic. New York: D. van Nostrand Com-
pany.

Wong, H.K.T. and J. Mylopoulos. 1976. Two Views of Data Semantics: A
Survey of Data Models in Artificial Intelligence and Database Manage-
ment. A.I. Memo 77-2. Toronto: Department of Computer Science,
University of Toronto.

