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LOGICAL INTERPRETATION OF RELATIONAL DATABASES 

Ronald M. Lee 

INTRODUCTION 
In recent years, there has been a gradual convergence of interests 

between researchers in Database Management (DM) and Artificial Intelli- 
gence (AI). Broadly speaking, the principal concern of DM has been to 
efficiently maintain and retrieve large amounts of data in computer 
accessible storage. This data typically involves a large number of simi- 
larly structured records--e.g., purchase orders, sales transactions of a 
large company. 

A1 systems, by contrast, emphasize neither efficiency nor large data 
storage, but rather versatility- i.e., in dealing with complex, poorly 
structured problem areas such as pattern recognition, language under- 
standing theorem proving, etc. These systems also typically involve a 
"data base." though of a different type than in DM: It is usually much 
smaller (almost always contai-ned in main memory) and structurally more 
complex. Rather than dealing with character strings and numbers 
arranged in records and data files, a common form of an A1 database is as 
statements in a logical predicate calculus. These provide the basis for 
the deductive capacity of these systems. 

Our interest here is a combination of these two approaches: in the 
interpretation of DM databases as assertions in a logical syntax. Ths  has 
two motivations: one, to provide an inferencing capability in queries to 
these databases, and two, to clarify the semantic issues in the way these 
databases are used to model organizational environments. 



DATABASE TNFERENCING 
Using a new classic taxonomy of Anthony (1965), organizational 

activities may be divided based on the length of the time horizon their 
decisions affect: operational activities have a time framework in terms of 
days or weeks; tactical activities have an effect in terms of months to a 
year; strategic activities affect a number of years. 

Using Simon's distinction of programmed vs, non-programmed activi- 
ties (or structural vs. unstructural), based on whether the activity can be 
directed by an explicit procedure, Gorry and Scott Morton observe that 
as one moves from the operational to the strategic activities the associ- 
ated decisions tend to become increasingly less structured. 

The major use of DM databases to date has been in data processing 
applications. In the above framework, they are used mainly for struc- 
tured, operational level activities such as sales order processing, billing, 
inventory control, etc. Therefore, the people that use them for the most 
part do so frequently and routinely. 

These databases might also be useful in less structured, longer range 
activities, though the requirements in this case are somewhat different. 

a. information is usually required in more summarized form 
b. access is less routineinformation must be retrievable in a 

variety of forms and combinations 
c. the information often is used in combination with other informa- 

tional and computational resources. 

What we have just described is the use of a DM database in decision 
support applications. The principle point of the criteria we mentioned is 
that the data needs in these cases, though contained in the database, will 
often not be a t  the detail level nor in the structural arrangement in which 
the database was designed. 

It is for these uses that a mechanism providing inferencing on the 
database is needed. 

One obvious way of summarizing data is simple arithmetic 
.calculations-e.g., counts of inventory, etc. What this lacks however is a 
corresponding framework of qualitative inferencing. For instance, if one 
has an inventory of three apples and two oranges and count them up, you 
have five "things," but what descriptive label should be attached to this 
broader class? 

This is an example of where a system of qualitative inference would 
be useful. More realistic examples abound, e.g., in accounting data if you 
have $500 in cash and $700 in accounts receivable, then you have $1,200, 
but of what? 

Conversely, one might have wished to make a query about the quick 
assets of the company when the database only contained data on cash 
and accounts receivable. 



SEX.ANTIC ISSUES 
Closely related to considerations of inferencing are those of the 

semantics of the database. A database, clearly, is a collection of symbols 
which are intended to 'stand for' objects and other environmental 
phenomena. What the individual symbols stand for, and more impor- 
tantly, what combinations of these symbols stand for, is their semantics. 

In routine data processing applications, the semantics of the data is 
generally not a problem. The people who use the system are thoroughly 
familiar with the vocabulary of symbols they use, and the interpretation 
of each within the limited decision context of the application. Thus, for 
instance, a clerk using an airline reservations system his little problem 
understanding the parameters involved4lights, seats, passengers, cities, 
etc. 

On the other hand, when a database is used for decision support 
applications, one is much more likely to deal with aggregated concepts 
whose definition must be carefully constructed and communicated 
between system and user so as not to be mis-understood. For instance, a 
technical definition of PASSENGER PLANE may or may not exclude planes 
which do not have a separate cock-pit. In administrative contexts one 
encounters many such terms with exacting and often not obvious techni- 
cal definitions, for instance, GROSS MARGIN, SEPARABLE MARGIN, CON- 
TROLLABLF: MARGIN, MARGIN NET OF OPERATING EXPENSES, MARGIN NET 
OF TAXES, MARGIN NET OF EXTRA-ORDINARY ITEMS, e tc. e t c . 

Here a data dictionary facility would obviously be useful. However, 
from a decision support perspective this solves only part of the problem, 
namely describing the built-in calculations of the system. 

However, what often happens is that none of these existing functions 
provide the specific calculation needed for a non-routine decision. For 
instance, a manager wants to evaluate a department's performance 
including the effect of an  extraordinary expenditure net of tax. 

This can of course be provided through re-programming , but it would 
be much more effective if the manager could express this request 
directly, explaining it in the conceptual terms in which he/she is accus- 
tomed. 

For this the system needs not only to be able to do such calculations, 
but also to be able to  reason about how such calculations are defined. 
For instance, in the above example it may not be possible to calculate the 
tax applicable to a single department since the tax for the entire corn- 
pany is in a different tax bracket than would be the tax for the depart- 
ment alone. 

When attempting to describe the semantics of a database, we gen- 
erally do it by means of another language, e.g., English. This is perfectly 
legitimate provided the user audience thoroughly understands and agrees 
upon the English explanation. When the concepts we are trying to explain 
are techmcal and complex, this may be unsatisfactory and we look for 
more structured and formal methods to explain the semantics. 



Here again, the interpretation of a database in terms of a logical syn- 
tax will be useful since formal semantics has been studied chiefly in the 
context of logical languages. 

OUTLINE OF PAPER 
To provide a framework for discussion about DM databases, these are 

assumed to be structured according to the Relational Model (Codd 1970). 
While few commercial systems actually conform to this model, is serves 
as a convenient abstraction of their essential structural features. Furth- 
ermore, the relationship between the various popularly-used file and 
database management schemes (e.g., CODASIL) and the Relational Model 
has been well-studied (see e.g., Date (1977), for an overview). 

As an interesting aside, these studies typically regard the Relational 
Model as the ultimate level of abstraction of computer-based data files. 
Here, by contrast, the Relational Model is used as the starting point for a 
considerably more abstracted view. Indeed, the view of "data" as charac- 
ter  strings in a structured format will be re-interpreted as predicate 
names, etc. arranged by a logical syntax. 

The Relational Model will be briefly reviewed. Next, we present (in 
summary form) a fairly standard form of the first order predicate cal- 
culus (FOPC), and extend it to a 'multi-sorted' form for use in describing 
databases. Following that, a translation from the relational syntax to the 
logical form is presented. 

The potential for inferencing from this logical form is discussed and 
illustrated, and the semantic issues are examined. 

REVIEW OF THE RELATIONAL MODEL 
The Relational Model, in its essentials, is conceptually very simple. 

Basically, similarly structured facts about the organization are collected 
in columnar tables, called ~e la t ions .  The colurnns of these tables are 
given names, called the attributes of the relation. The rows of the table 
are called tuples, and each indicates a certain fact or information about a 
certain entity in the organization. A relation typically has one or more 
attributes designated as  "key attributes," whch uniquely identify the 
row, or correspondingly, the entity which the row describes. 

For instance, consider the following relation describi.ng vehicles. 

VEHICLE (ID TYPE COLOR WEIGHT) 

A-27 TRUCK RED 1200 

C-17 TRAILER GREEN 300 

L-32 CAR BLUE 700 



Here, the relation name is VEHICLE, and it has four attributes, ID#, TYPE, 
COLOR and WEIGHT-i.e., these are the relevant characteristics about 
vehicles in this context. The relation has three types, indicating three 
vehicles, with the "values" of the attributes for each, listed in each row 
under the appropriate column. The attribute ID#, is a k e y i . e . ,  whereas 
more than one vehicle may be of the same type, color or weight ID# is 
unique for each vehicle. 

In this example, each tuple represents an  individual object. Rela- 
tions may also be used to indicate associations between objects. For 
instance, suppose we had another relation, EMPLOYEE, which had row- 
wise description of the various employees as follows: 

EMPLOYEE (NAME E-NUM SKILL SALARY) 

JONES 12-345 MANAGER 30000 

ADAMS 65-216 DRrVER 20000 

SMITH 28-159 CLERK 15000 

PERKINS 37-212 DRrVER 22000 

Here the attribute E-NUM (employee number) is the key. 
Then, the association between certain vehicles and certain employ- 

ees, namely who drives which vehicle. This might be recorded as the rela- 
tion DRTVERS. 

DRrVERS (V-ID E-NUM) 

A-27 65-216 

A-27 37-212 

L-32 37-212 

Here, V-ID refers to what was called ID in the VEHICLE relation. E-NUM 
here is the same as E-NUM in the EMPLOYEE relation. In the relation 
DRIVERS, both of these attributes together constitute the identifying key. 
A t  the same time, each separately is a "foreign keyW-i.e., uniquely identi- 
fying rows in other relations. 



The relation DRNERS thus indicates that vehicle A-27 (the truck) is 
driven by employee 65-2 16 (Adams) and employee 37-21 2 (Perkins). Vehi- 
cle L-32 (the car) is driven only by employee 37-212 (perkins). 

It should also be mentioned that another important aspect of the 
Relational Model derives from the simplicity and power of the various 
access languages that have been defined for it, especially the relational 
calculus and the relational algebra. (See e.g., Codd (1970)). As our pur- 
poses are rather different, these languages will not be discussed here. 

PREDICATE CALCULUS-RGYIEW AND NOTATION 

Notation as Applied t o  Physical Objects 
It is assumed that the reader is a t  least generally familiar with the 

predicate calculus and its syntax. The following is thus only a review. 
The description of a logical system begins by declaring its universe 

of discourse. This is an informal (meta-language) description of the types 
of objects that  the statements in the logic are  about. 

For the moment, we will assume that the individuals described by the 
logic are identifiable physical objects a t  a point in time. We will return to 
examine this aspect more closely later i n  the discussion of semantic 
aspects. 

In summary form, the basic constructs of a first order predicate cal- 
culus are as follows: 

1. Propositions. 
These are complete logical statements having a t ruth  value. 
These are indicated symbolically by capital letters--e.g., P,Q,R. 

2 .  Logical connectives. 
These combine propositions to form new logical statements, also 
having a truth value. 
The logical connectives used here are as follows: 

- equivalence 

implication 

& conjunction 

V disjunction (inclusive) 

W disjunction (exclusive) 

rY negation 



3. Indiv idual  c o n s t a n t s  and var iab le s .  
These stand for objects in the domain of discourse-e.g., indivi- 
dual trucks or employees. 

Individual constants are denoted as one more lower case letters, 
possibly containing non-leading digits or hyphens; e.g., a,  bill, 
truck-7. 

Individual variables are denoted by a "?" followed by one or 
more capital letters or digits, e.g., ?X, ?Y2. 

4.  m n c t i o n s .  
These map one or more individuals to another--e.g., supervisor 
(jones) refers to another individual who is Jones' supervisor. 
Functions may take zero or more arguments and always result 
in a reference to a single individual. Functions may thus appear 
wherever an individual constant is allowed. Indeed, a zero-place 
function is the same as an individual constant. Functions for 
physical objects are therefore denoted in the same way as indi- 
vidual physical constants, but followed by an argument list, e.g, 
f (a), boss(smith) 

5 .  Pred ica te s .  
These indicate features, properties, attributes, etc. applied to 
zero or more individuals. Predicates will be denoted by upper 
case letters or words, e.g., P(?X), RED(?X), OWN(x,y). When a 
predicate is applied to individual constants or to quantified (see 
below) individual variables, or to functions of these, i t  has a 
truth value and may be combined to form other logical state- 
ments using the logical connectives above. A zero-place predi- 
cate is equivalent to a proposition. 

6 .  LogicaL q u a n t i f i e r s .  
These indicate the range of individual variables. The principal 
ones are: 

Vx universal quantifier 
(for all x, for each x, - 
ranging over all individuals 
in the universe) 

3 x existential quantifier 
(for some x-ranging over 
at least one individual) 

Parentheses are used in the usual fashi-on. 



A MULTI-SORTED LOGIC 
In order to effectively capture the modeling aspects of a relational 

database, we will essentially combine three logics of the above form. This 
is called a 'multi-sorted' logic, which basically uses the same logical 
mechanisms as the FOPC, with additional syntactic constraints. 

The universe of the first logic will be entities, assumed as above to 
consist of identifiable physical objects. 

The next universe consists of what computer people refer to as 
"character stringsu--i.e., unambiguous sequences of alpha numeric sym- 
bols and punctuation. Normally in t h s  work the name of a particular pro- 
perty or association is not important--it is the relationship of this pro- 
perty to others (indicated by logical theorems and axioms) which is most 
relevant. However, in certain limited cases, the actual spelling does 
matter. This occurs in what we call labels attached to an individual, such 
as a persons name or social security number, the license number of a 
car, the serial number of a piece of equipment or the street address of a 
building. These are all uses of character strings where the characters 
themselves do not convey any meaning but are used purely to distinguish 
this object from others similar to it. 

The other category of objects to be recognized are the real numbers 
(including obviously the integers as a special case). These are needed to 
reflect properties recorded as numeric measurements, a very important 
aspect in administrative contexts. 

The proposed universe of discourse no doubt seems to be a rather 
odd mix, consisting of character strings, numbers and physical objects. 
However, while these three types of objects interact, they may be viewed 
in terms of th~ee separate unive=rses having distinct logical operations 
defined on them. In addition to providing a convenient logical organiza- 
tion, this also provides a useful semantic division: the first two universes, 
character strings and numbers, consist of "representational objects," 
whereas the last consists of "real world objects." This division is perhaps 
the most fundamental point of this paper: distinguishing those aspects of 
a database which are internal representational from those that pertain to 
the external environment. 

The additional notation for these latter two universes is as follows: 

Special Notation for Character Strings 

1 .  Characte~ string constants. 
These are any sequence of zero or more letters, digits or punc- 
tuation enclosed in double quotes. (Two double quotes are used 
to represent the double quote itself.) e.g., "apple", "#27-512", 
"T.S. Eliot". 

2 .  Cha~acte~ string variables. 
These are one or more capital letters followed by a "116," e.g.. A$, 
XY$. 



3. f i n c t i o n s .  
Note-these map from any type of individual to a character 
string . 
Notation--one or more capital letters followed by a "8" and an 
argument list. 
E.g., FIRST-LETTER$("APPLE"), LAST-NAMEB(bil1) . 

A special fix function, "+", is used for concatenation--e.g., 
"AP" +"PLEM. 

4. Pred ica tes .  
The only character string predicate used is "=". This is 
presumed case insensitive, e.g., "LEE" = "Lee" = "lee". 

This is typically used to relate a character string function and a 
constant, e.g., LAST-NAMEB(bil1) = "SMITH". 

Special Notation for Numbers 
1 .  Numeric  Constants  

a. real numbers--a sequence of digits with embedded decimal 
point and optional sign, e.g., 1.2 -3.75 6.0 

b. integers--a sequence of digits with no decimal point, and 
with optional sign, e.g., 1, -3 

2 .  Numer ic  Variables 
a. real numbers--one or more capital letters suffixed by "#" 

e.g., A#, XY# 
b. integers--one or more capital letters suffixed by a "!" e.g., 

A!, XY! 
3 .  Numeric  f i n c t i o n s .  

In general, these may map from any type of individual(s) to a 
number. 
No tation: 
a. Real numeric functions--one or more capital letters suffixed 

by a "#" and followed by an argument list, e.g., 
 WEIGHT#(^^^^) 

b. Integer functions--one or more capital letters suffixed by a 
11 1 1 1  . and followed by an argument list, e.g., 
POPULATION! (austria). 

Additionally, the usually infix arithmetic functions are assumed 
whch map from reals to reals or integers to integers: +, -, *, / ,  
**. 

4.  N u m e r i c p r e d i c a t e s  
The following commonplace numeric predicates are assumed: 

= e quals 

Z not equals 



> greater than 

r greater than or equals 

< less than 

4 less than or equals 

These will often be used to relate a numeric function to a 
numeric constant or arithmetic expression: e.g., 
WEIGHT#(bill) < WEIGHT#(sally) + WEIGHT#(mary). 

NOTE ON CONTROL IMPLICATIONS 
In the pages to follow, the processing implications of the aforemen- 

tioned separation of universes should be kept in mind. This enables a 
separation of labor between the components dealing with purely 
representational facts versus those involving deductions about the exter- 
nal environment. Thus, as assertions or queries are made, one can ima- 
gine a first pass made by a character string processor (a la SNOBOL) 
which resolves concatenations and predicates involving only character 
strings. A second pass would be made by a numeric processor, which did 
the purely numeric calculations. Lastly, deductions on the database itself 
are made. 

TRANSLATION FROM RELATIONAL MODEL TO LOGICAL F'OFtM 
The translation of relational databases into the predicate calculus 

will be illustrated using the example databases used earlier. For conveni- 
ence, these are repeated in Exhibit 1 along with their logical reformula- 
tion, explained in the pages to follow. 

First, note that for certain relations e.g., VEHICLE, EMPLOYEE, each 
row (tuple) of the relation implicitly signifies the existence of a different 
individual in the universe. We will make this aspect explicit by the intro- 
duction of logical constants corresponding to each one of these rows. For 
notational simplicity we here make use of simple alphabetic letters 
"internal" names for these individuals. In a computer implementation, 
these would be "system-generated identifiers" (e.g., GENSYM of LISP), 
providing a unique internal identification for each of the physical objects 
acknowledged in the system. 

Note further, that not every relation indicates the existence of indivi- 
duals corresponding to its tuples--e.g., the rows of the relation DRIES do 
not correspond to the existence of additional individuals, merely associa- 
tions between already recognized individuals. 



Thus in our simple database, internal names are need for the three 
vehicles, say a, b and c ,  and for the four employees, say d, e, f and g. 

Next, we note that the relation name itself indicates a property of 
these individuals--namely that the first group are vehicles, the second 
employees. Thus we have: 

VEHICLE (a) 

VEHICLE (c) 

EMPLOYEE (e) 

As was alluded earlier, the key attributes for these relations will be 
interpreted here as labels. Adding this to the previous statements, we 
have 

Looking specifically at the relationVEHICLE, let us consider next the 
attribute designated as TYPE. We see that the values of this attribute are 
other predicate names, on a par with the relation name. E.g., we have for 
the object a: 

That is, both VEHICLE(a) and TRUCK(a) are single place predicates indi- 
cating features about the object a. It is interesting that in this logical 
interpretation of relational databases, relation names and attribute 
values have the same status, i.e., as predicate names. (This statement 
must be qualified for the cases where the attribute values are labels or 



numbers. However, as stated above, these can be regarded as an abbrevi- 
ated form for further predicate names.) 

In this case, the name of the attribute itself, namely TYPE, seems to 
offer little information--it tells us little about the sorts of terms (predi- 
cates) that can appear in t h s  column--e.g., could not BIG, SMALL, 
AQUATIC, AIRBORNE, etc. also be regarded as TYPES of vehicles? 

On the other hand, the next attribute COLOR, does indicate some- 
thing about the range of terminology that can appear--e.g., we know that 
YELLOW, BLACK, etc, are possible colors, where as BIG, SMALL are not. 
Now, by the preceding method, we ccnsider the attribute values here as 
predicates--e.g., 

GREEN (s) 

How then do we interpret the word COLOR? Our approach is to regard this 
as what might be called a predicate group. COLOR(?X) is in effect a 
second order predicate, applying not to individual objects, but to 
predicates--e.g., COLOR(RED) is true, COLOR(B1G) is false. However, 
recognizing second order predicates complicates the logic considerably, 
something we want to avoid if possible. Note that the principal purpose of 
this predicate is to enumerate the list of possible color predicates. In 
addition, since in the relational model attributes are single-valued, choos- 
ing COLOR as an attribute name implicitly indicates that  these various 
color predicates will be mutually exclusive. These features can be incor- 
porated into a first-order predicate, call it HAS-COLOR (?X) with an axiom 
of like the following. 

etc. 

That is, any object satisfying HAS-COLOR(?X) will satisfy one and only one 
of the listed color predicates. 

Thus, in the logical interpretation, attributes of this type and their 
values are seen as corresponding to two one-place predicates, the first 
being the name of the attributed. renamed with the prefix "HAS-," the 
other being the attribute value. However, since these two predicates are 
so closely related, and for notational simplicity and readability, we adopt 
a notational convention resembling that of the fun.ctiona1 form--with the 
(un-prefixed) attribute name in the position of the function name, and the 



attribute value in the position of the function value, e.g., 

COLOR(?X) = RED 

It is to be emphasized that this is a notational convenience only. In 
expanded form this is equivalent to: 

The last attribute of the VEHICLE relation is WEIGHT. The values of 
this attribute are numbers indicating the vehicle weight, presumably in 
kg. 

In the logical reformulation, attributes whose values are numeric are 
treated as memurements. This involves a mapping from the object to the 
real or integer numbers. In the theory of measurement, such mappings 
involve two components: a memurement operation which is the process of 
measuring the objects properties, such as weighing the object or measur- 
ing its length, and a memurement standard, such as a standard kilogram 
or standard meter. As is well known, such measurement standards are 
established as the properties of certain unique physical objects main- 
tained by such institutions as the U.S. National Bureau of Standards. 
Practically, these standards are communicated by replicas of these stan- 
dard objects--e.g., sets of brass weights, rulers, etc. In ordinary commer- 
cial practice, these are considered equivalent for measurement 
purposes--that is, one typically is not concerned whch ruler was used to 
measure an objects length. Indeed, except in such exacting areas as phy- 
sics, etc. the process of measurement has become so commonplace that 
the nature of the measurement operation and how it is ultimately related 
to the unique object representing the measurement standard are often 
ignored. We thus use such terms as kilogram, pound, meter, foot, etc. as 
if they were objects in themselves. For instance, in such statements as 'X 
weights 10 kilograms," we accept the notion of a kilogram as something 
familiar to everyone reading this statement, and not dependent on partic- 
ular measurement devices, the measurement procedure used and so on. 

To express measurement in t h s  logical framework, however, we 
strike something of a compromise between the theoretical distinctions of 
measurement operations and measurement standards and the ordinary 
views of measurement. In doing this, we introduce in our universe addi- 
tional objects called "measurement standards," giving them lower case 
names for indvidual constants such as "kilogram," "pound, " "meter," etc. 
Technically, we may assume these to be the standard objects such as are 
maintained by the Bureau of Standards, or, more in line with common 
usage, we may regard them as abstract objects. 

The measurement operation is subsumed in the definition of certain 
measurement predicates or measurement functions. 

A measurement is here viewed as a three place relationship between 
a physical object, a measurement standard, and a number. For instance, 
the sample database, that the truck (constant nam.e a) weighs 1200 kg is 
shown as the following predicate: 



WEIGHT(a, kg, 1200) 

However, since the number involved in such measures is usually unique 
(i.e., an object has only one weight in kilograms), this is usually shown in 
functional form, e.g., 

WEIGHT#(a, kg) = 1200.0. 
At this point the basic constructs of converting from the representa- 

tion of physical objects and their features in the Relational Model to a log- 
ical notation. This was illustrated using the relation VEHICLE in the ear- 
lier example database. The conversion of the next relation, EMPLOYEE, 
would be done in an analogues manner: the relation name EMPLOYEE 
becomes a single place predicate. The attributes NAME and E-NUM are 
label functions. The attributes SKILL is a predicate group consisting of 
such one place predicates as MANAGER(?X), DRTVER(?X), CLERK(?X), etc. 
Finally, the attribute HEIGHT is re-interpreted as a measure function. 

We so far have not explained the last relation, DRIVES. This, it turns 
out is re-interpreted somewhat differently than the preceding two rela- 
tions. Here, the relation name itself becomes a two- place predicate, 
applying to individuals vehicles and employees. Furthermore, the attri- 
butes in this relation, V-ID# and E-NUM, served only as foreign keys, e.g., 
to reference other tuples, and add no descriptive information of their 
own. They are therefore ignored in the logical interpretation. The logical 
formulation of DRrVES thus becomes: 

DRIVES (c, g) . 

The complete database, in its original relational form and its re- 
interpretation in logical form is shown in Exhibit 1. 



Exhibit 1: EXAMPLE DATABASES 

RELATIONAL FORM: 

VEHICLE (ID, TYPE, COLOR, WEIGHT) 

a A-27 TRUCK RED 1 2 0 0  

b C-17 TRAILER GREEN 300 

c L-32 CAR BLUE 7 0 0  

EMPLOYEE (NAME, E-NUM, SKILL HEIGHT 

d JONES 12-345 MANAGER 1.91 

e ADAMS 65-216 DRIVER 1 . 7 2  

f SMITH 28-159 CLERK 1.83 

g PERKINS 37-212 DRIVER 1.78 

DRIVES (V-ID, E-NUM) 

A-27 65-216 

A-27 37-212 

L-32 37-212  



Exhibit 1 continued 

LOGICAL FORM 

VEHICLE(a) & IDt(a)  = "A-27" & TRUCK(a)& COLOR(a) = RED & 

WEIGHT#(a,kg) = 1200. 

VEHICLE(b) & ID$(b) = "C-17" &  TRAILER(^) & COLOR(b) = GREEN & 

 WEIGHT#(^.^^) = 300. 

VEHICLE(c) & ID%(c) = "L-32" & CAR(c) & COLOR(c) = BLUE & 

W E I G H T # ( C , ~ ~ )  = 700. 

EMPLOYEE(d) & NAME$(d) = "JONES" $ E-NUM$(d) = "12-345" & 

SKILL(d) = MANAGER & HEIGHT#(d) = 1.91 .  

EMPLOYEE(e) & NAME(d) = "ADAMS" & E-NUM$(e) = "65-216" & 

SKILL(e) = DRNER & HEIGHT#(e) = 1.72.  

 EMPLOYEE(^) & NAMEL(f) = "SMITH" & E-NuM$(~) = "28-159" & 

 SKILL(^) = CLERK & HEIGHT#(f) = 1.83.  

EMPLOYEE(g) & NAME$(g) = "PERKINS" & E-NUM$(g) = "37-212" & 

SKILL(g) = D R M R  & HEIGHT# = 1.78.  

DRIVES ( a ,  e )  



INFERENCING CAPABILITY 
Simply converting databases from a relational form to a logical one 

is not in itself very valuable. It must be shown how databases re-cast in 
this form can be more useful. 

Note, first, that the fact that the logical form appears more verbose 
is not a serious objection. Our concern here is re-formulation a t  a con- 
ceptual level. At the machine implementation, storage level, more com- 
pact notations can be used, indeed perhaps making use of the original 
storage form with certain auxiliary markers added which indicate its 
conversion to logical form. 

Second, and more importantly, observe that the conversion from 
relational to logical form is not a mechanical one. In doing the conver- 
sion, we made use of background knowledge about the environment that  
the database described. This is a fundamental point: the logical form 
encodes more semantic information. For instance, in doing the conver- 
sion we specified the relations whose tuples indicated the existence of 
individual objects in the environment. Further, the interpretation of 
attributes distinguished between labels, predicate groups and measure- 
ments, additional semantic information. 

The inferencing capability available from a database re-interpreted 
in this way is perhaps best presented in terms of the three universes of 
discourse involved: character strings, numbers and physical objects. 

On the other hand, inferences within the first two domains are well- 
studied, and have been implemented as primitive operations in a number 
of programming languages (e.g., SNOBOL, text editors for character 
strings; FORTRAN, PL/I, etc. for numbers). Our attention will therefore be 
to  inferences within the universe of physical objects, and the relationshp 
of this domain to the other two, i.e., labels and measurements. 

The general rules of inference for first order predicate logic has also 
been well stud.ied. 

Inferences Involving Only Physical Object Individuals 
In the example databases earlier, their logical translation consisted 

entirely of conjuncts of predicates (including labels, measurements) 
applied to individual constants. This is a general feature of the transla- 
tion of relational databases--they consist mainly of specific, conjunctive 
facts. For instance, it is very seldom that disjunctive or negative facts 
appear--e.g., "the truck is either blue or brown" or "the truck is not 
green." This types of statements can be viewed as partial facts that is, 
one does not know the color of the truck exactly, but nonetheless, some- 
thing is known about the color. Such partial information appears very 
seldom in administrative databases. They consist, by contrast, of com- 
plete facts. 

At the same time, such databases can be viewed as consisting of ele- 
mentary facts from which more complex statements can be constructed. 
This is indeed one of the earliest design principles in data processing: for 
flexibi.lity in information reporting, one should collect and store the data 
in its most "disaggregated" form. Thus "aggregation," or deduction based 



on the elementary facts in the database, has always been an objective of 
file and database systems. The rzlles for these deductions were however 
implicit in the minds of the programmers and end-users who specified the 
retrieval. The retrieval programs or queries had to be stated in terms of 
the elementary relation and attribute names and their values. 

Given the logical re-interpretation of these databases, one can make 
certain of the more frequent or more complex deductions explicit as 
axioms about the database. 

Retrieval requests (including "alterters," stored queries which 
trigger on a n  exception basis) can be stated in terms of higher level, 
derived facts. 

One of the simplest and perhaps most useful types of inferences is 
for hierarchies of classification, what have come to be called "generaliza- 
tion hierarchies." These were first proposed in the database management 
literature by Smith and Smith (1977), though they were discussed in 
Artificial Intelligence some years earlier, e.g., Quillian (1968). A generali- 
zation hierarchy is a graphical representation of a sequence of subset 
relationships be tween categories. To illustrate, the Smiths' (1977: 109) 
coincidentally also made use of the example of vehicles. Two of their 
graphs are reproduced in Exhibit 2. 

The arcs in such generalization hierarchies are often read "is a," 
Thus an  air vehcle "is a" vehicle, a plane "is a"(n) air vehicle, a passenger 
aircraft "is a" plane, etc. 

These generalization hierarchies translate into logical assertions in a 
straightforward fasbon, namely as simple implications, e.g., 

However, in the Smiths' representation, additional information is 
meant to be conveyed, namely that each of subsets linked to a common 
parent node is mutually exclusive. 

If the subsets are  also exhaustive, this translates into the logical syn- 
tax as exclusive disjunction and equivalence, e.g., 

If the subsets are mutually exclusive but not exhaustive (a distinction 
which the Smi.thsl graphs don't distinguish), we need a way of referring to 
the possible r*esid.ual category. As a convenience, a variable predicate, 
?OTHER( ) is used for this purpose, e.g., 



Exhibit 2. GENERALIZATION HIERARCHIES 

vehicle 

air vehicle water vehicle 

d b d b 6 b  

a. A generic hierarchy over vehicles 

motorized vehicle air vehicle 

truck helicopter glider 

b. A generic herarchy which is not a tree 



Graph b. of Exhibit 2 illustrates the possibility of set intersection, i.e., 
that a helicopter is both a motorized vehicle and a land vehicle. In a logi- 
cal syntax, t b s  is expressed as a conjunction, i.e., 

These graphical representations have a clear superiority over the logical 
form in terms of pictorial clarity (though t h s  diminishes rapidly for 
graphs with a large number of nodes and arcs). 

The over-riding advantage of the logical form is, however, its robust- 
ness. The generalization hierarchies are but suited for showing the inter- 
dependence of properties of single objects, but break down when multiple 
object inter-dependencies are involved. suppose for instance, we con- 
sidered a relationship LICENSED(?X,?Y), which indicates that a person, ?X, 
is licensed to drive vehicle ?Y. As is the case in many states in the U.S., a 
special chauffeur's license is required to drive a bus, in addition to the 
ordinary driver's license. Thus, a person who may drive a bus may also 
drive a car, but the reverse is not true. This is expressed logically as fol- 
lows: 

Reading: For any person, X, if x is licensed to drive some bus, then x is 
licensed to drive any car. 

Additionally, derivative properties can be defined based on participa- 
tion in two place relationships. For instance, a bus driver is one who is 
licensed to drive a bus: 



The general organization of this inferencing structure should now 
begin to become evident. Basically, four types of knowledge are involved. 
The first two consist of the general purpose axioms and inference rules of 
first order predicate logic. The second two are developed for the particu- 
lar environment being modeled and consist of "facts" from the database, 
and generalizations about how to convert these facts into others. The 
facts, as was seen, are statements which are generally conjuncts of predi- 
cates applied to individual constants. The generalizations, on the other 
hand, are typically universally quantified assertions involving variables. 
Inferencing thus amounts to the application of these universal statements 
to the particular fashion the database. 

Inferences Involving Labels 
(Physical Objects and Character Strings) 

Remember that a label was defined as a character string associated 
with a n  object for identification purposes only. It carries no additional 
information about the properties of the object. The amount of inferenc- 
ing involving labels is theref ore fairly limited. 

While labels are used for identification, there is no a priori assunp- 
tion that a particular label identifies a unique individual, for instance, 
many people may have the same last name. For those types of labels that 
are uniquely designating within a given type of object, this may be stated 
as an  explicit axiom. For instance, in the earlier example database, the 
label function ID$ had this property. This is stated: 

t/(?x) v(?Y): [VEHICLE(?X) ~c VEHICLE~Y)  & ID~(?x)  & I D ~ ( ? Y )  
--, ?X = ?Y. 

Reading: f o r  any two vehicles, x and y, if they have the same ID$, they are 
the same object. 

Unique identification is not always determined by a single label, but 
sometimes by a conjunction of more than one. For example, an office 
might be uniquely identified by a building code, BLDGb, and an  office 
number, 0-NUM$: 

The values of label functions may interact in other ways with other 
predicates. For instance, to state that any two people that are married 
have the same last name: 

t~ (?XI v(?Y): MARRIED( ?x,?Y) LAST-NAME$(?X) = LAST-NAME$ ( ?Y) . 



Inferences Involving Measurements 
(Physical Objects and Numbers) 

Numeric measurement is an extremely important type of data in 
administrative environments and there are numerous types of inferences 
that are useful. Indeed many numeric algorithms of management science 
are essentially inferences based on numeric measurement of physical 
objects. 

A basic type of inference is conversion of units of measure. Recall 
that units of measure appeared in the syntax here as special individual 
constants marked with the prefix "63." Thus, conversion from weight in 
pounds (Qlb) to kilograms (Qkg) is as follows: 

Similarly, conversion from length in feet ( ~ f t )  to length in meters 
(am) is stated 

t/(?X): LENGTH#(?X,Qm) = 3.28 * LENGTH#(?X, Bft) . 

conversion from such elementary measures to derived ones can also 
be stated. For instance, to calculate the volume of a cube in cubic cen- 
timeters (Qcm3). 

A very important type of measurement in administrative contexts 
are monetary valuations. For instance, the historical cost of the object, 
a,  in dollars might be 

More recent views in accounting, so-called "price-level accounting," 
recognize changes by year in the standard dollar used for valuation. Thus 
the value of an object in, say, 1962 dollars is not the same as its value in 
1978 dollars. To indicate this conversion, e.g., recognizing 40% inflation, 
we could state: 

Accounting provides a wealth of opportunities for inferences based 
on numeric measurement. Indeed, an eventual objective of this line of 
research is to represent accounting definitions and the varieties of mani- 
pulations (e.g., FIFO vs LIFO inventory valuations, depreciation methods, 
overhead allocations, variance analysis, etc.) in terms of the logical cal- 
culus. This would enable the embedding of accounting knowledge in the 
system itself, so that it could aid in revising calculations based on dif- 
ferent assumptions and decision criteria. However, the more interesting 



and challenging aspects accounting problems inevitably involve infer- 
ences across time. Thus a fuller treatment of accounting is differed to a 
later paper. 

SEXANTIC ISSUES 
As indicated in the introduction there were two goals of interpreting 

a DM database in logical form: inferencing, which was just discussed, and 
clarification of the semantics of the database, which we consider now. 

A (DM) database is, as observed earlier, a type of formal language in 
i tself-ie. ,  it is composed of symbols which are manipulated according to 
certain rules. Also as mentioned above, a formal language has two com- 
ponents: its s y n t a z ,  giving the vocabulary and rules describing permissi- 
ble combinatons of this vocabulary, and its semantics ,  indicating the 
phenomena which these expressions represent. 

A principle shortcoming of the formalisms for DM databases, such as 
the network and relational data models, is that they make explicit the 
syntax of the database, but not its semantics.+ 

Simply translating the syntax of a database into a logical syntax does 
not however resolve these semantic issues, but it does help to focus them. 

The concept of semantics we are using here is called model theoretic 
semantics or denotational semantics, and is due originally to Tarski (1931 
and 1956). 

MODEL THEORETIC SEMANTICS 
The basic concept is that the references of the symbols in the formal 

language are  explained in terms mathematical sets of objects, called a 
model of the formal language. The definition of these sets is agreed upon 
extra-logically, that is outside of the formal language. 

One-important set is called the set  of truth values, V: 

The denotation of a proposition or sentence is an element of V. 
In discussing the FOPC language, -we introduced another set, the 

universe of d k c o u ~ s e ,  We will call that  set E, and as before assume that 
this is the set of physical entities a t  a given time. 

The individual constants of the FOPC denote elements of E .  
The one place predicates of the FOPC denote subsets of E. 

* C1arificatio:n: "semantics" is sometimes used wi th  regard to programming and query 
languages t o  indicate whd t h  coznputer does in response to  a symbolic command. Here we 
mean "semantics"  TI the linguistic sense-what the symbols in  the database refer to h the 
external environment. 



The 2 to n place predicates of the FOPC denote two through n place 
relations on E. 

The 1 to n place (logical) functions of the FOPC denote one to n place 
(mathematical) functions on E. 

The variables of the FOPC range over the elements of E. 
The quantifier Wu @(u) (for some variable u and formula @) is inter- 

preted as a 'big conjunct' of propositions formed by substituting a con- 
stant representing each element in E for u, i.e., 

where a,  b, c, ... are names of elements of E. 
The qualifier 3 u @(u) is correspondingly interpreted as a 'big dis- 

junct,' i.e., 

The semantics for the FOPC applying to physical objects can there- 
fore be described as the model (M): 

where V is the set of truth values and E is the set of (physical) entities. 
The symbol F is called an interpretation function. Its domain is the set of 
symbols in the formal language and its range is the sets V,E. F therefore 
provides the mappings from the individual constants, predicates, etc. to 
elements, subsets, and relations on V and E. ' 

Following the presentation of the FOPC, we extend this to a 'multi- 
sorted' logic, adding the sets of character strings and numbers to the 
universe of discourse. Calling these sets respectively C and N,  the seman- 
tic model now takes the form: 

Now individual constants refer to any element of E, C, or N,  and 
predicates refer to relations on the union of E ,  C ,  N. 

FURTHER SEMANTIC EXTENSIONS 
This paper has dealt with the introductory aspects to a broader for- 

mal language, called CANDID (Lee 1980, 1981b), aimed at formal descrip- 
tion of phenomena in administrative environments, again with the objec- 
tive of providing a formal inferencing framework for managerial decision 
support applications. 

We here consider in summary form some additional semantic con- 
siderations treated in more depth in that work. 



1. Non-individualized Objects 
The predicate calculus framework adopted here presumes that each 

object in the universe can be individually named by a constant. This 
causes no problems when dealing with 'middle-sized' objects such as per- 
sons, vehicles, machines, etc. However, organizational environments are 
also filled with smaller objects such as pencils, screws, nuts and bolts 
which, while counted, are seldom named individually. 

At an even lower level, granular solids, such as corn, wheat are also 
commonplace, as are liquids, e.g., oil, water and even gases, e.g ., propane. 

From a theoretical perspective, the formal treatment of such non- 
individualized objects can be quite problematic. However, if we consider 
the practical requirements in organizational settings, the problem is 
quite simplified. The point is of course that organizations do not treat 
these objects a t  this small scale, but invariably raise them to a middle- 
size scale using the device of a c o n t a i n e r  -e.g. ,  a carton, drum, boxcar, 
tanker, etc. which are in turn individually identified. 

The contents of such containers is specified not by an enumeration 
of individuals, but by a generic predicate describing the type of individu- 
als contained (e.g., bolts, corn, propane) and a measurement predicate 
indicating the size of the population it contains, e.g., as a simple count or 
by other measures such as weight or volume. 

The key point is that  such individuals are regarded as inter- 
substitutable in these environments and their separate identities do not 
matter. 

2. Time 
Typically a DM database provides a sort of 'snapshot' model of the 

organizational environmenti.e.,  the facts in the database are presumed 
to be currently true in the environment. 

A n  obvious extension to the semantic framework is to introduce the 
dimension of time, denoted say by the set T. Thus the 

But we must be explicit as to which times are included in the set T. 
Are this to be discrete units of time, e.g., days, or is time to be continu- 
ous, consisting of infinitessimally small time points. The latter seems to 
be the more descriptive, but again we confront the problem of how these 
are individually named. However a practical solution is available, if we 
again consider the requirements in organizational environments. The 
situation, as it turns out, is somewhat analogous to that with granular and 
liquid objects. 

In organizations, it is difficult to choose any given time interval as an 
adequate minimum. For most sales transactions, accuracy to a day is 
probably adequate, but, for instance on the international stock and 
money markets, transactions must be timed to the split second. 



Thus, while the conception of time in organizations is essentially con- 
tinuous, the identification of individual times is invariably made referring 
to larger time chunks, what we call time spans. The Gregorian calendar 
provides individual names for time spans down to the level of a day-e.g., 
12 October 1979, 18 May, 1990. Smaller time span units are provided by a 
24 hours division of each such day (relative to a given time zone), and 
further divisions are available as minutes, seconds, milli-seconds, etc. 
Certain time points can be identified as the beginning and end points of 
such time intervals. For instance, 

14:56:32 12 July 1980, Greenwich Mean Time 

names a particular time interval of one second. Two time points are the 
beginning and ending of that internal. 

Such a scheme does not name all the time points on a continuous 
time dimension, but ori the other hand identifies all those that are ever 
needed for describing commercial and financial activities. 

A second problem regarding time is the length of the time dimen- 
sion. If we consider the typical usage of DM databases, it is generally 
accepted that they contain ' f ac t s l i . e . ,  descriptions which are true of the 
environment. 

Normally, in organizational contexts, assertions which pertain to the 
future are not considered factual, but rather are conjectural (or proba- 
bilistic) as with predictions; intentional, as with plans; or obligational, as 
with contractual promises. 

This suggests that the time dimension T in the semantic model of a 
database contains only the times of the past up to the present. (Here we 
have another problem for the present is a moving point. Let us therefore 
consider only the semantic model of a snapshot of a database, for which 
the time point "present" is fixed.) 

By adding the time dimension, the predicates reflected in the data- 
base, which formerly were interpreted as relations on E X C X N are now 
relations on E X C X N X T. That is, they may have additional places refer- 
ring to times reflectmg that they may be true of certain times, but not of 
others. 

This however raises a new issue with regard to the other sets E, C, 
and N. The definition of the sets C and N was in terms of symbolic 
objects, hence independent of time. However, the set E was defined as 
the set  of physical entities existing a t  some specified time. 

One particularly important tempcral aspect of organizational 
activity, especially in manufacturing, is that certain objects (products) 
are created while others (materials) are destroyed. This suggests that we 
must explicitly recognize existen.ce as a predicate in the formal language. 
Correspondingly, the definition of the set E must be modified to include 
not just presently existing individuals, but any previously existing indivi- 
duals as  well. 



3. Non-Physical Objects 
So far we have maintained the assumption that the set E, of entities, 

comprises only identifiable physical objects. The reason for this, as dis- 
cussed earlier, is that physical objects provide a reasonably uncontrover- 
sial basis for consensual identification of individuals. That is to say, if the 
formal language we construct is to achieve clarity and exactness of com- 
munication between user and machine, and via the machine between a 
larger community of users, it is essential that the elementary objects 
described in the language can be mutually and unambiguously identified 
by all parties involved. 

However, this may seem to exclude a wide number of fundamentally 
important, though not physical, objects in administrative life. For 
instance, budgets, bank accounts, insurance policies, etc. are all exam- 
ples of non-physical objects. 

These might be viewed as special cases of a still broader class of 
abstract objects including for instance colors, theories, emotions, etc. 
The problem with admitting such objects into the formal language is that 
one loses all consensus of identification of individuals. (This has been a 
philosophical chestnut since the time of Aristotle. Strawson (1963), pro- 
vides a useful discussion.) For example, contrast the questions: "How 
many children did Einstein have?" and "How many theories did Einstein 
have?" Presumably, an arbitrary group of people could agree on the 
answer to the first question given sufficient evidence. For the second, 
however, one would expect more disagreement, even given great amounts 
of factual material. 

However, given the administrative orientation of the formal 
languages under discussion here, we can give a formal treatment to cer- 
tain apparently abstract objects without 'throwing out the baby with the 
bathwat er.' 

Among these objects would be such examples as 
accounts receivable 
accounts payable 
employment contacts 
sales contracts 
loans 
bonds 
stocks 
insurance policies 
budgets 
etc. 

A common feature in these kinds of objects is that they each contain 
an underlying aspect of obligation or permission. These are concepts for- 
malized in a so-called deontic logic (see, for instance, von Wright 1968.) 
The extension of deontic logic to the modeling of administrative 
phenomena is discussed in detail in Lee ( 1981a). 

A basic feature in the description of such commitments is that they 
are a relationship between two parties that involves a scenario of some 
future state of the world (i.e., describing the .promised actions on both 
sides). Further, there may be alternative scenarios, as is the case with 



contingent commitments (e.g., insurance) and penalty clauses. 
The formal construct for dealing with this of description is called in 

philosophy and linguistics a "possible world," and its basic function in a 
formal language is to provide a locus of description for sets of hypotheti- 
cal or counter factual assertions. This has been a tremendously powerful 
concept in formal linguistics for analyzing all types of sentences involving 
belief, wishing, hoping, imagining, etc. 

In the formal description of commitments, the scenario is described 
as a series of facts true in a certain possible world. This world is then 
later 'actualized' or not according to the commitment being fulfilled or 
not. For additional background on possible worlds semantics, see Cress- 
well (1973) and Dowty (1978). 

Possible worlds are added to the semantic model as the set W (of 
worlds). The sets in the model are therefore as follows: 

where 
V = truth values 
E = entities 
C = character strings 
N = numbers 
T = times 
W = possible worlds 
F = interpretation function. 

The focus of t h s  paper has been to show how data management type 
databases can be interpreted in a formal, logical language. The motiva- 
tion of this reformulation was to provide a formal basis for artificially 
intelligent managerial decision support systems. Specific advantages d s -  
cussed were the capability to do logical inferencing on the contents of 
such databases and a framework for elaborating an explicit semantics for 
the symbols in the database. 
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