
NOT FOR QUOTATION
WITHOUT PERMISSION
OF THE AUTHOR

LOGICAL INTERPRF'TATION OF rnLATI0NAL DATABASES

Ronald M. Lee

December 1981
WP-81-163

Working Papers are interim reports on work of the International
Institute for Applied Systems Analysis and have received only
limited review. Views or opinions expressed herein do not
necessarily represent those of the Institute or of its National
Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS
2361 Laxenburg, Austria

The reformulation of data management type databases in a formal,
logical calculus is described. Advantages of this logical form are to pro-
vide a framework for automatic inferencing on the database as well as a
formal clarification of the databases semantics. Principle applications
are to artificially intelligent managerial decision support systems.

CONTENTS

INTRODUCTION

DATABASE INFEENCING

SEMANTIC I S S U E S

OUTLINE O F P A P E R

REVIEW O F THE RELATIONAL MODEL

PREDICATE C A L C U L U S 4 ? E N I m AND NOTATION

A MULTI-SORTED LOGIC

NOTE ON CONTROL IMPLICATIONS

TRANSLATION FROM RELATIONAL MODEL TO LOGICAL FORM

INFERENCING CAPABILITY

SMANTIC ISSUES

FURTHER SEMANTIC EXTENSIONS

SUMMARY

REFERENCES

LOGICAL INTERPRETATION OF RELATIONAL DATABASES

Ronald M. Lee

INTRODUCTION
In recent years, there has been a gradual convergence of interests

between researchers in Database Management (DM) and Artificial Intelli-
gence (AI). Broadly speaking, the principal concern of DM has been to
efficiently maintain and retrieve large amounts of data in computer
accessible storage. This data typically involves a large number of simi-
larly structured records--e.g., purchase orders, sales transactions of a
large company.

A1 systems, by contrast, emphasize neither efficiency nor large data
storage, but rather versatility- i.e., in dealing with complex, poorly
structured problem areas such as pattern recognition, language under-
standing theorem proving, etc. These systems also typically involve a
"data base." though of a different type than in DM: It is usually much
smaller (almost always contai-ned in main memory) and structurally more
complex. Rather than dealing with character strings and numbers
arranged in records and data files, a common form of an A1 database is as
statements in a logical predicate calculus. These provide the basis for
the deductive capacity of these systems.

Our interest here is a combination of these two approaches: in the
interpretation of DM databases as assertions in a logical syntax. Ths has
two motivations: one, to provide an inferencing capability in queries to
these databases, and two, to clarify the semantic issues in the way these
databases are used to model organizational environments.

DATABASE TNFERENCING
Using a new classic taxonomy of Anthony (1965), organizational

activities may be divided based on the length of the time horizon their
decisions affect: operational activities have a time framework in terms of
days or weeks; tactical activities have an effect in terms of months to a
year; strategic activities affect a number of years.

Using Simon's distinction of programmed vs, non-programmed activi-
ties (or structural vs. unstructural), based on whether the activity can be
directed by an explicit procedure, Gorry and Scott Morton observe that
as one moves from the operational to the strategic activities the associ-
ated decisions tend to become increasingly less structured.

The major use of DM databases to date has been in data processing
applications. In the above framework, they are used mainly for struc-
tured, operational level activities such as sales order processing, billing,
inventory control, etc. Therefore, the people that use them for the most
part do so frequently and routinely.

These databases might also be useful in less structured, longer range
activities, though the requirements in this case are somewhat different.

a. information is usually required in more summarized form
b. access is less routineinformation must be retrievable in a

variety of forms and combinations
c. the information often is used in combination with other informa-

tional and computational resources.

What we have just described is the use of a DM database in decision
support applications. The principle point of the criteria we mentioned is
that the data needs in these cases, though contained in the database, will
often not be a t the detail level nor in the structural arrangement in which
the database was designed.

It is for these uses that a mechanism providing inferencing on the
database is needed.

One obvious way of summarizing data is simple arithmetic
.calculations-e.g., counts of inventory, etc. What this lacks however is a
corresponding framework of qualitative inferencing. For instance, if one
has an inventory of three apples and two oranges and count them up, you
have five "things," but what descriptive label should be attached to this
broader class?

This is an example of where a system of qualitative inference would
be useful. More realistic examples abound, e.g., in accounting data if you
have $500 in cash and $700 in accounts receivable, then you have $1,200,
but of what?

Conversely, one might have wished to make a query about the quick
assets of the company when the database only contained data on cash
and accounts receivable.

SEX.ANTIC ISSUES
Closely related to considerations of inferencing are those of the

semantics of the database. A database, clearly, is a collection of symbols
which are intended to 'stand for' objects and other environmental
phenomena. What the individual symbols stand for, and more impor-
tantly, what combinations of these symbols stand for, is their semantics.

In routine data processing applications, the semantics of the data is
generally not a problem. The people who use the system are thoroughly
familiar with the vocabulary of symbols they use, and the interpretation
of each within the limited decision context of the application. Thus, for
instance, a clerk using an airline reservations system his little problem
understanding the parameters involved4lights, seats, passengers, cities,
etc.

On the other hand, when a database is used for decision support
applications, one is much more likely to deal with aggregated concepts
whose definition must be carefully constructed and communicated
between system and user so as not to be mis-understood. For instance, a
technical definition of PASSENGER PLANE may or may not exclude planes
which do not have a separate cock-pit. In administrative contexts one
encounters many such terms with exacting and often not obvious techni-
cal definitions, for instance, GROSS MARGIN, SEPARABLE MARGIN, CON-
TROLLABLF: MARGIN, MARGIN NET OF OPERATING EXPENSES, MARGIN NET
OF TAXES, MARGIN NET OF EXTRA-ORDINARY ITEMS, e tc. e t c .

Here a data dictionary facility would obviously be useful. However,
from a decision support perspective this solves only part of the problem,
namely describing the built-in calculations of the system.

However, what often happens is that none of these existing functions
provide the specific calculation needed for a non-routine decision. For
instance, a manager wants to evaluate a department's performance
including the effect of an extraordinary expenditure net of tax.

This can of course be provided through re-programming , but it would
be much more effective if the manager could express this request
directly, explaining it in the conceptual terms in which he/she is accus-
tomed.

For this the system needs not only to be able to do such calculations,
but also to be able to reason about how such calculations are defined.
For instance, in the above example it may not be possible to calculate the
tax applicable to a single department since the tax for the entire corn-
pany is in a different tax bracket than would be the tax for the depart-
ment alone.

When attempting to describe the semantics of a database, we gen-
erally do it by means of another language, e.g., English. This is perfectly
legitimate provided the user audience thoroughly understands and agrees
upon the English explanation. When the concepts we are trying to explain
are techmcal and complex, this may be unsatisfactory and we look for
more structured and formal methods to explain the semantics.

Here again, the interpretation of a database in terms of a logical syn-
tax will be useful since formal semantics has been studied chiefly in the
context of logical languages.

OUTLINE OF PAPER
To provide a framework for discussion about DM databases, these are

assumed to be structured according to the Relational Model (Codd 1970).
While few commercial systems actually conform to this model, is serves
as a convenient abstraction of their essential structural features. Furth-
ermore, the relationship between the various popularly-used file and
database management schemes (e.g., CODASIL) and the Relational Model
has been well-studied (see e.g., Date (1977), for an overview).

As an interesting aside, these studies typically regard the Relational
Model as the ultimate level of abstraction of computer-based data files.
Here, by contrast, the Relational Model is used as the starting point for a
considerably more abstracted view. Indeed, the view of "data" as charac-
ter strings in a structured format will be re-interpreted as predicate
names, etc. arranged by a logical syntax.

The Relational Model will be briefly reviewed. Next, we present (in
summary form) a fairly standard form of the first order predicate cal-
culus (FOPC), and extend it to a 'multi-sorted' form for use in describing
databases. Following that, a translation from the relational syntax to the
logical form is presented.

The potential for inferencing from this logical form is discussed and
illustrated, and the semantic issues are examined.

REVIEW OF THE RELATIONAL MODEL
The Relational Model, in its essentials, is conceptually very simple.

Basically, similarly structured facts about the organization are collected
in columnar tables, called ~e la t ions . The colurnns of these tables are
given names, called the attributes of the relation. The rows of the table
are called tuples, and each indicates a certain fact or information about a
certain entity in the organization. A relation typically has one or more
attributes designated as "key attributes," whch uniquely identify the
row, or correspondingly, the entity which the row describes.

For instance, consider the following relation describi.ng vehicles.

VEHICLE (ID TYPE COLOR WEIGHT)

A-27 TRUCK RED 1200

C-17 TRAILER GREEN 300

L-32 CAR BLUE 700

Here, the relation name is VEHICLE, and it has four attributes, ID#, TYPE,
COLOR and WEIGHT-i.e., these are the relevant characteristics about
vehicles in this context. The relation has three types, indicating three
vehicles, with the "values" of the attributes for each, listed in each row
under the appropriate column. The attribute ID#, is a k e y i . e . , whereas
more than one vehicle may be of the same type, color or weight ID# is
unique for each vehicle.

In this example, each tuple represents an individual object. Rela-
tions may also be used to indicate associations between objects. For
instance, suppose we had another relation, EMPLOYEE, which had row-
wise description of the various employees as follows:

EMPLOYEE (NAME E-NUM SKILL SALARY)

JONES 12-345 MANAGER 30000

ADAMS 65-216 DRrVER 20000

SMITH 28-159 CLERK 15000

PERKINS 37-212 DRrVER 22000

Here the attribute E-NUM (employee number) is the key.
Then, the association between certain vehicles and certain employ-

ees, namely who drives which vehicle. This might be recorded as the rela-
tion DRTVERS.

DRrVERS (V-ID E-NUM)

A-27 65-216

A-27 37-212

L-32 37-212

Here, V-ID refers to what was called ID in the VEHICLE relation. E-NUM
here is the same as E-NUM in the EMPLOYEE relation. In the relation
DRIVERS, both of these attributes together constitute the identifying key.
A t the same time, each separately is a "foreign keyW-i.e., uniquely identi-
fying rows in other relations.

The relation DRNERS thus indicates that vehicle A-27 (the truck) is
driven by employee 65-2 16 (Adams) and employee 37-21 2 (Perkins). Vehi-
cle L-32 (the car) is driven only by employee 37-212 (perkins).

It should also be mentioned that another important aspect of the
Relational Model derives from the simplicity and power of the various
access languages that have been defined for it, especially the relational
calculus and the relational algebra. (See e.g., Codd (1970)). As our pur-
poses are rather different, these languages will not be discussed here.

PREDICATE CALCULUS-RGYIEW AND NOTATION

Notation as Applied t o Physical Objects
It is assumed that the reader is a t least generally familiar with the

predicate calculus and its syntax. The following is thus only a review.
The description of a logical system begins by declaring its universe

of discourse. This is an informal (meta-language) description of the types
of objects that the statements in the logic are about.

For the moment, we will assume that the individuals described by the
logic are identifiable physical objects a t a point in time. We will return to
examine this aspect more closely later i n the discussion of semantic
aspects.

In summary form, the basic constructs of a first order predicate cal-
culus are as follows:

1. Propositions.
These are complete logical statements having a t ruth value.
These are indicated symbolically by capital letters--e.g., P,Q,R.

2 . Logical connectives.
These combine propositions to form new logical statements, also
having a truth value.
The logical connectives used here are as follows:

- equivalence

implication

& conjunction

V disjunction (inclusive)

W disjunction (exclusive)

rY negation

3. Indiv idual c o n s t a n t s and var iab le s .
These stand for objects in the domain of discourse-e.g., indivi-
dual trucks or employees.

Individual constants are denoted as one more lower case letters,
possibly containing non-leading digits or hyphens; e.g., a, bill,
truck-7.

Individual variables are denoted by a "?" followed by one or
more capital letters or digits, e.g., ?X, ?Y2.

4. m n c t i o n s .
These map one or more individuals to another--e.g., supervisor
(jones) refers to another individual who is Jones' supervisor.
Functions may take zero or more arguments and always result
in a reference to a single individual. Functions may thus appear
wherever an individual constant is allowed. Indeed, a zero-place
function is the same as an individual constant. Functions for
physical objects are therefore denoted in the same way as indi-
vidual physical constants, but followed by an argument list, e.g,
f (a), boss(smith)

5 . Pred ica te s .
These indicate features, properties, attributes, etc. applied to
zero or more individuals. Predicates will be denoted by upper
case letters or words, e.g., P(?X), RED(?X), OWN(x,y). When a
predicate is applied to individual constants or to quantified (see
below) individual variables, or to functions of these, i t has a
truth value and may be combined to form other logical state-
ments using the logical connectives above. A zero-place predi-
cate is equivalent to a proposition.

6 . LogicaL q u a n t i f i e r s .
These indicate the range of individual variables. The principal
ones are:

Vx universal quantifier
(for all x, for each x, -
ranging over all individuals
in the universe)

3 x existential quantifier
(for some x-ranging over
at least one individual)

Parentheses are used in the usual fashi-on.

A MULTI-SORTED LOGIC
In order to effectively capture the modeling aspects of a relational

database, we will essentially combine three logics of the above form. This
is called a 'multi-sorted' logic, which basically uses the same logical
mechanisms as the FOPC, with additional syntactic constraints.

The universe of the first logic will be entities, assumed as above to
consist of identifiable physical objects.

The next universe consists of what computer people refer to as
"character stringsu--i.e., unambiguous sequences of alpha numeric sym-
bols and punctuation. Normally in t h s work the name of a particular pro-
perty or association is not important--it is the relationship of this pro-
perty to others (indicated by logical theorems and axioms) which is most
relevant. However, in certain limited cases, the actual spelling does
matter. This occurs in what we call labels attached to an individual, such
as a persons name or social security number, the license number of a
car, the serial number of a piece of equipment or the street address of a
building. These are all uses of character strings where the characters
themselves do not convey any meaning but are used purely to distinguish
this object from others similar to it.

The other category of objects to be recognized are the real numbers
(including obviously the integers as a special case). These are needed to
reflect properties recorded as numeric measurements, a very important
aspect in administrative contexts.

The proposed universe of discourse no doubt seems to be a rather
odd mix, consisting of character strings, numbers and physical objects.
However, while these three types of objects interact, they may be viewed
in terms of th~ee separate unive=rses having distinct logical operations
defined on them. In addition to providing a convenient logical organiza-
tion, this also provides a useful semantic division: the first two universes,
character strings and numbers, consist of "representational objects,"
whereas the last consists of "real world objects." This division is perhaps
the most fundamental point of this paper: distinguishing those aspects of
a database which are internal representational from those that pertain to
the external environment.

The additional notation for these latter two universes is as follows:

Special Notation for Character Strings

1 . Characte~ string constants.
These are any sequence of zero or more letters, digits or punc-
tuation enclosed in double quotes. (Two double quotes are used
to represent the double quote itself.) e.g., "apple", "#27-512",
"T.S. Eliot".

2 . Cha~acte~ string variables.
These are one or more capital letters followed by a "116," e.g.. A$,
XY$.

3. f i n c t i o n s .
Note-these map from any type of individual to a character
string .
Notation--one or more capital letters followed by a "8" and an
argument list.
E.g., FIRST-LETTER$("APPLE"), LAST-NAMEB(bil1) .

A special fix function, "+", is used for concatenation--e.g.,
"AP" +"PLEM.

4. Pred ica tes .
The only character string predicate used is "=". This is
presumed case insensitive, e.g., "LEE" = "Lee" = "lee".

This is typically used to relate a character string function and a
constant, e.g., LAST-NAMEB(bil1) = "SMITH".

Special Notation for Numbers
1 . Numeric Constants

a. real numbers--a sequence of digits with embedded decimal
point and optional sign, e.g., 1.2 -3.75 6.0

b. integers--a sequence of digits with no decimal point, and
with optional sign, e.g., 1, -3

2 . Numer ic Variables
a. real numbers--one or more capital letters suffixed by "#"

e.g., A#, XY#
b. integers--one or more capital letters suffixed by a "!" e.g.,

A!, XY!
3 . Numeric f i n c t i o n s .

In general, these may map from any type of individual(s) to a
number.
No tation:
a. Real numeric functions--one or more capital letters suffixed

by a "#" and followed by an argument list, e.g.,
 WEIGHT#(^^^^)

b. Integer functions--one or more capital letters suffixed by a
11 1 1 1 . and followed by an argument list, e.g.,
POPULATION! (austria).

Additionally, the usually infix arithmetic functions are assumed
whch map from reals to reals or integers to integers: +, -, *, / ,
**.

4. N u m e r i c p r e d i c a t e s
The following commonplace numeric predicates are assumed:

= e quals

Z not equals

> greater than

r greater than or equals

< less than

4 less than or equals

These will often be used to relate a numeric function to a
numeric constant or arithmetic expression: e.g.,
WEIGHT#(bill) < WEIGHT#(sally) + WEIGHT#(mary).

NOTE ON CONTROL IMPLICATIONS
In the pages to follow, the processing implications of the aforemen-

tioned separation of universes should be kept in mind. This enables a
separation of labor between the components dealing with purely
representational facts versus those involving deductions about the exter-
nal environment. Thus, as assertions or queries are made, one can ima-
gine a first pass made by a character string processor (a la SNOBOL)
which resolves concatenations and predicates involving only character
strings. A second pass would be made by a numeric processor, which did
the purely numeric calculations. Lastly, deductions on the database itself
are made.

TRANSLATION FROM RELATIONAL MODEL TO LOGICAL F'OFtM
The translation of relational databases into the predicate calculus

will be illustrated using the example databases used earlier. For conveni-
ence, these are repeated in Exhibit 1 along with their logical reformula-
tion, explained in the pages to follow.

First, note that for certain relations e.g., VEHICLE, EMPLOYEE, each
row (tuple) of the relation implicitly signifies the existence of a different
individual in the universe. We will make this aspect explicit by the intro-
duction of logical constants corresponding to each one of these rows. For
notational simplicity we here make use of simple alphabetic letters
"internal" names for these individuals. In a computer implementation,
these would be "system-generated identifiers" (e.g., GENSYM of LISP),
providing a unique internal identification for each of the physical objects
acknowledged in the system.

Note further, that not every relation indicates the existence of indivi-
duals corresponding to its tuples--e.g., the rows of the relation DRIES do
not correspond to the existence of additional individuals, merely associa-
tions between already recognized individuals.

Thus in our simple database, internal names are need for the three
vehicles, say a, b and c , and for the four employees, say d, e, f and g.

Next, we note that the relation name itself indicates a property of
these individuals--namely that the first group are vehicles, the second
employees. Thus we have:

VEHICLE (a)

VEHICLE (c)

EMPLOYEE (e)

As was alluded earlier, the key attributes for these relations will be
interpreted here as labels. Adding this to the previous statements, we
have

Looking specifically at the relationVEHICLE, let us consider next the
attribute designated as TYPE. We see that the values of this attribute are
other predicate names, on a par with the relation name. E.g., we have for
the object a:

That is, both VEHICLE(a) and TRUCK(a) are single place predicates indi-
cating features about the object a. It is interesting that in this logical
interpretation of relational databases, relation names and attribute
values have the same status, i.e., as predicate names. (This statement
must be qualified for the cases where the attribute values are labels or

numbers. However, as stated above, these can be regarded as an abbrevi-
ated form for further predicate names.)

In this case, the name of the attribute itself, namely TYPE, seems to
offer little information--it tells us little about the sorts of terms (predi-
cates) that can appear in t h s column--e.g., could not BIG, SMALL,
AQUATIC, AIRBORNE, etc. also be regarded as TYPES of vehicles?

On the other hand, the next attribute COLOR, does indicate some-
thing about the range of terminology that can appear--e.g., we know that
YELLOW, BLACK, etc, are possible colors, where as BIG, SMALL are not.
Now, by the preceding method, we ccnsider the attribute values here as
predicates--e.g.,

GREEN (s)

How then do we interpret the word COLOR? Our approach is to regard this
as what might be called a predicate group. COLOR(?X) is in effect a
second order predicate, applying not to individual objects, but to
predicates--e.g., COLOR(RED) is true, COLOR(B1G) is false. However,
recognizing second order predicates complicates the logic considerably,
something we want to avoid if possible. Note that the principal purpose of
this predicate is to enumerate the list of possible color predicates. In
addition, since in the relational model attributes are single-valued, choos-
ing COLOR as an attribute name implicitly indicates that these various
color predicates will be mutually exclusive. These features can be incor-
porated into a first-order predicate, call it HAS-COLOR (?X) with an axiom
of like the following.

etc.

That is, any object satisfying HAS-COLOR(?X) will satisfy one and only one
of the listed color predicates.

Thus, in the logical interpretation, attributes of this type and their
values are seen as corresponding to two one-place predicates, the first
being the name of the attributed. renamed with the prefix "HAS-," the
other being the attribute value. However, since these two predicates are
so closely related, and for notational simplicity and readability, we adopt
a notational convention resembling that of the fun.ctiona1 form--with the
(un-prefixed) attribute name in the position of the function name, and the

attribute value in the position of the function value, e.g.,

COLOR(?X) = RED

It is to be emphasized that this is a notational convenience only. In
expanded form this is equivalent to:

The last attribute of the VEHICLE relation is WEIGHT. The values of
this attribute are numbers indicating the vehicle weight, presumably in
kg.

In the logical reformulation, attributes whose values are numeric are
treated as memurements. This involves a mapping from the object to the
real or integer numbers. In the theory of measurement, such mappings
involve two components: a memurement operation which is the process of
measuring the objects properties, such as weighing the object or measur-
ing its length, and a memurement standard, such as a standard kilogram
or standard meter. As is well known, such measurement standards are
established as the properties of certain unique physical objects main-
tained by such institutions as the U.S. National Bureau of Standards.
Practically, these standards are communicated by replicas of these stan-
dard objects--e.g., sets of brass weights, rulers, etc. In ordinary commer-
cial practice, these are considered equivalent for measurement
purposes--that is, one typically is not concerned whch ruler was used to
measure an objects length. Indeed, except in such exacting areas as phy-
sics, etc. the process of measurement has become so commonplace that
the nature of the measurement operation and how it is ultimately related
to the unique object representing the measurement standard are often
ignored. We thus use such terms as kilogram, pound, meter, foot, etc. as
if they were objects in themselves. For instance, in such statements as 'X
weights 10 kilograms," we accept the notion of a kilogram as something
familiar to everyone reading this statement, and not dependent on partic-
ular measurement devices, the measurement procedure used and so on.

To express measurement in t h s logical framework, however, we
strike something of a compromise between the theoretical distinctions of
measurement operations and measurement standards and the ordinary
views of measurement. In doing this, we introduce in our universe addi-
tional objects called "measurement standards," giving them lower case
names for indvidual constants such as "kilogram," "pound, " "meter," etc.
Technically, we may assume these to be the standard objects such as are
maintained by the Bureau of Standards, or, more in line with common
usage, we may regard them as abstract objects.

The measurement operation is subsumed in the definition of certain
measurement predicates or measurement functions.

A measurement is here viewed as a three place relationship between
a physical object, a measurement standard, and a number. For instance,
the sample database, that the truck (constant nam.e a) weighs 1200 kg is
shown as the following predicate:

WEIGHT(a, kg, 1200)

However, since the number involved in such measures is usually unique
(i.e., an object has only one weight in kilograms), this is usually shown in
functional form, e.g.,

WEIGHT#(a, kg) = 1200.0.
At this point the basic constructs of converting from the representa-

tion of physical objects and their features in the Relational Model to a log-
ical notation. This was illustrated using the relation VEHICLE in the ear-
lier example database. The conversion of the next relation, EMPLOYEE,
would be done in an analogues manner: the relation name EMPLOYEE
becomes a single place predicate. The attributes NAME and E-NUM are
label functions. The attributes SKILL is a predicate group consisting of
such one place predicates as MANAGER(?X), DRTVER(?X), CLERK(?X), etc.
Finally, the attribute HEIGHT is re-interpreted as a measure function.

We so far have not explained the last relation, DRIVES. This, it turns
out is re-interpreted somewhat differently than the preceding two rela-
tions. Here, the relation name itself becomes a two- place predicate,
applying to individuals vehicles and employees. Furthermore, the attri-
butes in this relation, V-ID# and E-NUM, served only as foreign keys, e.g.,
to reference other tuples, and add no descriptive information of their
own. They are therefore ignored in the logical interpretation. The logical
formulation of DRrVES thus becomes:

DRIVES (c, g) .

The complete database, in its original relational form and its re-
interpretation in logical form is shown in Exhibit 1.

Exhibit 1: EXAMPLE DATABASES

RELATIONAL FORM:

VEHICLE (ID, TYPE, COLOR, WEIGHT)

a A-27 TRUCK RED 1 2 0 0

b C-17 TRAILER GREEN 300

c L-32 CAR BLUE 7 0 0

EMPLOYEE (NAME, E-NUM, SKILL HEIGHT

d JONES 12-345 MANAGER 1.91

e ADAMS 65-216 DRIVER 1 . 7 2

f SMITH 28-159 CLERK 1.83

g PERKINS 37-212 DRIVER 1.78

DRIVES (V-ID, E-NUM)

A-27 65-216

A-27 37-212

L-32 37-212

Exhibit 1 continued

LOGICAL FORM

VEHICLE(a) & IDt(a) = "A-27" & TRUCK(a)& COLOR(a) = RED &

WEIGHT#(a,kg) = 1200.

VEHICLE(b) & ID$(b) = "C-17" & TRAILER(^) & COLOR(b) = GREEN &

 WEIGHT#(^.^^) = 300.

VEHICLE(c) & ID%(c) = "L-32" & CAR(c) & COLOR(c) = BLUE &

W E I G H T # (C , ~ ~) = 700.

EMPLOYEE(d) & NAME$(d) = "JONES" $ E-NUM$(d) = "12-345" &

SKILL(d) = MANAGER & HEIGHT#(d) = 1.91 .

EMPLOYEE(e) & NAME(d) = "ADAMS" & E-NUM$(e) = "65-216" &

SKILL(e) = DRNER & HEIGHT#(e) = 1.72.

 EMPLOYEE(^) & NAMEL(f) = "SMITH" & E-NuM$(~) = "28-159" &

 SKILL(^) = CLERK & HEIGHT#(f) = 1.83.

EMPLOYEE(g) & NAME$(g) = "PERKINS" & E-NUM$(g) = "37-212" &

SKILL(g) = D R M R & HEIGHT# = 1.78.

DRIVES (a , e)

INFERENCING CAPABILITY
Simply converting databases from a relational form to a logical one

is not in itself very valuable. It must be shown how databases re-cast in
this form can be more useful.

Note, first, that the fact that the logical form appears more verbose
is not a serious objection. Our concern here is re-formulation a t a con-
ceptual level. At the machine implementation, storage level, more com-
pact notations can be used, indeed perhaps making use of the original
storage form with certain auxiliary markers added which indicate its
conversion to logical form.

Second, and more importantly, observe that the conversion from
relational to logical form is not a mechanical one. In doing the conver-
sion, we made use of background knowledge about the environment that
the database described. This is a fundamental point: the logical form
encodes more semantic information. For instance, in doing the conver-
sion we specified the relations whose tuples indicated the existence of
individual objects in the environment. Further, the interpretation of
attributes distinguished between labels, predicate groups and measure-
ments, additional semantic information.

The inferencing capability available from a database re-interpreted
in this way is perhaps best presented in terms of the three universes of
discourse involved: character strings, numbers and physical objects.

On the other hand, inferences within the first two domains are well-
studied, and have been implemented as primitive operations in a number
of programming languages (e.g., SNOBOL, text editors for character
strings; FORTRAN, PL/I, etc. for numbers). Our attention will therefore be
to inferences within the universe of physical objects, and the relationshp
of this domain to the other two, i.e., labels and measurements.

The general rules of inference for first order predicate logic has also
been well stud.ied.

Inferences Involving Only Physical Object Individuals
In the example databases earlier, their logical translation consisted

entirely of conjuncts of predicates (including labels, measurements)
applied to individual constants. This is a general feature of the transla-
tion of relational databases--they consist mainly of specific, conjunctive
facts. For instance, it is very seldom that disjunctive or negative facts
appear--e.g., "the truck is either blue or brown" or "the truck is not
green." This types of statements can be viewed as partial facts that is,
one does not know the color of the truck exactly, but nonetheless, some-
thing is known about the color. Such partial information appears very
seldom in administrative databases. They consist, by contrast, of com-
plete facts.

At the same time, such databases can be viewed as consisting of ele-
mentary facts from which more complex statements can be constructed.
This is indeed one of the earliest design principles in data processing: for
flexibi.lity in information reporting, one should collect and store the data
in its most "disaggregated" form. Thus "aggregation," or deduction based

on the elementary facts in the database, has always been an objective of
file and database systems. The rzlles for these deductions were however
implicit in the minds of the programmers and end-users who specified the
retrieval. The retrieval programs or queries had to be stated in terms of
the elementary relation and attribute names and their values.

Given the logical re-interpretation of these databases, one can make
certain of the more frequent or more complex deductions explicit as
axioms about the database.

Retrieval requests (including "alterters," stored queries which
trigger on a n exception basis) can be stated in terms of higher level,
derived facts.

One of the simplest and perhaps most useful types of inferences is
for hierarchies of classification, what have come to be called "generaliza-
tion hierarchies." These were first proposed in the database management
literature by Smith and Smith (1977), though they were discussed in
Artificial Intelligence some years earlier, e.g., Quillian (1968). A generali-
zation hierarchy is a graphical representation of a sequence of subset
relationships be tween categories. To illustrate, the Smiths' (1977: 109)
coincidentally also made use of the example of vehicles. Two of their
graphs are reproduced in Exhibit 2.

The arcs in such generalization hierarchies are often read "is a,"
Thus an air vehcle "is a" vehicle, a plane "is a"(n) air vehicle, a passenger
aircraft "is a" plane, etc.

These generalization hierarchies translate into logical assertions in a
straightforward fasbon, namely as simple implications, e.g.,

However, in the Smiths' representation, additional information is
meant to be conveyed, namely that each of subsets linked to a common
parent node is mutually exclusive.

If the subsets are also exhaustive, this translates into the logical syn-
tax as exclusive disjunction and equivalence, e.g.,

If the subsets are mutually exclusive but not exhaustive (a distinction
which the Smi.thsl graphs don't distinguish), we need a way of referring to
the possible r*esid.ual category. As a convenience, a variable predicate,
?OTHER() is used for this purpose, e.g.,

Exhibit 2. GENERALIZATION HIERARCHIES

vehicle

air vehicle water vehicle

d b d b 6 b

a. A generic hierarchy over vehicles

motorized vehicle air vehicle

truck helicopter glider

b. A generic herarchy which is not a tree

Graph b. of Exhibit 2 illustrates the possibility of set intersection, i.e.,
that a helicopter is both a motorized vehicle and a land vehicle. In a logi-
cal syntax, t b s is expressed as a conjunction, i.e.,

These graphical representations have a clear superiority over the logical
form in terms of pictorial clarity (though t h s diminishes rapidly for
graphs with a large number of nodes and arcs).

The over-riding advantage of the logical form is, however, its robust-
ness. The generalization hierarchies are but suited for showing the inter-
dependence of properties of single objects, but break down when multiple
object inter-dependencies are involved. suppose for instance, we con-
sidered a relationship LICENSED(?X,?Y), which indicates that a person, ?X,
is licensed to drive vehicle ?Y. As is the case in many states in the U.S., a
special chauffeur's license is required to drive a bus, in addition to the
ordinary driver's license. Thus, a person who may drive a bus may also
drive a car, but the reverse is not true. This is expressed logically as fol-
lows:

Reading: For any person, X, if x is licensed to drive some bus, then x is
licensed to drive any car.

Additionally, derivative properties can be defined based on participa-
tion in two place relationships. For instance, a bus driver is one who is
licensed to drive a bus:

The general organization of this inferencing structure should now
begin to become evident. Basically, four types of knowledge are involved.
The first two consist of the general purpose axioms and inference rules of
first order predicate logic. The second two are developed for the particu-
lar environment being modeled and consist of "facts" from the database,
and generalizations about how to convert these facts into others. The
facts, as was seen, are statements which are generally conjuncts of predi-
cates applied to individual constants. The generalizations, on the other
hand, are typically universally quantified assertions involving variables.
Inferencing thus amounts to the application of these universal statements
to the particular fashion the database.

Inferences Involving Labels
(Physical Objects and Character Strings)

Remember that a label was defined as a character string associated
with a n object for identification purposes only. It carries no additional
information about the properties of the object. The amount of inferenc-
ing involving labels is theref ore fairly limited.

While labels are used for identification, there is no a priori assunp-
tion that a particular label identifies a unique individual, for instance,
many people may have the same last name. For those types of labels that
are uniquely designating within a given type of object, this may be stated
as an explicit axiom. For instance, in the earlier example database, the
label function ID$ had this property. This is stated:

t/(?x) v(?Y): [VEHICLE(?X) ~c VEHICLE~Y) & ID~(?x) & I D ~ (? Y)
--, ?X = ?Y.

Reading: f o r any two vehicles, x and y, if they have the same ID$, they are
the same object.

Unique identification is not always determined by a single label, but
sometimes by a conjunction of more than one. For example, an office
might be uniquely identified by a building code, BLDGb, and an office
number, 0-NUM$:

The values of label functions may interact in other ways with other
predicates. For instance, to state that any two people that are married
have the same last name:

t~ (?XI v(?Y): MARRIED(?x,?Y) LAST-NAME$(?X) = LAST-NAME$ (?Y) .

Inferences Involving Measurements
(Physical Objects and Numbers)

Numeric measurement is an extremely important type of data in
administrative environments and there are numerous types of inferences
that are useful. Indeed many numeric algorithms of management science
are essentially inferences based on numeric measurement of physical
objects.

A basic type of inference is conversion of units of measure. Recall
that units of measure appeared in the syntax here as special individual
constants marked with the prefix "63." Thus, conversion from weight in
pounds (Qlb) to kilograms (Qkg) is as follows:

Similarly, conversion from length in feet (~ f t) to length in meters
(am) is stated

t/(?X): LENGTH#(?X,Qm) = 3.28 * LENGTH#(?X, Bft) .

conversion from such elementary measures to derived ones can also
be stated. For instance, to calculate the volume of a cube in cubic cen-
timeters (Qcm3).

A very important type of measurement in administrative contexts
are monetary valuations. For instance, the historical cost of the object,
a, in dollars might be

More recent views in accounting, so-called "price-level accounting,"
recognize changes by year in the standard dollar used for valuation. Thus
the value of an object in, say, 1962 dollars is not the same as its value in
1978 dollars. To indicate this conversion, e.g., recognizing 40% inflation,
we could state:

Accounting provides a wealth of opportunities for inferences based
on numeric measurement. Indeed, an eventual objective of this line of
research is to represent accounting definitions and the varieties of mani-
pulations (e.g., FIFO vs LIFO inventory valuations, depreciation methods,
overhead allocations, variance analysis, etc.) in terms of the logical cal-
culus. This would enable the embedding of accounting knowledge in the
system itself, so that it could aid in revising calculations based on dif-
ferent assumptions and decision criteria. However, the more interesting

and challenging aspects accounting problems inevitably involve infer-
ences across time. Thus a fuller treatment of accounting is differed to a
later paper.

SEXANTIC ISSUES
As indicated in the introduction there were two goals of interpreting

a DM database in logical form: inferencing, which was just discussed, and
clarification of the semantics of the database, which we consider now.

A (DM) database is, as observed earlier, a type of formal language in
i tself-ie. , it is composed of symbols which are manipulated according to
certain rules. Also as mentioned above, a formal language has two com-
ponents: its s y n t a z , giving the vocabulary and rules describing permissi-
ble combinatons of this vocabulary, and its semantics , indicating the
phenomena which these expressions represent.

A principle shortcoming of the formalisms for DM databases, such as
the network and relational data models, is that they make explicit the
syntax of the database, but not its semantics.+

Simply translating the syntax of a database into a logical syntax does
not however resolve these semantic issues, but it does help to focus them.

The concept of semantics we are using here is called model theoretic
semantics or denotational semantics, and is due originally to Tarski (1931
and 1956).

MODEL THEORETIC SEMANTICS
The basic concept is that the references of the symbols in the formal

language are explained in terms mathematical sets of objects, called a
model of the formal language. The definition of these sets is agreed upon
extra-logically, that is outside of the formal language.

One-important set is called the set of truth values, V:

The denotation of a proposition or sentence is an element of V.
In discussing the FOPC language, -we introduced another set, the

universe of d k c o u ~ s e , We will call that set E, and as before assume that
this is the set of physical entities a t a given time.

The individual constants of the FOPC denote elements of E .
The one place predicates of the FOPC denote subsets of E.

* C1arificatio:n: "semantics" is sometimes used wi th regard to programming and query
languages t o indicate whd t h coznputer does in response to a symbolic command. Here we
mean "semantics" TI the linguistic sense-what the symbols in the database refer to h the
external environment.

The 2 to n place predicates of the FOPC denote two through n place
relations on E.

The 1 to n place (logical) functions of the FOPC denote one to n place
(mathematical) functions on E.

The variables of the FOPC range over the elements of E.
The quantifier Wu @(u) (for some variable u and formula @) is inter-

preted as a 'big conjunct' of propositions formed by substituting a con-
stant representing each element in E for u, i.e.,

where a, b, c, ... are names of elements of E.
The qualifier 3 u @(u) is correspondingly interpreted as a 'big dis-

junct,' i.e.,

The semantics for the FOPC applying to physical objects can there-
fore be described as the model (M):

where V is the set of truth values and E is the set of (physical) entities.
The symbol F is called an interpretation function. Its domain is the set of
symbols in the formal language and its range is the sets V,E. F therefore
provides the mappings from the individual constants, predicates, etc. to
elements, subsets, and relations on V and E. '

Following the presentation of the FOPC, we extend this to a 'multi-
sorted' logic, adding the sets of character strings and numbers to the
universe of discourse. Calling these sets respectively C and N, the seman-
tic model now takes the form:

Now individual constants refer to any element of E, C, or N, and
predicates refer to relations on the union of E , C , N.

FURTHER SEMANTIC EXTENSIONS
This paper has dealt with the introductory aspects to a broader for-

mal language, called CANDID (Lee 1980, 1981b), aimed at formal descrip-
tion of phenomena in administrative environments, again with the objec-
tive of providing a formal inferencing framework for managerial decision
support applications.

We here consider in summary form some additional semantic con-
siderations treated in more depth in that work.

1. Non-individualized Objects
The predicate calculus framework adopted here presumes that each

object in the universe can be individually named by a constant. This
causes no problems when dealing with 'middle-sized' objects such as per-
sons, vehicles, machines, etc. However, organizational environments are
also filled with smaller objects such as pencils, screws, nuts and bolts
which, while counted, are seldom named individually.

At an even lower level, granular solids, such as corn, wheat are also
commonplace, as are liquids, e.g., oil, water and even gases, e.g ., propane.

From a theoretical perspective, the formal treatment of such non-
individualized objects can be quite problematic. However, if we consider
the practical requirements in organizational settings, the problem is
quite simplified. The point is of course that organizations do not treat
these objects a t this small scale, but invariably raise them to a middle-
size scale using the device of a c o n t a i n e r -e.g. , a carton, drum, boxcar,
tanker, etc. which are in turn individually identified.

The contents of such containers is specified not by an enumeration
of individuals, but by a generic predicate describing the type of individu-
als contained (e.g., bolts, corn, propane) and a measurement predicate
indicating the size of the population it contains, e.g., as a simple count or
by other measures such as weight or volume.

The key point is that such individuals are regarded as inter-
substitutable in these environments and their separate identities do not
matter.

2. Time
Typically a DM database provides a sort of 'snapshot' model of the

organizational environmenti.e., the facts in the database are presumed
to be currently true in the environment.

A n obvious extension to the semantic framework is to introduce the
dimension of time, denoted say by the set T. Thus the

But we must be explicit as to which times are included in the set T.
Are this to be discrete units of time, e.g., days, or is time to be continu-
ous, consisting of infinitessimally small time points. The latter seems to
be the more descriptive, but again we confront the problem of how these
are individually named. However a practical solution is available, if we
again consider the requirements in organizational environments. The
situation, as it turns out, is somewhat analogous to that with granular and
liquid objects.

In organizations, it is difficult to choose any given time interval as an
adequate minimum. For most sales transactions, accuracy to a day is
probably adequate, but, for instance on the international stock and
money markets, transactions must be timed to the split second.

Thus, while the conception of time in organizations is essentially con-
tinuous, the identification of individual times is invariably made referring
to larger time chunks, what we call time spans. The Gregorian calendar
provides individual names for time spans down to the level of a day-e.g.,
12 October 1979, 18 May, 1990. Smaller time span units are provided by a
24 hours division of each such day (relative to a given time zone), and
further divisions are available as minutes, seconds, milli-seconds, etc.
Certain time points can be identified as the beginning and end points of
such time intervals. For instance,

14:56:32 12 July 1980, Greenwich Mean Time

names a particular time interval of one second. Two time points are the
beginning and ending of that internal.

Such a scheme does not name all the time points on a continuous
time dimension, but ori the other hand identifies all those that are ever
needed for describing commercial and financial activities.

A second problem regarding time is the length of the time dimen-
sion. If we consider the typical usage of DM databases, it is generally
accepted that they contain ' f ac t s l i . e . , descriptions which are true of the
environment.

Normally, in organizational contexts, assertions which pertain to the
future are not considered factual, but rather are conjectural (or proba-
bilistic) as with predictions; intentional, as with plans; or obligational, as
with contractual promises.

This suggests that the time dimension T in the semantic model of a
database contains only the times of the past up to the present. (Here we
have another problem for the present is a moving point. Let us therefore
consider only the semantic model of a snapshot of a database, for which
the time point "present" is fixed.)

By adding the time dimension, the predicates reflected in the data-
base, which formerly were interpreted as relations on E X C X N are now
relations on E X C X N X T. That is, they may have additional places refer-
ring to times reflectmg that they may be true of certain times, but not of
others.

This however raises a new issue with regard to the other sets E, C,
and N. The definition of the sets C and N was in terms of symbolic
objects, hence independent of time. However, the set E was defined as
the set of physical entities existing a t some specified time.

One particularly important tempcral aspect of organizational
activity, especially in manufacturing, is that certain objects (products)
are created while others (materials) are destroyed. This suggests that we
must explicitly recognize existen.ce as a predicate in the formal language.
Correspondingly, the definition of the set E must be modified to include
not just presently existing individuals, but any previously existing indivi-
duals as well.

3. Non-Physical Objects
So far we have maintained the assumption that the set E, of entities,

comprises only identifiable physical objects. The reason for this, as dis-
cussed earlier, is that physical objects provide a reasonably uncontrover-
sial basis for consensual identification of individuals. That is to say, if the
formal language we construct is to achieve clarity and exactness of com-
munication between user and machine, and via the machine between a
larger community of users, it is essential that the elementary objects
described in the language can be mutually and unambiguously identified
by all parties involved.

However, this may seem to exclude a wide number of fundamentally
important, though not physical, objects in administrative life. For
instance, budgets, bank accounts, insurance policies, etc. are all exam-
ples of non-physical objects.

These might be viewed as special cases of a still broader class of
abstract objects including for instance colors, theories, emotions, etc.
The problem with admitting such objects into the formal language is that
one loses all consensus of identification of individuals. (This has been a
philosophical chestnut since the time of Aristotle. Strawson (1963), pro-
vides a useful discussion.) For example, contrast the questions: "How
many children did Einstein have?" and "How many theories did Einstein
have?" Presumably, an arbitrary group of people could agree on the
answer to the first question given sufficient evidence. For the second,
however, one would expect more disagreement, even given great amounts
of factual material.

However, given the administrative orientation of the formal
languages under discussion here, we can give a formal treatment to cer-
tain apparently abstract objects without 'throwing out the baby with the
bathwat er.'

Among these objects would be such examples as
accounts receivable
accounts payable
employment contacts
sales contracts
loans
bonds
stocks
insurance policies
budgets
etc.

A common feature in these kinds of objects is that they each contain
an underlying aspect of obligation or permission. These are concepts for-
malized in a so-called deontic logic (see, for instance, von Wright 1968.)
The extension of deontic logic to the modeling of administrative
phenomena is discussed in detail in Lee (1981a).

A basic feature in the description of such commitments is that they
are a relationship between two parties that involves a scenario of some
future state of the world (i.e., describing the .promised actions on both
sides). Further, there may be alternative scenarios, as is the case with

contingent commitments (e.g., insurance) and penalty clauses.
The formal construct for dealing with this of description is called in

philosophy and linguistics a "possible world," and its basic function in a
formal language is to provide a locus of description for sets of hypotheti-
cal or counter factual assertions. This has been a tremendously powerful
concept in formal linguistics for analyzing all types of sentences involving
belief, wishing, hoping, imagining, etc.

In the formal description of commitments, the scenario is described
as a series of facts true in a certain possible world. This world is then
later 'actualized' or not according to the commitment being fulfilled or
not. For additional background on possible worlds semantics, see Cress-
well (1973) and Dowty (1978).

Possible worlds are added to the semantic model as the set W (of
worlds). The sets in the model are therefore as follows:

where
V = truth values
E = entities
C = character strings
N = numbers
T = times
W = possible worlds
F = interpretation function.

The focus of t h s paper has been to show how data management type
databases can be interpreted in a formal, logical language. The motiva-
tion of this reformulation was to provide a formal basis for artificially
intelligent managerial decision support systems. Specific advantages d s -
cussed were the capability to do logical inferencing on the contents of
such databases and a framework for elaborating an explicit semantics for
the symbols in the database.

REFERENCES

Anthony, R.B. 1965. Planning and Control Systems. Boston: Division of
Research, Graduate School of Business Administration, Harvard
University.

Codd, E.F. 1970. A Relational Model of Data for Large Shared Data Banks.
Communicat ions of the ACM 13(June):377-387.

Codd, E.F. 1971. A Data Base Sublanguage Founded on the Relational Cal-
culus. Proceedings of ACM SIGFIDET Workshop on Data Description,
Access, and Control, San Diego, California.

Cresswell, M.J. 1973. Logics and languages. London: Nethuen & Co. Ltd.

Date, C.J. 1977. An Introduction to Database Systems. Second Edition.
Reading , Massachusetts: Addison-Wesley Publishing Co.

Dowty, P.R. 1978. A Guide to Montague's PTQ. Indiana: Indiana Univer-
s ity Linguistics Club.

Kalish, D, R. Montague, and G. Mar. 1964 and 1980. Logic-Techniques of
Formal Reasoning. New York: Harcourt Brace Jovanovich Inc.

Lee, R.M. 1980. CANDID4 Logical Calculus for Describing Financial Con-
tracts. Philadelphia, Pennsylvania: Department of Decision Sci-
ences, The Wharton School, University of Pennsylvania.

Lee, R.M. 1981a. A Formal Description of Contractual Commitment. WP-
81-156. Laxenburg, Austria: International Institute for Applied Sys-
tems Analysis.

Lee, R.M. 1981b. CANDID Description of Commercial and Financial Con-
c epts: A Formal Semantics Approach to Knowledge Representation.
Forthcoming WP. Laxenburg, Austria: International Institute for
Applied Systems Analysis.

Quillian, M.R. 1968. Semantic Memory. In Semantic Information Process-
ing. pp. 227-268. Cambridge, Massachusetts: MIT Press.

Smith, J.M. and D.C.P. Smith. 1977. Database Abstractions: Aggregation
and Generalization. ACM Transactions on Database Systems
2(June): 105-133.

Strawson, P.F. 1963. Individuals-An Essay in Descriptive Metaphysics.
Garden City, N.Y.: Doubleday and Co.

Suppes, P. 1957. Introduction to Logic. New York: Van Nostrand Co.

Tarski, A.N. 1931 and 1956. Logic, Semantics, Metamathematics. Oxford:
Oxford University Press.

von Wright, G.H. 1968. An Essay in Deontic Logic and the General Theory
of Action. Ac ta Philosophica Fennica, Fasc. XXI. Amsterdam: North
Holland Publishing Co.

