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Abstract  

Species-rich plant communities have been shown to be more productive and to exhibit 

increased long-term soil organic carbon (SOC) storage. Soil microorganisms are central to 

the conversion of plant organic matter into SOC, yet the relationship between plant diversity, 

soil microbial growth, turnover as well as carbon use efficiency (CUE) and SOC 

accumulation is unknown. As heterotrophic soil microbes are primarily carbon limited, it is 

important to understand how they respond to increased plant-derived carbon inputs at higher 

plant species richness (PSR). We used the long-term grassland biodiversity experiment in 

Jena, Germany, to examine how microbial physiology responds to changes in plant diversity 

and how this affects SOC content. The Jena Experiment considers different numbers of 

species (1-60), functional groups (1-4) as well as functional identity (small herbs, tall herbs, 

grasses and legumes). We found that plant species richness (PSR) accelerated microbial 

growth and turnover and increased microbial biomass and necromass. Plant species richness 

also accelerated microbial respiration, but this effect was less strong than for microbial 

growth. In contrast, PSR did not affect microbial CUE or biomass-specific respiration. 



A
cc

ep
te

d
 A

rt
ic

le
 

This article is protected by copyright. All rights reserved. 

Structural equation models (SEMs) revealed that PSR had direct positive effects on root 

biomass, and thereby on microbial growth and microbial biomass carbon. Finally, PSR 

increased SOC content via its positive influence on microbial biomass carbon.  

We suggest that PSR favors faster rates of microbial growth and turnover, likely due to 

greater plant productivity, resulting in higher amounts of microbial biomass and necromass 

that translate into the observed increase in SOC. We thus identify the microbial mechanism 

linking species-rich plant communities to a carbon cycle process of importance to Earth’s 

climate system. 

 

Introduction 

Biodiversity loss through anthropogenic changes in the global environment is threatening 

ecosystem functions and services. Grassland ecosystems are predicted to experience most 

biodiversity losses as a consequence of land-use change, such as the conversion of grasslands 

into croplands (Sala et al., 2000) and recent studies revealed concomitant negative impacts on 

soil carbon cycling (Chen & Chen, 2019; Tang et al., 2019). Terrestrial ecosystems store 

most organic carbon in soils where it has the potential to become stable soil carbon and thus 

can be sequestered for longer time periods.  

Globally, terrestrial carbon storage is dominated by forests (39% of the total terrestrial 

organic carbon stored in forest soils and vegetation), but grasslands also contribute 

substantially (34% of the total terrestrial carbon) as they cover a large part of the worlds 

landmass, with ~53 x 10
6
 km

2
 grassland area vs. ~29 x 10

6
 km

2
 forest area (White, Murray, & 

Rohweder, 2000). Soil organic carbon represents the largest carbon reservoir in global 

grasslands, with up to 98% carbon stored belowground (Hungate et al., 1997). As such, 
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understanding the mechanisms that sustain grassland SOC storage is of utmost importance for 

estimating the potential of grasslands to reduce atmospheric carbon dioxide (CO2) 

concentrations and mitigate feedbacks from the biosphere to the climate system. 

Plant diversity is increasingly recognized to be central to grassland SOC storage, with 

observations from biodiversity experiments demonstrating clear links between plant diversity, 

primary productivity and ecosystem carbon cycling (Cong et al., 2014; De Deyn et al., 2011; 

Fornara & Tilman, 2008; Lange et al., 2015; Naeem, Thompson, Lawler, Lawton, & 

Woodfin, 1994).   

Hereafter, we use plant diversity as a term to describe both plant species number and 

functional composition, and specify when referring specifically to PSR, functional group 

richness or functional group identity. Higher aboveground plant productivity as a 

consequence of increased plant diversity is usually also accompanied by increased 

belowground plant biomass production, although the latter may occur only after a delay 

(Cong et al., 2014; Fornara & Tilman, 2008; Ravenek et al., 2014). However, while there is 

evidence that increasing plant diversity translates into greater aboveground primary 

productivity (Roscher et al., 2005; Spehn et al., 2005; Tilman, Wedin, & Knops, 1996), few 

studies have investigated the mechanisms linking plant diversity and plant productivity with 

SOC dynamics. This is partly due to the paucity of long-term biodiversity experiments that 

allow for exploration of typically slow changes to SOC storage. Indeed, we are aware of only 

four of such grassland biodiversity experiments globally. Studies from these experiments 

have consistently shown positive effects of plant diversity on SOC storage, and have largely 

ascribed this to increased rhizosphere carbon inputs (Cong et al., 2014; De Deyn et al., 2011; 

Fornara & Tilman, 2008; Lange et al., 2015; Steinbeiss, Bessler, et al., 2008). Yet how this 

mechanism is linked to microbial carbon processing has rarely been empirically tested, 
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limiting our ability to implement microbial carbon dynamics in climate-carbon models and 

dynamic global vegetation models (Crowther et al., 2016). 

The build-up of organic carbon ultimately depends on the balance between carbon inputs and 

outputs from the system, which is determined by plant biomass production, and SOC 

formation and decomposition, and is therefore, to a high degree, governed by the activity of 

soil microbes. Most plant-derived carbon is taken up by soil microbes and used to either 

generate energy (and thus CO2) or generate biomass. After death, microbial necromass 

becomes part of the non-living soil organic matter pool (Miltner, Bombach, Schmidt-

Brucken, & Kastner, 2012). Estimates of the proportion of microbially-derived carbon 

transformed into non-living SOC range from 40% (Kindler, Miltner, Richnow, & Kastner, 

2006) to 80% (Liang & Balser, 2011),  but the role of necromass carbon for SOC build-up is 

not well tested in the context of changing PSR. It is therefore important to distinguish 

between microbial catabolic and anabolic pathways in order to disentangle their specific 

contributions to SOC accumulation. One way to synthesize microbial physiology is the 

widely used metric of microbial CUE, which describes the efficiency by which microbes 

convert organic carbon into growth (Manzoni, Taylor, Richter, Porporato, & Agren, 2012; 

Sinsabaugh, Manzoni, Moorhead, & Richter, 2013). When incorporated into microbial 

biomass, carbon has the potential to become part of the soil organic matter pool and can 

reside in soils for longer time periods. Accordingly, a high microbial CUE favors SOC 

storage, though other physiological characteristics of the soil microbial community like 

microbial growth and turnover may equally promote SOC accumulation. Moreover, microbial 

CUE was shown to scale positively with microbial growth (Zheng et al., 2019) and to be 

maximized at highest growth rates (Manzoni et al., 2017). Nevertheless, despite the general 

importance of these microbial processes to SOC accumulation, their relationships with plant 

diversity are almost entirely unknown. 
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In this study we explicitly addressed the question of how soil microbial physiology responds 

to increasing plant diversity. Plant species richness, functional group richness and functional 

composition have all been shown to promote aboveground and belowground plant 

productivity in the Jena Experiment (Marquard et al., 2009; Ravenek et al., 2014). However, 

increases in root biomass were more strongly determined by PSR than by functional group 

richness (Ravenek et al., 2014) and further led to greater rhizosphere carbon inputs in high 

diversity plant communities (Chen et al., 2017; Lange et al., 2015). We here focus on how 

microbial activity impacts the transformation of detrital organic material to unravel the causal 

physiological pathways through which soil microbes promote SOC accumulation (Figure 1).  

Specifically, we used the long-term biodiversity experiment in Jena (Roscher et al., 2004) to 

measure gross rates of microbial community growth, turnover and CUE in grassland plots 

differing in plant diversity. Plant diversity was considered in three metrics: PSR (1, 2, 4, 8, 16 

and 60 plant species); plant functional group richness (1, 2, 3 and 4 plant functional groups, 

composed of grasses, legumes, small herbs and tall herbs); and plant functional group identity 

(the presence/absence of a certain plant functional group). As depicted in figure 1 we 

hypothesized (i) that microbial growth and turnover rates would increase with increasing 

PSR, resulting in higher amounts of microbial biomass and necromass that in turn lead to 

SOC accumulation; (ii) that higher PSR would increase microbial growth more than 

respiration, correspondingly promoting microbial CUE and leading to increased SOC storage. 

 

Material and methods 

Study site and experimental design 

This study was performed in the long-term plant diversity grassland experiment in Jena, 

Germany (50°55’ N, 11°35’ E; 130 m above sea level). The field site is located on an upland 
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area of the floodplain of the River Saale, with a mean annual temperature of 9.1 °C and mean 

annual precipitation of 610 mm (1980-2010) (Hoffmann, Bivour, Früh, Koßmann, & Voß, 

2014). The experiment was created in 2002 on a former arable field that had been under 

continuous cropland management for more than 40 years. The soil was classified as Eutric 

Fluvisol (FAO-UNESCO, 1997) and changes markedly in texture from sandy loam to silty 

clay with increasing distance from the river (Steinbeiss, Temperton, & Gleixner, 2008). The 

experimental design is described in detail by Roscher et al. (2004). Briefly, the study site 

consists of 82 plots (20 m x 20 m) that differ in levels of sown PSR (1, 2, 4, 8, 16, 60 species) 

and plant functional group richness (1, 2, 3, 4 functional groups out of grasses, small herbs, 

tall herbs, legumes). The plots are arranged in a randomized block design with four blocks 

arranged to account for edaphic variations that arise as a consequence of the changing soil 

texture mentioned above. Each of the blocks represents a subset of the complete design and 

covers the whole range of PSR and plant functional group richness, including one bare plot 

with no vegetation. The grassland plants were chosen from a 60-species pool, representing 

species typical for semi-natural, species-rich mesophilic Molinio-Arrhenatheretea meadows 

(Ellenberg & Leuschner, 2010). The management of the field site is adapted to extensive hay 

meadows, with two mowings per year and no fertilizer application. In order to ensure that 

only target species develop, all plots are weeded by hand three times per year.  

 

Soil sampling and analyses 

Soil samples were taken in September 2015 from all plots (N = 85; one monoculture plot was 

abandoned because of poor plant performance). Bare plots were excluded from later data 

evaluations as we were primarily interested in plant diversity effects and not in differences 

between bare and vegetated plots, leaving 81 plots for further analysis. Five soil cores 
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(diameter 2.5 cm) were taken from each plot to a depth of 10 cm, pooled to make one 

composite sample and sieved to 2 mm. Fine roots (< 2 mm) were removed by hand, washed, 

dried at 65 °C for 24 hours and weighed. Fresh sieved soil samples were kept at 15 °C (in situ 

soil temperature) for three days prior to analyses. Soil samples were dried at 105 °C for 24 

hours to determine gravimetric soil water content. Dried samples were then ground with a 

ball mill (MM2000, Retsch, Germany) and analyzed for total carbon and nitrogen content by 

an elemental analyzer (EA 1110; CE Instruments, Italy). Soil organic carbon content was 

determined from samples pre-treated with 2 M HCl prior to drying and grinding to remove 

carbonates. For determination of root carbon content and root carbon to nitrogen ratios, fine 

root dry mass was treated identically to the dried soil samples, i.e. ground and measured by 

an elemental analyzer. We calculated root carbon mass per area (in g root-C m
-2

) that 

hereafter is referred to as root biomass carbon. Given the focus here on soil carbon dynamics 

all important carbon pools and processes are given as carbon equivalents. 

Soil extractable carbon and nitrogen pools were determined by extraction of 4 g fresh soil 

with 30 mL 1 M KCl, shaken for 30 minutes and filtered through ash-free cellulose filters. To 

determine total dissolved organic carbon 1 M KCl soil extracts were analyzed using a 

TOC/TN analyzer (Shimadzu TOC-VCPH with TNM-1 and ASI Autosampler, Shimadzu, 

Korneuburg, Austria). Microbial biomass carbon content (hereafter used synonymously with 

microbial biomass) was determined using the chloroform fumigation-extraction (CFE) 

method (Schinner, Öhlinger, Kandeler, & Margesin, 1996). The fumigation was performed in 

parallel to 
18

O-water incubation and DNA extraction of soil samples for accurate 

determination of the factor converting microbial DNA into microbial biomass (fDNA, see 

below). Microbial biomass carbon concentrations were determined as the difference between 

fumigated and unfumigated soil samples measured by the TOC/TN analyzer by using an 

extraction factor kEC of 0.45 (Jenkinson, Brookes, & Powlson, 2004). Soil DNA content and 
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microbial biomass carbon measured by CFE were demonstrated to be strongly positively 

correlated (Marstorp, Guan, & Gong, 2000; Widmer, Rasche, Hartmann, & Fliessbach, 

2006), indicating that these two methods are equivalent to estimating soil microbial biomass. 

Soil microbial necromass was quantified by acid hydrolysis of soils (50 mg) with 4 M 

methane sulfonic acid (2 mL) and high performance anion-exchange chromatography with 

pulsed amperometric detection (Dionex ICS 3000, Vienna, Austria), following separation of 

amino acids and amino sugars on a PA20 column. The HPLC gradient used was adapted from 

Martens and Loeffelmann (2003). Calculation of bacterial and fungal necromass followed the 

protocol proposed by Appuhn and Joergensen (2006). In brief, given a molar ratio of 

muramic acid and glucosamine of 1:1 in bacterial cell walls, we subtracted bacterial 

glucosamine from total glucosamine yielding fungal glucosamine. To obtain bacterial and 

fungal necromass carbon, bacterial-borne muramic acid was multiplied with an average 

conversion factor of 45 and fungal glucosamine was multiplied by 9 (Appuhn & Joergensen, 

2006). 

Gross rates of growth and turnover of microbial biomass, as well as microbial CUE, were 

determined based on the incorporation of isotopically labeled oxygen (
18

O) from 
18

O-labeled 

water into microbial genomic DNA (double stranded DNA, dsDNA) and concurrent 

measurements of basal respiration (Spohn, Klaus, Wanek, & Richter, 2016; Walker et al., 

2018; Zheng et al., 2019). Specifically, soil samples were incubated with 
18

O-labeled water 

(97 at%
18

O, Campro Scientific) for 24 hours and thereafter the 
18

O abundance and the total O 

content of the DNA were measured using a thermochemical elemental analyzer (TC/EA 

Thermo Fisher) coupled to an IRMS (Delta V Advantage, Thermo Fisher). In parallel, soil 

samples amended with the same volume of non-labeled water were incubated for the same 

time period to serve as natural 
18

O abundance (NA) controls. DNA of 
18

O labeled and 

unlabeled samples was extracted (FastDNA
TM

 SPIN Kit for Soil, MP Biomedicals) and its 
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concentration was determined fluorimetrically (Sandaa, Enger, & Torsvik, 1998) using a 

PicoGreen assay (Quant-iT
TM

 PicoGreen® dsDNA Reagent, Life Technologies).  After 24 

hours of incubation, gas samples were taken from each sample and the CO2 concentrations 

measured by a Gas GC (Trace GC Ultra, Thermo Fischer, Waltham, USA) to determine 

microbial respiration.  

                            
     

     
  

    

    
            

Here t (h) is the incubation time, p is the atmosphere pressure (kPa), n is the molecular mass 

of the element C (12.01 g mol
-1

), R is the ideal gas constant (8.314 J mol
-1

 K
-1

), and T is the 

absolute temperature of the gas (295.15 K). Vhs is the volume (L) of the head space vials. 

DCO2 (ppm) is the increase in CO2 concentration produced during the 24 h incubation period. 

Newly formed DNA was quantified by multiplying sample O content by the 
18

O excess of 

DNA relative to the natural abundance of 
18

O in DNA measured in control samples. A DNA-

oxygen content of 31.21% was applied to estimate the dsDNA formed by microbial growth 

during the incubation period.  

                       
         

   
 

   

        
 

   

     
 

Ototal is the total O content (µg) of the dried DNA extract, at%excess is the at% excess 
18

O of 

the labeled sample compared to the mean at% 
18

O of NA samples, 31.21% is the DNA-

oxygen content, and at%label is the 
18

O enrichment of soil water. 

Then for each sample, a conversion factor (fDNA) was applied to translate the concentration of 

DNA produced during the incubation period into microbial biomass carbon production over 

24 hours. The conversion factor was obtained by dividing the microbial biomass carbon 

content of each sample by its corresponding DNA content (both in µg g
-1

 soil DW).  
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DW is the dry mass of soil in grams and t is the incubation time in hours. 

The amount of carbon taken up by microbial biomass was calculated as the sum of microbial 

growth and respiration.  

                                            

We also expressed respiration, growth and carbon uptake on a microbial biomass basis to 

obtain biomass-specific respiration, growth and carbon uptake. Under steady state conditions 

where microbial biomass does not change (e.g. over 24 hours), biomass-specific growth is 

equivalent to microbial biomass turnover rate, and its inverse corresponds to microbial 

biomass turnover time. Finally, microbial CUE was calculated by the following equation 

(Manzoni et al., 2012; Sinsabaugh et al., 2013): 

    
       

                      
 

where Cgrowth is the carbon allocated to microbial biomass production, i.e. microbial growth, 

and Crespiration is the organic carbon respired to CO2.  

 

Statistics  

Statistical analyses were performed using the software R version 3.1.3 (R Core Team 2015). 

Where necessary, data were transformed to meet model assumptions and rechecked for 

linearity prior to statistical analysis. Statistics are based on sown PSR which was the 

experimental treatment factor, with the only exception being piecewise SEM (see below) for 

which we obtained data on realized PSR, but no records of plant species composition, for the 
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year 2015. This approach was supported by the fact that sown and realized PSR were very 

strongly correlated (P < 0.001, R
2
 = 0.95).  

We tested for effects of PSR (log-transformed for linearity), plant functional group richness 

and plant functional group identity on all measured soil, plant, and microbial related variables 

using linear mixed effect models (LMMs) with the lme function in the nlme package 

(Pinheiro, Bates, DebRoy, Sarkar, & team, 2017), including block as a random intercept. We 

added fixed factors plant species richness (log-transformed) and plant functional group 

richness sequentially, with plant functional group identity effects tested in models already 

containing block, plant species richness und plant functional group richness. Significance was 

determined using likelihood ratio tests (L) including and excluding explanatory terms. We 

explored associations between response variables using a Pearson correlation matrix with the 

package Hmisc (Harrell Jr & Dupont, 2016). Block effects were corrected prior to correlation 

analysis, by first calculating block means and the grand mean across all blocks. The 

difference in block mean to the grand mean was then added to each individual value within 

the block. 

By combining correlation and LMM results with pre-existing knowledge of the experiment, 

we established a conceptual model of PSR effects on SOC to be tested (Figure 1). We used 

path analysis to combine multiple linear models into a single causal network in which 

variables could act as both predictors and responses (Lefcheck, 2016; Shipley, 2009). For this 

analysis we used directed acyclic/piecewise structural equation modeling (SEM) using the 

packages nlme and piecewiseSEM (Lefcheck, 2016; Pinheiro et al., 2017). The piecewise 

SEM approach is more flexible than the traditional variance-covariance SEM as it enables 

fitting of LMMs to a range of distributions.  The overall model fit was assessed using 

Shipley’s test of directed separation, for which a good model fit is obtained when Fisher’s C 

is statistically non-significant (P > 0.05) (Shipley, 2009). Further, as the piecewiseSEM 
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package reports missing or incomplete pathways, such pathways were tested in parallel 

models and included in the model if the respective pathway was statistically significant (P < 

0.05) and mechanistically meaningful. Non-significant pathways (if missing or not) were 

generally excluded.  Models constructed in this manner differ only in the linkage of pathways 

but contain the same dataset and thus can be compared using the Akaike information criterion 

(AIC) and the AICc (for small sample sizes). Path coefficients were standardized (β-

coefficients) to enable comparisons across responses of varying units and finally conditional 

(Rc
2
, all factors) and marginal (Rm

2
, fixed factors only) coefficients of determination were 

reported for each LMM. 

As our conceptual model did not produce a SEM with an adequate fit, we tested other related 

model structures as follows. First, we excluded microbial CUE, which is fully numerically 

derived from microbial growth and respiration, did not significantly explain the target 

variables in the SEM and did not respond to PSR in the LMM. Second, though microbial 

turnover increased with PSR in the LMM and may partially explain increases in microbial 

necromass and SOC, SEMs including microbial biomass and microbial turnover did not work 

out and we therefore omitted microbial turnover in the final SEM. Third, we removed 

bacterial necromass since it did not respond to changes in either PSR or functional group 

richness (see LMM results). Finally, though microbial (fungal) necromass positively 

responded to PSR in the LMM it was not significantly linked to SOC storage in SEM models 

containing microbial biomass and was therefore omitted from the final SEM (but see figure 

S3). The strong link between microbial biomass and SOC storage therefore masked any other 

possible and causally linked intermediate drivers such as microbial turnover and necromass. 

In an additional attempt we therefore ran SEM structures that excluded microbial biomass but 

included microbial (fungal) necromass. 
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The resulting final model was tested for both sown and realized PSR (figure S2). In addition, 

we tested the final model (Figure 3) with sown PSR plus downstream diversity metrics (i.e. 

functional group richness and presence/absence of specific functional groups) to enable 

comparisons with the SEM containing PSR only (Figure S4). One shortcoming of the 

piecewise SEM approach is the impossibility of implementing bidirectional relationships. We 

thus reanalyzed our final piecewise model using the traditional SEM technique (Grace, 2006). 

For this, variables were block-corrected analogous to the data used for the correlation matrix 

prior to model construction with the lavaan package (Rosseel, 2012). The overall model 

goodness-of-fit statistic is based on a χ
2
 distribution with a good model fit being indicated by 

an insignificant (P > 0.05) test statistics. To describe the extent of match between the 

specified model and the sample covariance matrix we followed the 2-index strategy proposed 

by Hu and Bentler (1999) and reported the root mean square error of approximation 

(RMSEA) and its 90% confidence intervals (CI90)  (Steiger & Lind, 1980), together with the 

standardized root mean square residual (SRMR). These absolute fit indices are approximate 

“badness-of-fit” measures that indicate worsening absolute fits as the index value increases. 

An indication for good model-data fit is reached when RMSEA ≤ 0.06 and SRMR ≤ 0.08 (Hu 

& Bentler, 1999). Both the piecewise and the variance-covariance SEM approach further 

enabled the determination of indirect effects (i.e. the relationship between two variables 

caused by one or more mediating variables) by multiplying the standardized path coefficients 

of the respective pathways to give indirect effect strengths. 
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Results  

Plant species richness effects  

Increases in PSR positively influenced most measured soil physicochemical, plant and 

microbial related parameters (Table 1 and 2, Figure 2). Soil organic carbon and dissolved 

organic carbon content were significantly positively affected by PSR (P < 0.001 and P = 

0.043 respectively, Table 2). Soil organic carbon concentrations increased by 29% from 

monocultures to plots containing 60 plant species (Table 1, Figure 2a). Belowground plant 

carbon (root biomass carbon per area) and root carbon to nitrogen ratios increased with 

increasing PSR (P < 0.001 and P = 0.094, Table 2), though the latter only showed a trend, not 

a significant response (P ≤ 0.10). The strongest effect of PSR on soil microbial parameters 

was on microbial biomass, which increased by 58% from PSR values of one to 60 (Table 1, 

Figure 2g). This result was accompanied by increased microbial activity, in terms of 

respiration, growth and carbon uptake with increasing PSR (P = 0.008, P < 0.001 and P < 

0.001, Table 2). However, the response of microbial growth was more pronounced than the 

response of microbial respiration. Specifically, microbial growth increased 2-fold from 

monoculture plots to 60 species plots, whereas respiration increased only 1.5-fold (Table 1, 

Figure 2c and 2d respectively). Not only soil-mass based microbial growth but also biomass-

specific growth increased significantly with PSR (P = 0.019, Table 2; Figure 2f). 

Accordingly, microbial turnover time decreased with increasing PSR, thus indicating an 

acceleration of microbial proliferation, growth and death. The latter was confirmed by an 

increase in microbial necromass carbon at higher levels of PSR (P < 0.001, Table 2; Figure 

2h). While fungal necromass carbon significantly increased, bacterial necromass carbon did 

not show significant changes over the range of plant species richness levels (P < 0.001 and P 

= 0.116 respectively, Table 2), effectively causing increases in fungal: bacterial necromass 

ratios (Figure 2i). Other parameters representing different aspects of microbial physiology, 
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including biomass-specific respiration rates, biomass-specific organic carbon uptake and 

microbial CUE did not significantly respond to manipulations of plant species richness (P = 

0.331, P = 0.710 and P = 0.104, Table 2).  

The substantial increase in SOC with increasing PSR and the concomitant greater microbial 

biomass was reflected in a significant and highly positive correlation between microbial 

biomass and SOC (r = 0.76, P < 0.001, Table 3). Moreover, root carbon, microbial growth 

and microbial necromass carbon were also strongly positively related to SOC (r = 0.41, r = 

0.40 and r = 0.41 respectively, P < 0.001, Table 3).   

Applying path analysis, performed by piecewise SEM, the best-fitting SEM adequately fitted 

the data (C14 = 11.36, P = 0.657, AIC = 57.36, AICc = 76.73, Figure 3). In this model, (log-

transformed) PSR positively affected microbial growth, both directly (β = 0.25) and 

indirectly via root carbon input (β = 0.15). At the same time, PSR promoted microbial 

biomass directly (β = 0.42) and indirectly through microbial growth and root carbon input. 

However, growth had a stronger indirect effect (β = 0.09) on microbial biomass than root 

carbon (β = 0.06). In contrast, SOC was only associated with microbial biomass, which had a 

significant positive effect (β = 0.68). Respiration showed no significant relationships with 

either microbial biomass or SOC, but was significantly positively affected by microbial 

growth. To account for the strong positive correlation between growth and microbial biomass 

(r = 0.65, p < 0.001, Table 3) we constructed the same model with the traditional variance-

covariance SEM approach (Figure S1). Even though this approach did not allow 

implementation of LMMs it enabled us to consider bidirectional relationships of endogenous 

variables by calculating their shared variance (residual variance), which we did for microbial 

growth and biomass. Overall, this analysis reproduced the data well (χ
2
6 = 5.25, P = 0.513; 

RMSEA = 0.000 CI90 (0.000; 0.134), SRMR = 0.035) and yielded similar results to the 



A
cc

ep
te

d
 A

rt
ic

le
 

This article is protected by copyright. All rights reserved. 

piecewise SEM. Nevertheless, the piecewise approach explained a larger proportion of 

variance due to its ability to incorporate random effects (Rc
2
).   

The piecewise SEM using realized PSR (Figure S2) was very similar to the model using 

sown PSR and resulted in the same significant paths and overall model structure. Replacing 

microbial biomass by fungal necromass in the final model (Figure S3b) explained SOC to a 

smaller proportion of variance and fungal necromass was solely driven by PSR.  

The SEM including PSR plus functional group richness revealed PSR to be of greater 

importance for the microbially mediated SOC build-up. This is because PSR directly and 

indirectly promoted microbial biomass more than functional group richness, which only had a 

direct and weaker effect on microbial biomass (Figure S4e). Models testing for effects of 

functional group identity indicated that legumes adversely affected microbial biomass 

through negative effects on root biomass (Figure S4a), whereas the contrasting was true for 

grasses (Figure S4b). Both small herbs and tall herbs were not linked to root biomass (Figure 

S4c, S4d). However, small herbs promoted microbially mediated SOC accumulation through 

positive effects on microbial growth and biomass (Figure S4c), while this was not the case for 

tall herbs (Figure S4d). 

 

Plant functional group richness effects 

The only parameter that was affected by plant functional group richness was microbial 

biomass, which significantly increased with increasing plant functional group richness after 

accounting for species richness effects (P = 0.023, Table 1). The majority of parameters 

analyzed that showed a significant response to changes in plant diversity when PSR was 

fitted before functional group richness in the model remained significant when the latter was 
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fitted first (Table S1). The exceptions to this were DOC and root carbon to nitrogen ratio, 

where the significant PSR effect was eliminated if plant functional group richness was 

included first (P = 0.199 and P = 0.410 respectively, Table S1). These findings indicate that 

the effects of PSR generally exceeded those of plant functional group richness on the soil 

microbial system.  

 

Plant functional group identity effects 

We found contrasting effects of grasses and legumes on many of the parameters analyzed 

(Table 1), and this was most striking for root carbon and root carbon to nitrogen ratios. 

Specifically, while grasses significantly increased root carbon and carbon to nitrogen ratio (P 

= 0.020 and P < 0.001, Table 1), legumes had a significant negative effect (P < 0.001 and P < 

0.001, Table 1). Furthermore, the presence of grasses increased DOC content, biomass-

specific growth and microbial necromass carbon (P = 0.032, P = 0.087 and P = 0.008, Table 

1), whereas legumes again showed the opposite effect (P = 0.003, P = 0.056 and P = 0.067, 

Table 1). Concordant with effects on biomass-specific growth, microbial turnover time 

decreased in the presence of grasses and increased in the presence of legumes. Legumes also 

had a negative impact on microbial biomass and microbial growth (P = 0.002 and P = 0.013 

respectively, Table1), but these variables were additionally positively affected by the 

functional group of small herbs (P = 0.004 and P = 0.039, Table 1). Finally, small herbs had a 

significant positive effect on SOC content (P = 0.012, Table 1). Tall herbs did not exhibit any 

significant impact on measured parameters (Table 1).  
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Discussion 

Species-rich grasslands are fundamental for many ecosystem processes and services and are 

important for increasing the carbon storage of terrestrial ecosystems (Hungate et al., 2017). 

Higher SOC storage is believed to be either due to greater plant inputs and/or due to lower 

losses of organic carbon at high levels of plant diversity, the latter of which reflects a higher 

efficiency of soil microbial carbon cycling. We found here that increasing PSR promoted 

microbial biomass both directly and indirectly through higher plant carbon inputs (as 

indicated by higher root carbon mass per area) and faster microbial growth. This increase in 

microbial biomass was, in turn, mechanistically coupled to the build-up of SOC, as shown by 

piecewise SEM. Moreover, microbial turnover rates increased with increasing PSR, which 

most likely triggered increases in microbial necromass and thus contributed to the higher 

SOC content found in species-rich plant communities. Although these connections could not 

be demonstrated in a single common SEM, fungal necromass significantly determined SOC 

in a reduced structure of the SEM (Figure S3b). In contrast, changes in microbial respiration 

or CUE were not causally linked to the increase in SOC content with increasing PSR.   

The established positive relationship between plant diversity and productivity is commonly 

coupled with increased aboveground living and dead plant biomass, as well as with higher 

belowground biomass production and root exudation (El Moujahid et al., 2017; Fornara & 

Tilman, 2008; Ravenek et al., 2014; Roscher et al., 2005). Root biomass and root-associated 

products, such as belowground litter and root exudates, are the main form of carbon input 

into soils and represent important carbon sources for soil microbes. Greater root inputs into 

soils, however, can trigger decreases (Steinbeiss, Temperton, et al., 2008) or increases in 

SOC storage (Xu, Liu, & Sayer, 2013), depending on responses of microbial carbon 

metabolism and the extend of rhizosphere priming effects. Our findings of higher microbial 

biomass and activity in response to increasing PSR concomitant with increased belowground 
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carbon input as evidenced by a higher root biomass carbon is in line with earlier studies from 

the Jena Experiment (Eisenhauer et al., 2010; Lange et al., 2015; Strecker et al., 2015). 

However, when splitting overall “microbial activity” into anabolic and catabolic processes, 

we observed a more pronounced increase in growth (2-fold) than in respiration (1.5-fold), 

indicating a relatively greater anabolic capacity of soil microbial communities at high PSR 

levels. We suggest that this caused soil microbial biomass to increase, which explains the 

higher growth rates observed per unit of soil mass. Interestingly, biomass-specific respiration 

rates and microbial CUE did not respond to changes in PSR, while biomass-specific growth 

rates increased significantly with increasing PSR. This is important because biomass-specific 

rates represent the microbial physiology independently of microbial biomass. The latter is 

equivalent to microbial turnover at steady state conditions (i.e. when microbial biomass 

remains constant in the short-term, as expected in a 24 hour measurement period, and as 

shown by Zheng et al. (2019)), explaining why both microbial growth and microbial biomass 

turnover rates accelerated under increasing PSR. In the long-term (at decadal scales), 

accelerated microbial growth and faster microbial turnover rates will promote microbial 

necromass formation. This accelerated production and turnover of microbial biomass is 

expected to promote SOC storage via ongoing iterative cycles of microbial proliferation, 

growth and death, ultimately leading to incorporation of higher amounts of microbial derived 

carbon in the SOC pool of more diverse plant communities. Thus microbial growth increased 

through higher plant carbon inputs has the potential to fuel the soil organic matter reservoir 

with microbially-derived carbon due to both accelerated biomass and necromass formation 

(Liang, Cheng, Wixon, & Balser, 2011). We further stress the importance of measuring 

microbial respiration and growth simultaneously, when assessing microbial contributions to 

SOC accumulation, as both processes affect SOC dynamics in different ways (Discussion S).  
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The observed increase in microbial necromass carbon with PSR was mainly driven by 

increases in the formation of fungal necromass, since bacterial necromass did not respond to 

manipulations in PSR. As such, the fungal to bacterial necromass ratio also increased with 

increasing PSR. Fungal derived necromass was shown to significantly contribute to soil 

organic matter accumulation that was also strongly promoted by efficient microbial biomass 

production (Kallenbach, Frey, & Grandy, 2016; Li et al., 2015). While a previous study from 

the same experiment reported no PSR but plant functional group richness effects on fungal to 

bacterial biomass ratios based on phospholipid fatty acid analysis (Lange et al., 2014), we 

found that the corresponding necromass ratio was more strongly driven by PSR (Table 1) 

than by functional group richness (Table S1). More diverse plant mixtures most likely 

support soil microbial communities with a larger amount and higher diversity of resources, 

which is supported by previous work at this experiment demonstrating a higher diversity of 

organic compounds of low molecular weight, such as organic acids, at higher levels of PSR 

(El Moujahid et al., 2017). This suggests that the diversity of more complex compounds, such 

as lignins, proteins and condensed tannins, may also be higher with increasing PSR. Both the 

quality and quantity of substrates are known to affect bacterial and fungal growth, with 

fungal growth being more promoted by complex carbon substrates and increased loading 

rates of available substrate compared to bacterial growth (Rousk & Baath, 2011). This could 

have translated into the higher fungal to bacterial necromass ratios observed here. 

Alternatively, it cannot be ruled out that the recycling of bacterial necromass by the active 

microbial community is faster than that of the fungal necromass at higher PSR, for example 

because bacterial remains are thought to be richer in nutrients (Sterner & Elser, 2002) or 

because fungal necromass decomposition is retarded by melanin impregnation (Fernandez, 

Langley, Chapman, McCormack, & Koide, 2016). 
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Increased labile carbon inputs can trigger the activation of dormant microbes (Blagodatskaya 

& Kuzyakov, 2013) by alleviation of their carbon limitation (Demoling, Figueroa, & Baath, 

2007). We found little evidence, however, that soil microbes were released from carbon 

limitation through increased plant carbon inputs at higher PSR, since we observed no 

response in microbial CUE and in biomass-specific respiration. Microbial CUE was shown to 

decrease and biomass-specific respiration to increase under conditions of increasing carbon 

availability (Manzoni et al., 2012; Spohn & Chodak, 2015). However, biomass-specific 

respiration, determined as the ratio of soil basal respiration to soil microbial biomass, does 

not provide any information about how much of the carbon taken up by microbes is used for 

microbial growth and thereby is incorporated into microbial biomass. Therefore, although 

biomass-specific respiration and CUE both refer to microbial utilization of carbon, biomass-

specific respiration should not be used as a proxy for microbial CUE, which is defined by the 

ratio of growth over carbon uptake. Nonetheless biomass-specific respiration is a valuable 

indicator as a relative measure of the degree of substrate limitation of the soil microbial 

community (Wardle & Ghani, 1995).  

No response of microbial biomass-specific respiration and CUE implies that although more 

plant derived carbon will have entered the soil in more diverse plant communities, the soil 

microbial community most likely did not change in nutritional limitations but remained 

carbon limited or carbon to nutrient co-limited, even at high PSR levels. This is in 

concordance with observations from a large suite of soils differing in land use, soil organic 

matter content, nutrient status, soil pH and spanning a wide range of soil carbon to nitrogen 

ratios, which have shown that soil microbial growth, determined by radiotracer incorporation 

approaches, is most commonly limited by a lack of carbon or energy (Alden, Demoling, & 

Baath, 2001; Demoling et al., 2007; Kamble & Baath, 2014).  
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We did not find support for our expectation that microbial CUE would change with PSR. 

Changes in microbial CUE therefore cannot explain the increase in SOC accumulation with 

PSR. Increasing resource carbon to nutrient ratios for soil microbial communities have been 

shown to decrease microbial CUE (Manzoni et al., 2012). In the Jena Experiment, not only 

the quantity but also the quality of plant biomass responded to changes in plant diversity as 

carbon to nitrogen ratios increased significantly with PSR. This is thought to be a 

consequence of altered nutrient allocation and carbon fixation patterns of aboveground 

vegetation (Abbas et al., 2013; Vogel, Eisenhauer, Weigelt, & Scherer-Lorenzen, 2013), and 

because of shifts in the identity and proportional composition of plant functional groups, 

especially in the case of root stoichiometry (Chen et al., 2017). Plant detrital material can be 

expected to have even wider carbon to nutrient ratios compared to living plant tissues, due to 

re-mobilization of nutrients prior to litter production. These changes in carbon to nitrogen 

ratios of plant biomass and detritus most likely translated into unfavorable substrate 

stoichiometries for soil microbial communities, as also reflected in the increasing root and 

soil carbon to nitrogen ratios observed here with increasing PSR (Table 1; Table 2 for root 

stoichiometry only). Constant microbial CUE therefore also suggests that microbial 

communities here operate below their threshold element ratio and therefore experience 

persistent carbon limitation (Mooshammer, Wanek, Zechmeister-Boltenstern, & Richter, 

2014).  

When compared to PSR, functional group richness was of less importance to microbially 

driven SOC build-up. Specifically, while functional group richness also promoted microbial 

biomass increases that translated into the build-up of SOC, this effect was less pronounced 

and was neither mediated through root carbon input nor through microbial growth. This is 

important because previous findings have shown that both PSR and functional group richness 

increase aboveground community biomass (Marquard et al., 2009), but we demonstrate here 
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that only PSR effects extend belowground. Despite this, we found clear effects of the 

presence versus absence of different functional groups, and particularly of legumes, on the 

soil microbial system. Specifically, we found that legumes decreased root biomass, microbial 

growth, microbial biomass, and turnover rates. While we did not observe a legume-induced 

reduction in biomass-specific respiration, as previously reported from the same experiment 

(Strecker et al. 2015), our findings add support to the notion that legumes have a negative 

impact on soil microbial processes. This is coupled to the fact that legumes have been shown 

to decrease root biomass (Ravenek et al. 2014). As a consequence, our findings suggest that 

legumes, as the only functional group here with negative effects on the soil microbial system, 

are responsible for the reductions in SOC content observed in this experiment, and act via 

their inhibitory influence on community level root biomass, and thereby on microbial 

biomass and activity. We posit that this legume effect arises due to the ability of legumes to 

fix nitrogen through symbioses with nitrogen-fixing bacteria, causing increased soil nitrogen 

availability and leading to a reduced need to allocate photosynthetic carbon to root biomass at 

the community level. By comparison, grasses are known to invest relatively extensively in 

root biomass, which may be responsible for our observations that grasses supported 

microbially driven SOC build-up (Fig. S4b). Whereas tall herbs did not affect the soil 

microbial system, small herbs significantly increased microbial growth and biomass and thus 

led to increases in SOC (Fig. S4c). This positive effect of small herbs was rather unexpected 

and needs further clarification. 

In conclusion, species-rich plant communities, most likely through greater plant organic 

matter inputs, promoted the growth of soil microbial communities more strongly than their 

respiratory activity, triggering increases in microbial biomass. At the same time, microbial 

biomass turnover rates increased, thereby promoting microbial necromass formation. We 

show that these mechanisms together led to SOC accumulation. Clearly changes to the soil 
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system are themselves a driver of change in the plant community, and thus the changes we 

observed to some extent reflect the coupling between shifts in plant communities and the soil 

system. This is the first evidence of causal links between microbial physiology, microbial 

biomass and necromass build-up and SOC storage in the context of plant biodiversity.  
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Table 1 Summary statistics of soil organic carbon (SOC) in mg carbon (C) g
-1

 soil dry weight (dw), soil C to nitrogen ratio, root C 

in g C m
-2

 soil, root C to nitrogen ratio, microbial biomass C (Cmic) in µg C g
-1

 soil dw, microbial growth (Growthmic) in µg Cmic d
-1

 

g
-1

 soil dw, microbial respiration (Respirationmic) in µg CO2-C d
-1

 g
-1

 soil dw and fungal necromass C in mg C g
-1

 dw.  

PSR n SOC Soil C:N Root C Root C:N Cmic Growthmic Respirationmic Necromassfungi 

 

 
Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

Mean 

(SD) 
Mean (SD) Mean (SD) 

1 15 20.4 (2.7) 10.7 (0.5) 17.2 (10.9) 40.4 (11.9) 744.2 (167.6) 7.0 (4.6) 14.6 (6.0) 3.9 (0.6) 

2 16 20.8 (2.6) 10.8 (0.6) 26.5 (24.1) 40.8 (10.1) 838.1 (122.0) 10.1 (4.4) 18.2 (4.4) 4.0 (0.4) 

4 16 22.2 (2.3) 10.8 (0.4) 41.7 (33.6) 45.0 (10.1) 958.8 (142.5) 10.8 (3.5) 16.6 (7.2) 4.4 (0.5) 

8 16 21.9 (1.9) 10.9 (0.5) 23.9 (15.3) 46.2 (9.6) 952.0 (130.5) 10.8 (4.6) 19.8 (6.1) 4.3 (0.5) 

16 14 24.1 (2.4) 11.1 (0.7) 47.7 (25.1) 44.7 (11.2) 1103.8 (118.4) 12.1 (3.2) 19.8 (5.4) 4.7 (0.6) 

60 4 26.3 (2.9) 11.1 (0.2) 49.1 (28.5) 46.3 (2.6) 1175.8 (103.9) 13.9 (2.3) 21.1 (7.4) 5.1 (0.7) 

PSR plant species richness, SD standard deviation 
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Table 2 Summary of linear mixed effect model analyses of plant diversity effects on (A) soil, (B) plants and (C) microbial related 

variables.  

 

PSR (log) PFGR SH TH GR LEG 

 

L   Sign. L  Sign. L  Sign. L  Sign. L  Sign. L  Sign. 

(A) Soil 

            Soil organic carbon 25.72 *** 0.05 n.s. 6.37 * 2.92 † 1.15 n.s. 3.24 † 

Dissolved organic carbon 4.11 * 0.20 n.s. 0.37 n.s. 0.04 n.s. 4.60 * 8.72 ** 

(B) Plants 

            Root biomass carbon 11.91 *** 0.16 n.s. 0.45 n.s. 1.80 n.s. 5.43 * 21.38 *** 

Root carbon to nitrogen ratio 2.80 † 0.55 n.s. 0.95 n.s. 0.39 n.s. 17.11 *** 36.37 *** 

(C) Microbes 

            Biomass carbon 47.77 *** 5.19 * 8.23 ** 1.44 n.s. 2.39 n.s. 10.01 ** 

Growth 15.21 *** 0.61 n.s. 4.27 * 1.00 n.s. 2.10 n.s. 6.19 * 

Biomass-specific growth 5.50 * 0.05 n.s. 0.11 n.s. 0.00 n.s. 2.93 † 3.66 † 

Turnover time 5.50 * 0.05 n.s. 0.11 n.s. 0.00 n.s. 2.93 † 3.66 † 

Respiration 6.94 ** 0.04 n.s. 0.33 n.s. 0.01 n.s. 0.00 n.s. 0.41 n.s. 

Biomass-specific respiration 0.95 n.s. 1.47 n.s. 1.00 n.s. 0.63 n.s. 0.25 n.s. 0.46 n.s. 

Carbon uptake 12.96 *** 0.05 n.s. 2.11 n.s. 0.19 n.s. 0.29 n.s. 2.37 n.s. 

Biomass-specific carbon uptake 0.14 n.s.  0.76 n.s. 0.07 n.s. 0.23 n.s. 0.00 n.s. 0.03 n.s. 

Carbon use efficiency 2.65 n.s. 1.29 n.s. 2.29 n.s. 1.42 n.s. 1.73 n.s. 2.30 n.s. 

Necromass carbon (fungi) 26.16 *** 0.02 n.s. 0.03 n.s. 0.13 n.s. 5.84 * 4.67 * 

Necromass carbon (bacteria) 2.47 n.s. 0.00 n.s. 5.21 * 0.35 n.s. 6.48 * 0.71 n.s. 

Necromass carbon (total) 18.03 *** 0.00 n.s. 0.56 n.s. 0.00 n.s. 7.14 ** 3.36 † 

             In the models plant species richness (PSR (log)) was fitted before plant functional group richness (PFGR) and plant functional 

group identity effects were analyzed in separate models already containing PSR and PFGR. Significant positive effects are marked 

in green, significant negative effects are colored red. †P ≤ 0.1, *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. SH small herbs, TH tall herbs, 

GR grasses, Leg legumes.     
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Table 3 Pearson correlation matrix of block corrected variables (n = 81). 

Variable SOC Cmic Growth qGrowth CUE Respiration qCO2 RootC 

1. SOC         

2. Cmic 0.76***        

3. Growth 0.40*** 0.65***       

4. qGrowth 0.15 0.33** 0.77***      

5. CUE 0.24* 0.39*** 0.62*** 0.50***     

6. Respiration 0.21† 0.31** 0.41*** 0.26* -0.40***    

7. qCO2 -0.24* -0.27* 0.02 0.07 -0.65*** 0.81***   

8. Root C 0.41*** 0.50*** 0.48*** 0.40*** 0.24* 0.23* -0.03  

9. Necromass C 0.41*** 0.54*** 0.16 0.01 0.07 0.14 -0.17 0.29** 

SOC soil organic carbon, Cmic microbial biomass carbon, Growth microbial growth, qGrowth microbial biomass-specific growth, 

CUE microbial carbon use efficiency, respiration microbial respiration, qCO2 microbial biomass-specific respiration, root C root 

carbon, necromass C microbial necromass carbon.  

†P < 0.1, *P < 0.05, **P < 0.01, ***P < 0.001   
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Figure captions 

Figure 1 Conceptual model depicting the hypothetical relationships between plant species 

richness and microbial physiology that are expected to promote soil organic carbon (SOC) 

build-up in species-rich plant communities (Pool sizes within, microbial processes without 

text frames; mic microbial, CUE carbon use efficiency). 

Figure 2 Linear regressions of plant species richness (log) and soil, plant and microbial 

parameters. (a) Soil organic carbon is in mg g
-1

 soil dry weight (dw), (b) root carbon in g m
-2

 

soil, (c) microbial growth (sqrt) in µg microbial biomass carbon g
-1

 soil dw day
-1

, (d) 

microbial respiration in µg CO2-carbon g
-1

 soil dw day
-1

, (e) microbial CUE is in absolute 

fractions, (f) biomass-specific growth (log) in ng carbon growth µg
-1

 microbial biomass 

carbon day
-1

,(g) microbial biomass carbon in µg g
-1

 soil dw, (h) total microbial necromass in 

mg necromass carbon g
-1

 soil dw and (i) fungal:bacterial necromass ratio (log) represents 

fungal necromass carbon divided by bacterial necromass carbon. Significance levels are 

indicated by asterisks (*P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001) and significant relationships are 

presented by solid lines; P-values are given in brackets next to the adjusted R
2
 value if P ≤ 

0.1, with dashed lines.       

Figure 3 Structural equation model (piecewise SEM) of plant species richness (PSR log), 

microbial activity (Growthmic microbial growth, Respirationmic microbial respiration) and 

biomass (Root C root carbon, Cmic microbial biomass carbon) as predictors for soil organic 

carbon (SOC) (C14 = 11.36, P = 0.657). Arrows show significant paths (P ≤ 0.05), numbers 

next to them are standardized path coefficients with asterisks indicating their significance (*P 

≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001). Numbers in the boxes of endogenous variables are the 

explained variances of fixed (R
2

m) and fixed plus random factors (R
2

c).  
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