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PREFACE

In recent years there has been considerable interest in
developing models for river and lake ecological systems, much
of it directed towards the development of large and complex sim-
ulation models. However, this trend has given rise to a number
of concerns, notably those of accounting for the effects of un-
certainty and of establishing model validity and credibility.
ITIASA's Resources and Environment Area's Task 2 on "Environmen-
tal Quality Control and Management" is addressing such concerns,
one of its principal themes being to develop a framework for
modelling poorly-defined environmental systems.

This paper considers the question of how theories are de-
veloped about the behavior of large, complex systems such as
those typically relevant to managing environmental quality. It
extends earlier discussions of model structure identification
(see RR—-80-4 and RR-81-4) and provides a more philosophical in-
terpretation of this particular problem and approaches to its
solution.

Together with WP-81-108 by L. Somlyddy ("Modelling a Com-
plex Environmental System: The Lake Balaton Study"), this paper
has been prepared for a special issue on IIASA's work of the
journal "Mathematical Modelling".
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ABSTRACT

This paper addresses the question of how theories are
developed about the behaviour of large, complex systems such
as those typically encountered in managing environmental quality.
The specific problem considered is that of model structure iden-
tification by reference to experimental, in situ field data. A
conceptual definition of this problem is given in terms of the
notion of testing model hypotheses to the point of failure. An
approach to solving the problem is proposed in which the use
of recursive model parameter estimation algorithms is a central
feature. This approach is illustrated by a case study in
developing a dynamic model of water quality in the Bedford Ouse
river in central-eastern England. The results are organized
around the two principles of attempting to falsify confident
hypotheses and of speculating about relatively uncertain hypotheses
in order to modify inadequate prior hypotheses. The essential
difficulty demonstrated by the case study is one of absorbing
and interpreting the diagnostic evidence of field data analysis
and this is ultimately a difficulty associated with the complex
and intrinsically indivisible nature of large-scale systems.
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1. INTRODUCTION

According to the spectrum introduced by Karplus [1] environ-
mental systems' analysis lies midway between the two extremes
of analyzing socio-economic systems and electrical network
analysis. This gives rise to rather special problems in the
analysis of environmental and, more specifically, water guality-
ecological systems. On the one hand, a priori theory, with its
basis in the physical and biological sciences, would seem to be
capable of predicting observed behaviour relatively accurately.
On the other hand, however, it is especially difficult to conduct
planned experiments égainst which a priori theory can be evaluated.
In these somewhat ambivalent circumstances there has arisen a
growing incompatability between that whichcan be simulated in
principle with a model and that which can be observed in practice.
To a great extent this accounts for the gap that has developed
between the "larger" simulation models, with which there is little
hope of conducting rigorous calibration exercises given currently
available field data, and those much "smaller" models that have
been so calibrated.

The specific problem to be considered in this paper is that
of model structure identification by reference to experimental,
in situ field data. To see why this is a problem, however, it
is first necessary to summarise briefly some limitations in a
widely accepted approach to water quality-ecological modelling.
According to this approach it is generally assumed that one can
(conceptually) subdivide the field system into smaller, indivi-
dual components, whose (conceptual) behaviour can usualiy be
approximated by laboratory-scale replicas (for example, chemo-

stat and open-channel flow experiments). Submodels for these



components are assumed to be "verifiable" against experimental
observations of the behaviour of the replica; and the model for
the field system can be assembled by linking together the sub-
models. Thus the content of the model is supported by arguments
that admit extrapolations from laboratory systems and equivalent
or similar field systems. At the stage of model calibration the

tendency is to assume that a priori theory is correct unless

demonstrably inadequate. It is especially difficult to demonstrate

inadequacy, and the need to question the validity of the original
extrapolations is thus all too easily likely to remain obscured.
The argument that the extrapolations inherent in the above
approach are legitimate would appear to remain in doubt unless
one can develop and apply a complementary approach that provides
a more direct evaluation of the prior hypotheses about observed
system behaviour, without dividing the system into its component
parts. Model structure identification is a fundamental part of
that complementary approach: it has to do with the questioning
so easily set aside because of the imperfections of the avail-
able field data; it is a problem for which seemingly few systematic
methods of solution have been developed; and, possibly most sig-
nificant, it requires a subtle but important change of attitude
towards modelling. In spite of very many laboratory-scale
experiments and a number of major field studies, current knowledge
of the structure of the relationships among the mineral, organic,
and microbiological components of an aquatic ecosystem is still
quite uncertain. Too much confidence has been placed in a priori
theory. Perhaps, in Popper's terms [2], environmental systems

have been modelled as though they were "clocks", being "regular,



orderly, and highly predictable", whereas they may well be more
like the "irregular, disorderly, and more or less unpredictable"
"clouds". This reflects simply a change of attitude, because,
as evident in Somlyédy's papers [3], [4], there is clearly a spectrum
of reqularity and orderliness associated with the prior knowledge
relevant to water quality-ecological modelling (ranging from
hydrodynamics to biology). In short, central to the problem of
model structure identification is the question: how are theories
developed about the behaviour of large, complex systems given
the assumption that observations can be obtained (and subsequently
interpreted) from experiments broadly similar to the classical
form of experimentation in laboratory science.

The work discussed here, then, on the topic of modelling
poorly-defined environmental systems ("poorly-defined" being
an expression first used by Young [5]), is part of a Task on
Environmental Quality Control and Management within the Resource
and Environment Area of ITIASA. This essentially methodological
component of the Task is complemented by a second theme dealing
with case studies in lake eutrophication management, that is,
for Lake Balaton, Hungary [6], [7], [8] and for a number of
Austrian lake systems [9]. A productive interaction between
case-study problem-solving and methodological developments is
the cornerstone of the Task's research. In the following,
although examples drawn from the lake eutrophication studies
would be equally appropriate, such as the results reported by
Somlyédy [3], we shall illustrate methodological problems
associated with modelling the dynamics of water quality in the
Bedford Ouse River (U.K.). This river system in turn provides
an informal case-study for the development of a third theme of

the Task on operational water quality management [10].
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Section 2 of the paper discusses both the problem of model
structure identification and an idealised approach to its solu-
tion based on the use of recursive parameter estimation. Since
model structure identification can be viewed as a matter of
iteratively falsifying and speculating about hypotheses, section
3 examines the difficulties of interpreting diagnostic evidence
on whether a given model structure (set of hypotheses) is demon-

strably inadequate.

2. MODEL STRUCTURE IDENTIFICATION

Usually one associates the exercise of model calibration with
curve-fitting and parameter (coefficient) estimation. But the
word "calibration" is misleading. It suggests an instrument
(here, the model) whose design is complete and whose structure
is beyond further argument. All that remains to be done is to
make minor adjustments to some of the fittings, i.e. fine-tuning
of the parameter values. Calibration of models for water quality-
ecological systems, however, is unlikely to be such a simple and
straightforward matter. Instead, even before asking the question
"Can I estimate the model parameters accurately?", the analyst
must first ask himself whether he knows how the variables of the
system are related to each other. In particular, one must ask
whether information about these relationships can be identified
from the in situ field data. Yet most exercises in model cali-
bration have focused solely on the matter of parameter estimation;
hence little attention has been paid to the (arguably) more im-

portant prior problem of model structure identification.



Let us introduce and qualify a working definition of the
problem:

o Model structure identification is concerned with estab-

lishing unambiguously, by reference to the in situ field
data, how the measured input disturbances, u, are related
to the state variables, X, and how these latter are in
turn related both to themselves and to the measured
output responses, y, of the system under study.
We may note first that this is significantly different from
a definition of what may be called model order estimation, a
problem in which, for example, the objective is to estimate the
orders of the polynomials in an autoregressive/moving-average
time~series model (see, for instance, [11], [12], [13]). Second,
we may note the importance of the word "unambiguously". A coﬁmon
difficulty in fitting a model to a set of field data is that the
error-loss function does not exhibit a well-defined, global
minimum. Many combinations of estimates for the model parameter
values provide equally good (or bad) descriptions of the observed
behaviour; in effect, a uniquely "best" model for the system has
not been identified. Such difficulties are often referred to as
the problem of identjfiability, or the model is said to be over-
parametrised and to contain surplus content. This is perhaps a
matter of no consequence in terms of fitting the model to the
data, but it would certainly have significant implications should
the model be used for prediction (as has been argued elsewhere,
[14], [15]). One would expect ambiguous statements about future
behaviour, although the effects of uncertainty may preclude any

conclusion about significant differences among these statements

[151].



The essence of the approach to model structure identification,
as discussed briefly here and in much greater depth in [5],[15],
[16], [17], [18], is based on a restatement of the original
problem definition in terms of a parameter estimation problem.
Such an approach, however, depends on the availability of an
adequate set of time-series field data, a condition which is
by no means always satisfied. Even so, for situations of scarce
data the development of a roughly parallel approach is apparent
in a recent paper by Fedra [19].

In order to outline the approach, albeit in a conceptual
sense, let us imagine that the state variables x in a model may
be represented by the nodes of Figure 1(b) and that the parameters
o are visualised as the "elastic" connections between the state
variables. Without going into details, let us also assume that
the parameters of the model can be estimated recursively, i.e.
such that estimates @(tk) of the parameter values can be obtained

for each sampling instant t, within the sequence of time-series

k
observations (for discussions of recursive estimation, see, for
example, [16], [20], [21]).

If now the assumption has been made that all the parameters
have values that are constant with time, yet a recursive al-
gorithm yields an estimate of one or more of the parameters that
is significantly time-varying, one may question the correctness
of the chosen model structure. We can argue this point as follows.
The general tendency of an estimation procedure is to provide

estimates g of the state vector, or some functions thereof, i.e.

&, that track the observations y. Hence, if any persistent

structural discrepancy is detected between the model and "reality"
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(in other words, the errors g = (y - ¢) exhibit a significantly

non-random pattern), this will be revealed in terms of significant

adaptation of the estimated parameter values. There may well be

good reasons for why the parameter estimates vary with time, and,
indeed, that is precisely what one is looking for.

Starting with Period 1 of Figure 1(a), however, let us con-
tinue to sketch the outline of the approach. The model responses
(¢) and output observations (y) are essentially in agreement over
this period and there is no significant adaptation of the para-
meter estimates (according to Figure 1(c)). At the beginning
of Period 2, however, there is a persistent discrepancy between
¢ and y. It might be supposed, for example, that the underlying
cause of the discrepancy is an inadequacy in the behavior simu-
lated for X4 and Xor that O q is sensitive to this discrepancy
(Pigure 1(b)), and that (persistent) adaptation of the estimate
&1 (Figure 1(c)) partly compensates for the error between ¢ and
Y. Again in the third period there is disagreement between the
observations and model responses, which leads to adaptation of
the estimate &2.

The example of Figure 1 is clearly an ideal view of how a
recursive estimation algorithm should be employed for model
structure identification. 1In fact it is an idealised framework
developed largely, but not entirely, from a particular case-study
in modelling the dynamics of water gquality in the River Cam,

U.K. [17]1, [22]. Generalisation from a single example is un-
doubtedly not without dangers and certainly the results to follow
challenge the usefulness of this ideal view. Nevertheless, cast
in this particular fashion such an approach has intuitively

appealing interpretations. First, and by analogy with the analysis
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of physical structures, the aim is to expose inadequacy in terms
of the "plastic deformation" (Figure 1(c)) of the model structure.
Second, and of deeper significance, testing the model structure

to the point of failure, that is, the failure of one or more
hypotheses, can be said to be consistent with Popper's view of

the scientific ﬁethod [23]. And Popper's view of the scientific
method is in turn exercising a growing influence over the discus-
sion of modelling the behaviour of environmental and similar
systems [5], [19], [24]1, [25]1, [26].

Especially pertinent here is Holling's remark that "...the
model is [to be] subjected to a range of tests and comparisons
designed to reveal where it fails" [24]. This, with emphasis
on the words "range" and "designed to reveal” sets a suitable
guiding principle for solving the problem of model structure
identification. But to have revealed that the model structure
is inadequate is merely a part of the solution, and actually a

relatively easy part. If we extend the example of Figure 1

one further step, let us suppose that the first (model) hypothe-
sis has been identified as failing, according to Figure 2(a).
Now assume that a second hypothesis can be generated in some
way—--which is a complementary part of the solution--and that it
has the structure of Fiqure 2(b) with an additional state wvariable
(x5) and two new parameters (as, a6). It may well be that cali-
bration of the second model against the field data yields effec-
tively invariant parameter estimates and hence the analyst can
accept the adequacy of this model structure as a conditionally
good working hypothesis.

The basic aim of model structure identification is thus to
seek plausible hypotheses for apparently "unexplained" relation-

ships in a set of field data. The approach outlined above



exploits the idea of curve-fitting as a "means-to-an-end" and

not as an "end" in itself. Falsifying the model structure, or
components thereof, rests partly upon judgements about absurd
parameter values, or about implausible variations in the parameter
values. Unless these variations and values can be defended by
logical argument, then it must be conceded that the structure

of the model does not match the structure underlying the observed
patterns of behaviour.

It would be wrong, however, to assume, because of the ex=-
clusive discussion of an approach based on recursive parameter
estimation, that this approach is a panacea. The benefits to be
derived from a range of procedures have already been emphasized
and are apparent in the Cam case study [22]. This is only one
approach applicable to a certain sector of the overall problem
defined for a restricted set of conditions; yet it is an approach
that has yielded considerable insight into the nature of the
vproblem.

In the following we shall focus on two types of critical
difficulties in applying the above approach to model structure
identification, that is: the difficulty of revealing that a
hypothesis is absurd, which is really the most demonstrable form
of inadequacy; and the difficulty of synthesizing the diagnostic
evidence in order to speculate about how to modify an inadequate
prior hypothesis. Our purpose is to expose weaknesses and
limitations both in the technical effectiveness of recursive
parameter estimation as a method of solution and, more fundamen-
tally, in the appropriateness of the approach. As with model
structure identification, so too with the approach itself,
establishing what is wrong or inadequate is the key to improve-

ment and progress.
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3. DESIGN FOR FAILURE AND SPECULATION

If solving the problem of model structure identification
depends strongly upon revealing absurd hypotheses, an easily
recognizable difficulty is that in situ field data subject to
high levels of uncertainty are hardly likely to yield such
revelations. There are, however, more subtle aspects of the
nature of field data from environmental systems that place
equally, if not more, awkward constraints on the likelihood of
success in model structure identification. The patterns-of
time-series observations typically available for analysis
reflect experiments--if indeed they can be so called--that are
successively less good approximations of the classical, planned
experiments of laboratory science [15]. In all but a few cases
the observed perturbations in system behaviour do not conform
with the desirable attributes of data usually expected for the
identification of models for, for example, aircraft and indus-
trial process control [12], [27]. And since it is in areas
such as these latter that many of the methods of analysis have
originated [28], recursive estimation included, one finds that
there is an impressive array of techniques that perform well on
well-posed problems, yet a dearth'of techniques that can perform
adequately on the ill-posed problems of environmental systems
analysis.

It is tempting to blame a lack of success on poor data and
inappropriate analytical methods. But this would be misleading
and, in any case, current constraints are not destined to persist
into the future. Consider, for example, the ever-growing poten-

tial for generating data from environmental monitoring networks
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and consideralso the principal asset of a recursive estimation
algorithm, that is, to generate model parameter estimates at

each instant of time ty in a time-series. There is every

possibility that future critical constraints will be dominated
by the inability to absorb and interpret the diagnostic evidence
of data analysis. 1In fact, these constraints are ultimately a
function of the complexity and indivisibility of large-scale
systems. It is to the difficulties of conducting an analysis

in the face of such problems that we now turn.

From the generalisation of the River Cam case study, to
which passing reference has been made earlier, it is possible to
propose a tentatively broader organising principle for the pro-
cedure of model structure idéntification. Hence, let us simply
suggest that the analyst is concerned with conducting experi-
ments (in a loose sense) on and with the model structure, where
these experiments can have the following two distinctly different
orientations (or objectives):

(1) 1in the process of falsifyiug a ¢iven model structure;

(ii) in the process of (creative) speculation about alter-

native hypotheses.
These two processes are probably best viewed as mutually exclu-
sive, for reasons we shall discuss later, and, guite appropriately,
they reflect the two-step nature of solving the problem.

The case of the Bedford Ouse River in central-eastern En-
gland is a natural extension of the Cam study. From 1972 to
1975 the Department of the Environment in the United Kingdom
and the Anglian Water Authority jointly funded a major study of
the Bedford Ouse river system in order to evaluate the effects
of developing a new city (Milton Keynes) in the upper part of
the catchment [20]. It is in the light of tackling this sub-

stantially more complex problem of field data anlaysis that we
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shall be able both to judge the usefulness of the above organising
principle and to illustrate the difficulties of interpreting the

diagnostic evidence of analysis.

3.1 Failure of the Model Structure

Let us look first at the notion of testing the model structure
to the point of failure, that is, the process of falsifying a
given set of hypotheses. For the Bedford Ouse example the model
structure to be evaluated contains various confident assumptions
about the transport and dispersive properties of the river,
reaeration, the decay of waste organic matter, and the growth,
death, and photosynthetic properﬁies of a population of phyto-
plankton. That these should be "confident" assumptions, which
has a quantitative counterpart in the specification of the
a priori error statisﬁics associated with the model, is an im-
portant point. Given the conceptual outline for model structure
identification (see also Figures 1 and 2) this is a very deliberate
tactic of stressing a relatively rigid structure so that the
probability of detecting a significant failure is maximised.
In this step of the analysis it would not appear to be particu-
larly useful to express little confidence, a priori, in the
model and then to try and identify unambiguously where failure
occurs. In such a case the postulated model structure is, és it
were, too flexible. Adaptation of the parameter estimates may,
or may not, be significant, because one has little confidence in
the model, and clear-cut answers cannot be obtained because, in
effect, clear-cut questions are not being asked. Flexibility
would be more of an advantage at the stage of creative specula-

tion and this is why separation of the two steps is desirable.
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Altogether six parameters are to be estimated in identical
model structures for the behaviour of interactions between dis-
solved oxygen (DO), biochemical oxygen demand (BOD, a measure
of degradable organic matter), chlorophyll-a (as a measure of
phytoplankton populations), and suspended solids concentrations in
each of the three reaches of the river system (a total, there-
fore, of 12 state variables and 18 parameters). Figure 3 shows
the recursive estimates of these six parameters for the third
(downstream) reach of river. Comparing Figure 3 with the enviable
idealised simplicity of Figure 1, one would have great dif-
ficulty in answering the gquestion "at what point does the model
structure fail?" without even asking the question why it might
have failed. The results are a peculiar mixture of both insuf-
ficient and redundant hypotheses in the model structure--of, at
the same time, under- and over-parameterisation. The considerable
non-stationarity of the parameter estimates clearly indicates
that the model structure is inadequate. Yet the similar patterns
of variability among the different parameters is a symptom of
surplus content in the model, i.e. one inadequacy compensates
for another. 1In other words, certain critical features of the
structure of the relationships underlying the field data are
not included in the model, while no single parameter estimate
unambiguously compensates for the obvious inadequacy.

There are apparently some absurd hypotheses. For instance,
the recursive estimates of both the maximum specific growth-rate
(nonlinear Monod kinetics) and first-order, death-rate constants
for the phytoplankton population (Figures 3(b) and 3(e) respec-
tively) become negatively valued. One could argue, as a result,

that the former is barely significantly different from zero and
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that the latter--a linear, negative, death-rate--is perhaps
evidence of a preferred linear growth-rate function for the
phytoplankton (at least for all but the initial period of the
data). But the analyst would be hard pressed to attach great
confidence to such conclusions. On balance it might be more
appropriate to conclude that the algal population is in a state
of equilibrium with neither of the rates of growth and death
being independently identifiable from the data.

The principal issue raised by the results of Figure 3 is
one of misplaced confidence in a priori theory. It has a specific
aspect associated with these results and a more general aspect
relating to the introductory comments of the paper. Thus, for
example, the remarkable stationarity of the recursive estimate
for the reaeration rate constant (Figure 3(a)) is a function of
having assumed relatively more a priori confidence in this
particular parameter. In other words, the analyst has assumed
that if the model is to fail it is unlikely to be a function of
an inadequate description of the reaeration process, ‘a point to
which we return later. This might be a reasonable assumption
since, together with the assumption concerning BOD decay, about
which similar questions will be raised shortly, it is a basic
component of the classical studies (conducted in 1925) of
Streeter and Phelps [30] on river pollution and self-purification.
That these assumptions have been used for a long time creates a
resistance to challenging their validity. Yet there are good
reasons, as demonstrated elsewhere [15], for arguing that the
classical assumptions of Streeter and Phelps, and the equally
classical assumptions of dispersion in flowing media, represent

patterns of behaviour that are not identifiable from this
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particular set of in situ field data. In this case the problem
of identifiability arises because other dominant modes of beha-
viour--here, especially in the first and second reaches of the
river, the growth of a phytoplankton population--almost entirely
obscure these less significant modes of behaviour. In a sense,
therefore, the assumptions of Streeter and Phelps are, for this
example, not testable propositions, and their inclusion in any
subsequent model structure is tantamount to an act of faith.

It seems important in a more general sense, therefore, to
question the motives for maintaining hypotheses that are not,
strictly speaking, falsifiable. The reluctance to set aside con-
vention is strong indeed, and Figure 3(c) illustrates well the
conflict that can occur--Young [31] has put forward a cogent and
challenging argument on the same point. Given prior experience that
the hypothesis of BOD decay is probably not identifiable, a BOD
decay rate constant is still retained in the model structure, but

1). It would be difficult

with an a priori estimate of zero (day
to argue from Figure 3(c¢) that the subsequent pattern of the recur-
sive estimates prompts the assumption of a significantly noa-zero

value for this parameter. The problem can thus be summarised as

follows. The results of Figure 3 are founded upon the premise that:

(a) "We have confidence in the hypotheses of Streeter
and Phelps, but consider current hypotheses about
mechanisms of phytoplankton growth as highly spec-

ulative."
Such a premise could be reoriented to either of:

(b) "We are confident about our hypotheses for
phytoplankton growth, but consider the assump-
tions of Streeter and Phelps to be highly spec-
ulative;"

(c) "All hypotheses are equally speculative."
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Perhaps one should cling to the first premise and not reject
convention until it is demonstrably inadequate. The obvious
dilemma is that just such a clutching at convention, especially
in the context of water quality-ecological modeling, may preclude
the possibility of revealing inadequacy. And the shift in emphasis
as to where greater confidence is placed, from premise (a) through
(b) to premise (c), is a specific interpretation of the change in
attitude towards modelling discussed in the introduction to the

paper.

3.2 Creative Speculation

The process of speculation can be illustrated with results

drawn likewise from another part of the Bedford Ouse analysis. It
is again assumed (implicitly) that premise (a) above is reasonable
so that speculation can be conducted in terms of a vector of lumped
parameters representing all the other mechanisms of behaviour (in
this case, sources and sinks of DO, BOD, and chlorophyll-a) that
are considered to be speculative assumptions. The objective then is
to generate plausible hypotheses about why the estimates for these
lumped parameters exhibit variations with time (or space), if that
is so; to formalise these hypotheses; and to proceed to a subsequent
step in the process of falsifying the revised model structure. For
the three reaches of the Bedford Ouse system, part of the diagnostic
evidence from analysis of this speculation is gathered together in
Figures 4 and 5. One could tentatively conclude from these recur-
sive estimates that:
(i) The rate of addition of chlorophyll-a to the system
reaches a maximum first (in time) in the third (down-
stream) reach, then in the second, and lastly in the

first (upstream) reach, Figure 4;
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(ii) The rate of addition of dissolved oxygen to the first
reach is roughly proportional to the observed concen-
tration of chlorophyll-a at the downstream boundary
of that reach, Figure 5 (a); the rate of addition of
dissolved oxygen to the second reach is roughly pro-
portional to the observed concentration of chloro-
phyll-a, except over the middle period of the record,
Figure 5 (b); the rate of addition of dissolved oxy-
gen to the third reach is not obviously proportional
to the observed chlorophyll-a concentration for most
of the time, Figure 5 (c).

It would certainly be a bold and imaginative hypotpesis that could
be synthesised from such evidence and hence lead to the restruc-
turing of the model for the purposes of again attempting to falsify
the revised hypotheses. And this is actually a relatively simple
example, when compared with the complexity of models frequently
discussed in the literature. We have presented the evidence of
Figures 4 and 5 primarily so that one can ask the rhetorical
question: how would the analyst absorb and interpret this relative
wealth of diagnostics? As earlier, to have drawn the possible con-
clusion that the model fits the data subject to arbitrary variations
in one or more of the parameters (as typified by the recursive
estimates of Figures 3, 4, and 5) is of no consequence. Rather, it
is the process of speculating about why such variations occur that should

be highly valued.

3.3 Reconstructing the Experiments of Laboratory Science

In introducing the problem of model structure identification
it was assumed that observations could be obtained (and subsequently
interpreted) from experiments broadly similar to the classical form

of experimentation in laboratory science. We shall further assume



-18-

that a laboratory experiment is usually designed to test the
relationship between, say, two variables (cause and effect) while
all other variables associated with the system are maintained

at steady, constant values. Clearly the field data available from
environmental systems reflect quite imperfect experiments. Let

us suppose, nevertheless, that model structure identification is

a procedure for reconstructing in situ "experiments" from observed
data by (mathematical) analytical methods. In other words it seems
reasonable to attempt to design the analysis of model structure
identification such that it compensates for the unsteady and
extraneous disturbances originating from the "environmental condi-
tions" of the laboratory-type"experiment". An apt example is
premise (a) associated with the Bedford Ouse analysis in section
3.1 where the "experiment" would be concerned with identifying the
mechanisms of phytoplankton growth and the Streeter-Phelps assump-
tions would be absorbed into the analytical compensation for the
"experimental environment”. Another apt example is given in
Somlyody's paper [3], where the "experiment" is to identify the
relationship between wind stress at a point on the surface of

Lake Balaton and the distribution of suspended solids measured

in the vertical water column below that point. All other phenomena
affecting the vertical distribution of solids, that is, other than
sedimentation and the wind-induced resuspension of particles from
the bed of the lake, are assumed to be included in the "environ-
mental conditions". This latter would include, for example, solids
transported hcrizontally into the vertical water column and that
fraction of the observed suspended solids concentration due to
living organic matter, such as a phytoplankton population. In fact,
the model for this "experiment", as defined, is sufficiently well
posed that the analysis might more fruitfully be "inverted" in
order to identify better the relationships assumed in the given

definition of the "environment".
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In either of the two examples quoted, the skill of the ana-
lyst would lie in arranging the analysis such that extraneous
interference with the analysis could be filtered out. At first
sight this is perhaps a rather attractive view of the true purpose
of system identification and time-series analysis. But it pre-
supposes, of course, that that part of the model required to com-
pensate for the experimental "environment" is known a priori with
sufficient confidence to permit the full power of the analysis
to be directed towards identification of the relationships de-
fined as the "experiment". Such assumptions themselves have to
be evaluated. The distinction between what is "known well" and
what is "speculation" thus becomes vanishingly small. It is unlikely,
as with premise (c) in section 3.1, that all prior hypotheses are
equally speculative; rather, a spectrum of degrees of confidence is
probable. The freedom to manipulate where greater prior confidence
should be placed, however, can thus be seen to be both an advantage
and a disadvantage. In its worst form it allows the possibility
of prejudicing the diagnosis of failure, as apparent with the
results of Figure 3. It is difficult to claim, however tempting
it may be, that there is just one "experiment" and its complemen-
tary "environment". Instead, it is only possible to state that a
number of more or less significant "experiments" are proceeding
in parallel. This does not mean that partially isolated experiments
cannot be conducted on large-scale field systems--the study of
wind-induced resuspension of lake sediments in Somlyody's paper
[3] typifies what is possible in this respect. But it does mean
that if the analyst aspires to the development of a model for the
field system as a whole, then his analysis of the data will have
to contend with the intrinsically indivisible character of the

system's behaviour.
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4 . CONCLUSIONS

Many contemporary exercises in water quality-ecological
modelling have been conducted without serious consideration of
the significance of calibration. It is not an empty appendix
to the mainstream developments in water quality modelling. It
may only be considered so if one chooses to attach great confi-
dence to a priori theory, thereby renouncing, in effect, much of
the questioning that should accompany calibration.

The "questioning" process of model calibration, to which
considerable importance is attached, is what has been called here
the problem of model structure identification. The procedure
proposed for solving (in part) this problem has two primary fea-
tures: (a) the use of recursive parameter estimation algorithms
for the analysis of time-series field data; and (b) the alternate
objectives of examining the model structure from the point of view
Qf either falsifying confident hypotheses or creatively speculat-
ing about uncertain hypotheses.

The paper has illustrated this approach to model structure
identification with a case-study of the Bedford Ouse river system.
The relative complexity of this study defines it as what might be
called a second-generation study in model structure identification;
indeed it raises more questions than it answers. In particular,
the Bedford Ouse example challenges the usefulness of the procedure
outlined for model structure identification and draws attention to
the crucial difficulty of focusing and interpreting the diagnostic
evidence of analysis. This example also illustrates the problem
of distinguishing between which are confident and which are
speculative prior hypotheses, a distinction that is important for
implementing the proposed approach. Finally, consideration of an

analogy with the planned experimentation of laboratory science,
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although superficially attractive as an interpretation of model
structure identification, leads to the conclusion that the analyst
has to contend with the multiplicity of "experiments" inherent in

a set of field data from an environmental system. Clearly, complexity,
an intrinsically indivisible nature, and not merely uncertainty, are

inescapable problems in modelling such large-scale systems.

ACKNOWLEDGEMENT

The author is grateful to the Anglian Water Authority and
the (U.K.) Department of the Environment for permission to use
the field data from the Bedford Ouse Study. I am also indebted to
George Hornberger, Gerrit van Straten, and Peter Young for their

constructive, critical reviews of an earlier draft of this paper.

REFERENCES

1. W.J. Karplus, The future of mathematical models of water
resources systems. In: G.C. Vansteenkiste (Editor),

System Simulation in Water Resources, North-Holland,
Amsterdam, pp. 11-18 (1976).

2. K.R. Popper, Of clouds and clocks. 1In: Objective Knowledge,
An Evolutionary Approach, Oxford University Press, Oxford,
pp. 206-255 (1972).

3. L.Somlyody, Modelling a complex environmental system: the
Lake Balaton case study (this issue).

4. L. Somlyody, Water quality modelling: a comparison of
transport-oriented and biochemistry-oriented approaches,
Working Paper, WP-81-117, International Institute for Applied
Systems Analysis, Laxenburg, Austria (1981).

5. P.C. Young, General Theory of Modeling for Badly Defined
Systems. In: G.C. Vansteenkiste (Editor), Modeling,
Identification, and Control in Environmental Systems,

North-Holland, Amsterdam, pp. 103-135 (1978).



10.

11.

12,

13.

14,

15.

-22-

G. van Straten, G. Jolankai, and S. Herodek, Review and
Evaluation of Research on the Eutrophication of Lake
Balaton--A Background Report for Modeling, Collaborative
Paper, CP-79-13, International Institute for Applied
Systems Analysis, Laxenburg, Austria (1979).

G. van Straten and L. Somlyody, Lake Balaton Eutrophication
Study: Present Status and Future Program, Working Paper,
WP-80-187, International Institute for Applied Systems
Analysis, Laxenburg, Austria (1980).

A.V. Leonov, Mathematical modelling of phosphorus transfor-
mation in the Lake Balaton ecosystem, Working Paper,
WP-80-149, International Institute for Applied Systems
Analysis, Laxenburg, Austria (1980).

K. Fedra, Austrian Lake Ecosystems Case Study: Achievements,
problems, and outlook after the first year of research,
Collaborative Paper, CP-80-41, International Institute for

Applied Systems Analysis, Laxenburg, Austria (1980).

M.B. Beck, Beyond Planning and design: operational water

quality management, Executive Report 7, International Institute
for Applied Systems Analysis, Laxenburg, Austria (1981).
G.E.P. Box and G.M. Jenkins, Time-series Analysis, Forecasting
and Control, Holden-Day, San Francisco (1970).

K.J. Astrbm and P. Eykhoff, System Identification - A Survey,
Automatica 7, 123-162 (1971).

T. Sbderstrdm, On Model Structure Testing in System Identi-
fication, Int. J. Control 26, 1-18 (1977).

M.B. Beck, Hard or Soft Environmental Systems?, Ecological
Modeling 11, 233-251 (1981).

M.B. Beck, Uncertainty, system identification and the pre-
diction of water quality. In: M.B. Beck and G. van Straten
(Editors), Uncertainty and Forecasting of Water Quality,

Pergamon, Oxford (in press).



16.

17.

18.

19.

20.

21,

22.

23.

24 .

25.

26.

-23-

P.C. Young, A Recursive Approach to Time-series Analysis,
Bulletin of the Institute of Mathematics and its Applications
10, 209-224 (1974).

M.B. Beck and P.C. Young, Systematic Identification of DO-BOD
Model Structure, Proc¢. Am. Soc. Civ. Engrs., J. Env. Eng.
Div. 102 (EE5), 909-927 (1976).

M.B. Beck, Model Structure Identification from Experimental
Data. In: E. Halfon (editor), Theoretical Systems Ecology,
Academic Press, New York, pp. 259-289 (1979).

K. Fedra, Hypo£hesis testing by simulation: an environmental
example, Working Paper, WP-81-74, International Institute

for Applied Systems Analysis, Laxenburg, Austria (1981).

A.H. Jazwinski, Stochastic Processes and Filtering Theory,
Academic Press, New York (1970).

A. Gelb (Editor), Applied Optimal Estimation, M.I.T. Press,
Cambridge, Massachusetts (1974).

M.B. Beck, Random Signal Analysis in an Environmental Sciences
Problem, Applied Mathematical Modelling 2, 1, 23-29 (1978).
K.R. Popper, The Logic of Scientific Discovery, Hutchinson,
London (1959).

C.S. Holling (Editor), Adaptive Environmental Assessment and
Management, Wiley, Chichester (1978).

J.M. Maciejowski, Model Discrimination Using an Algorithmic
Information Criterion, Automatica 15, 579-593 (1979).

J.M. Maciejowski, A Least-Genericity Principle for Model
Selection, Report No. 91, Control Theory Centre, University

of warwick, U.K. (1980).



27.

28,

29.

30.

31.

-2~

I. Gustavsson, Survey of applications of identification in
chemical and physical processes, Automatica, 11, 3-24 (1975).
P. Eykhoff, System Identification - Parameter and State
Estimation, Wiley, Chichester (1974).

Bédford Ouse Study, Final Report, Anglian Water Authority,
Huntingdon, U.K. (1979).

H.W. Streeter and E.B. Phelps, A Study of the Pollution and
Natural Purification of the Ohio River, Bulletin No. 146,
U.S. Public Health Service, Washington, D.C. (1925).

P.C. Young, The Validity and Credibility of Models for
Badly Defined Systems. 1In: M.B. Beck and G. van Sfraten

(Editors), Uncertainty and Forecasting of Water Quality,



-25-

Period 1 Period 2 Period 3

(a)

(b) X4 o, X, X4 a, X, X4 a, X,
@, ) @, @2 ! a, )
X, o, X4 X, a, X4 | X, oy X5
(c) |
A Recursive parameter 61
estimates /
A
)
—p
L) Time (t)

Figure 1. An Illustrative Example showing the Concept of using
a Recursive Parameter Estimator in the Context of
Model Structure Identification: (a) Hypothetical
Model Response and Observations (dots); (b) Conceptual
Picture of Model Structure; (c) Recursive Parameter
Estimates
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Hypothesis 2

The Process of Model Structure Identification:
Revision of the Model Structure and Re-estimation of
the associated Parameters (b) on the basis of diag-
nosing how the prior Model Structure fails (a).
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Figure 3. Model Structure Identification (the process of

falsifying confident hypotheses) in the Bedford
Ouse Case Study (third reach): (a) Reaeration
Rate Constant (day~1); (b) Maximum Specific
Growth-Rate Constant for Phytoplankton (day‘1);
(c) BOD Decay Rate Coefficient (day'1);

{d) Rate Constant for addition of BOD to reach
from Suspended Solid Matter (day'1 [gm‘3 BOD]

[gm‘3 ss]=1); (e) Death-rate Constant for Phytoplankton

(day=1); (f) Rate Constant for "Loss" of Suspended

Soils from the Reach (day~1).
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Figure 4. Model Structure Identification (the process of
speculation) in the Bedford Ouse Case Study:
Recursive Estimates for the Net Rates of Addition
of Chlorophyll-A to each Reach of the System
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Figure 5.

Model Structure Identification (the process of
speculation) in the Bedford Ouse Case Study:
Comparison of Recursive Estimates for the Net

Rates of Addition of DO to each Reach of the System
with the observed Chlorophyll-A Concentrations at
the Downstream Boundary of each respective Reach.



