
Environmental Research Letters

ACCEPTED MANUSCRIPT • OPEN ACCESS

Empirically-based spatial projections of U.S. population age structure
consistent with the shared socioeconomic pathways
To cite this article before publication: Erich Striessnig et al 2019 Environ. Res. Lett. in press https://doi.org/10.1088/1748-9326/ab4a3a

Manuscript version: Accepted Manuscript

Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process,
and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an ‘Accepted
Manuscript’ watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors”

This Accepted Manuscript is © 2019 The Author(s). Published by IOP Publishing Ltd.

 

As the Version of Record of this article is going to be / has been published on a gold open access basis under a CC BY 3.0 licence, this Accepted
Manuscript is available for reuse under a CC BY 3.0 licence immediately.

Everyone is permitted to use all or part of the original content in this article, provided that they adhere to all the terms of the licence
https://creativecommons.org/licences/by/3.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content
within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this
article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required.
All third party content is fully copyright protected and is not published on a gold open access basis under a CC BY licence, unless that is
specifically stated in the figure caption in the Version of Record.

View the article online for updates and enhancements.

This content was downloaded from IP address 147.125.57.176 on 04/10/2019 at 06:45

https://doi.org/10.1088/1748-9326/ab4a3a
https://creativecommons.org/licences/by/3.0
https://doi.org/10.1088/1748-9326/ab4a3a


 

 

Empirically-based Spatial Projections of U.S. 

Population Age Structure Consistent with the 

Shared Socioeconomic Pathways 

Erich Striessnig1, Jing Gao2, Brian C. O‘Neill3, Leiwen Jiang4,5 

1 Wittgenstein Centre for Demography and Global Human Capital (IIASA, VID/ÖAW, WU), Austria 

2 University of Delaware, USA 

3 University of Denver, USA  

4 Population Council, USA 

5 Asian Demographic Research Institute (ADRI), China 

  

Page 1 of 17 AUTHOR SUBMITTED MANUSCRIPT - ERL-107399.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



 

Abstract 

Spatially-explicit population projections by age are increasingly needed for understanding bilateral 

human-environment interactions. Conventional demographic methods for projecting age structure 

experience substantial challenges at small spatial scales. In search of a potentially better 

performing alternative, we develop an empirically-based spatial model of population age structure 

and test its application in projecting U.S. population age structure over the 21st century under 

various socioeconomic scenarios (SSPs). The model draws on 40 years of historical data 

explaining changes in spatial age distribution at the county level. It demonstrates that a very good 

model fit is achievable even with parsimonious data input, and distinguishes itself from existing 

methods as a promising approach to spatial age structure modelling at the global level where data 

availability is often limited. Results suggest that wide variations in the spatial pattern of county-

level age structure are plausible, with the possibility of substantial aging clustered in particular 

parts of the country. Aging is experienced most prominently in thinly-populated counties in the 

Midwest and the Rocky Mountains, while cities and surrounding counties, particularly in 

California, as well as the southern parts of New England and the Mid-Atlantic region, maintain a 

younger population age structure with a lower proportion in the most vulnerable 70+ age group. 

The urban concentration of younger people, as well as the absolute number of vulnerable elderly 

people can vary strongly by SSP. 

 

Keywords: Spatial population, age structure, population projections, Shared Socioeconomic Pathways  

Page 2 of 17AUTHOR SUBMITTED MANUSCRIPT - ERL-107399.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Introduction 

The spatial pattern of a population’s distribution is a key driver of its vulnerability to many social 

and environmental stresses. Existing literature has found its influence to be larger than or at least 

equal to the influence of physical environmental factors, such as heat waves and sea-level rise 

(Hallegatte et al. 2013; Neumann et al. 2015; Bryan Jones et al. 2015; Hauer, Evans, and Mishra 

2016; Lehner, Deser, and Sanderson 2018). Age is another important demographic factor 

determining people’s vulnerability to all sorts of hazards, however, only few studies have focused 

on it so far, in particular in conjunction with its distribution across space (Marsha et al. 2018). 

Large-scale (continental to global) long-term (e.g. over the entire 21st century) spatial projections 

of age-structured populations are scarce. Most such projections are local in scale and short-term in 

range (Swanson, Schlottmann, and Schmidt 2010; Salvo, Lobo, and Maurer 2013). Many future 

impact assessments, therefore, take place at the national level (Dong et al. 2015). 

A key obstacle to the production of large-scale, long-term spatial projections of age structure is 

the difficulty of applying conventional demographic approaches to such spatial and temporal 

scales. The dominant method for population projections is the cohort-component approach (Burch 

2018), deriving directly from the demographic equation balancing births, deaths, migration, and 

population growth, with each component differentiated by age. Popularized in the 1920s and 1930s 

(Whelpton 1936), the most widely used national-level population projections today all rely on this 

method (United Nations 2019; Lutz et al. 2019). Its application to smaller spatial scales is 

challenging, because it requires both sufficient data on and future projections of age-specific 

demographic rates for each spatial unit. In data-poor environments, such information on current 

conditions is typically not available, and the sheer number of assumptions that must be made for 

future projections for small regions is an obstacle, especially for migration which can vary greatly 

over space and time.  

Nonetheless, county-level population projections that include age structure have been carried out 

for the U.S. based on the cohort-component method (Bierwagen et al. 2010; U.S. Environmental 

Protection Agency 2017). However, some input assumptions (fertility and mortality) were not 

varied at the county level, therefore leaving out some degrees of heterogeneity. To reduce data 

requirements, Hauer (2019) projected U.S. county-level population and age structure by 

extrapolating rates of change in each age group, and then scaling the size of all population sub-

groups up or down to match a target aggregate national projection. This method does not allow for 

spatial variation in outcomes between national scenarios, making it perhaps better suited to shorter 

time horizons. A simpler scaling method has been used for Europe, where Terama et al. (2017) 

downscaled national level age structure projections from a cohort component model to sub-

national regions, proportionally to their age structures in the base year, a method that does not 

allow for changes over time in the relative age distribution across regions. 

Seeking for a potentially better performing alternative, we explored empirically based model 

development methods. We conducted thorough and systematic exploratory data analysis of best 
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available datasets with global coverage. Summary results for U.S. counties presented in SI section 

1 revealed the following spatial and temporal patterns: 

1. In any historical census, U.S. counties can be distinguished by roughly four distinctive age 

profiles. Similar age profiles appear spatially clustered during earlier census years (1940-

1960) but evolve to show dispersed spatial patterns in recent censuses (1970-2010). 

2. Over time, most counties switch among different age profiles for various reasons, e.g. aging 

of the baby boomers or internal migration. Meanwhile, counties with extreme age profiles 

(e.g. those that are home to large college-aged populations or retirement communities) tend 

to be more temporally static. 

3. The relationships between changes in county-level age structure and its potential predictors 

are complex and non-linear. 

We developed a new model using regression trees to project changes in county age structure based 

on current and past county demographic characteristics, reflecting these empirical patterns. 

Regression trees can model multiple non-linear relationships simultaneously. During training, the 

model empirically identifies the best way to model counties with different age profiles and other 

demographic characteristics as separate cases using different “tree branches”. When making 

projections, at each future decadal time step the model projects county age structure change using 

whichever branch of the regression tree corresponds to its demographic characteristics at that point 

in time. This is analogous to the observed pattern that counties switch among different age profiles 

over time. In addition, because regression trees treat different parts of the data range separately, 

they are robust to extreme values, which may occur more frequently under certain future scenarios. 

Altogether, the characteristics inherent to regression trees make them a particularly suitable 

method for modeling the highly temporally variant phenomenon of age structure change. 

We used this model for adding five age groups to existing projections of the spatial distribution of 

population that contain age structure information only at the national aggregate level. The five age 

groups satisfy most needs for age structure information by providing outcomes for age groups such 

as the elderly, children, and the working age population (see Methodology). The existing national 

and spatial population projections were developed for the Shared Socioeconomic Pathways 

(SSPs), a set of five alternative scenarios of future societal development. The SSPs have been 

widely used in climate and other global change research (O’Neill et al. 2017; Striessnig and 

Loichinger 2016; Jiang and O’Neill 2017; Riahi et al. 2017). They include national-level 

projections of population by age and sex (KC and Lutz 2017), and gridded spatial projections of 

population counts (without age detail) at 1/8-degree and 1-km resolutions (Bryan Jones and 

O’Neill 2016; Gao 2017). Differences between SSPs are described in detail in the Methodology, 

as well as SI section 2. 

In spite of its parsimonious requirements for input variables, the model achieved very good fit 

when validated over historical data (see SI section 3), a prime prerequisite for its application to 

future projections in data-poor contexts where the cohort-component approach is not an option. 
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The model’s primary covariates capture the counties’ demographic histories inscribed in their own 

age structures, with some metrics accounting for potential spatial autocorrelation among 

neighboring counties. The model’s estimates are stable over long time horizons even without 

constraints at the national level (SI section 4). Moreover, unrealistically high change rates 

(implying unreasonable birth, death, or migration rates) cannot occur using the methodology 

presented here, as the range of possible outcomes of our regression trees are by definition within 

the range observed in the past. 

Hence, our empirically based approach is a promising candidate for a well-performing global 

model under data-sparse conditions. Though the work presented here is for the U.S. only, we are 

currently exploring the usability of our approach for other countries, and plan to integrate the 

lessons learnt to develop a global model eventually. The U.S. is a good first test case because here 

different SSPs lead to very different future trajectories of population growth, population aging, 

and spatial distributions of population (SI section 2).  

 

Methodology 

Exploratory Analysis: Before setting up our model, we used a range of exploratory data analysis 

and visualization techniques to understand the patterns in the U.S. decadal census data since 1940, 

which is the first U.S. census available with sufficient age and spatial detail (Manson et al. 2018). 

Most notably, we applied hierarchical cluster analysis to county-level age profiles from every 

census, respectively. Our findings suggested that while in the 1940s and 50s, age structure across 

the U.S. was characterized by marked spatial autocorrelation at the county level, the pattern 

observed since the 1970s followed a different regime in which spatial autocorrelation of age 

structure is far less pronounced (SI section 1). This is consistent with existing literature confirming 

the profound sociodemographic changes that the U.S. underwent up until the 1970s that 

substantially altered the spatial patterns of age structure (Jackson 1987): With the onset of the baby 

boom, average family sizes increased markedly, leading to an increased demand for larger homes 

outside America’s urban cores. The mobility revolution facilitated longer commutes and the move 

to the suburbs, while the gradual westward shift of the population was still ongoing. 

Considering these patterns, we trained our empirical model on the census data from the more recent 

decades only (1980-2010) during which the observed spatial patterns in age structure are consistent 

and to keep the 1970 census wave for validation purposes. For future projections, it is unlikely that 

the data generating process will return to the pre-1970s regime, given that it has already been stable 

for more than four decades. Note, however, that although spatial autocorrelation of age structure 

has declined, variation in age structure across counties remains high (see Figure S1), driven mainly 

by persistent urban-rural differences (for details see Figure S3 of the SI Appendix). 

Model Design: To avoid small numbers in thinly populated rural counties and to obtain more 

robust modeling results over long time horizons, we use five aggregate age groups (0-19, 20-29, 
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30-54, 55-69, 70+). This choice of age ranges reflects earlier findings from studies of age-specific 

mobility patterns observed in the U.S. in the second half of the 20th century (Johnson et al. 2005; 

Johnson and Winkler 2015) while trying to account for differences in household consumption 

behavior over the lifecycle (Ando and Modigliani 1963; Mason and Lee 2013; Lee and Mason 

2011), as well as age-specific vulnerability patterns (Jonkman et al. 2009; Zagheni, Muttarak, and 

Striessnig 2016). Modeling each age group separately helps keeping the structure of our trees 

simple and interpretable. The regression trees are fitted using the rpart package in R Statistical 

Software (Therneau et al. 2015). The process of pruning the trees, as well as the detailed structures 

of all five trees are described in SI section 2. 

Our dependent variable, is the change in the relative shares (𝛥𝑟𝑠), i.e. the difference in the 

population share of each age group in the total county population over a decade (i.e., between two 

census waves) relative to the same difference observed at the national level:  

 

𝛥𝑟𝑠 =  
𝑠ℎ𝑎𝑟𝑒𝑡,𝑐𝑜𝑢𝑛𝑡𝑦 − 𝑠ℎ𝑎𝑟𝑒𝑡−1,𝑐𝑜𝑢𝑛𝑡𝑦

𝑠ℎ𝑎𝑟𝑒𝑡,𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙 − 𝑠ℎ𝑎𝑟𝑒𝑡−1,𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙
 (1) 

 

Thus, we are modelling county-level deviations in the change in the share over time from the same 

change at the national level. This approach allows us to automatically account for the national level 

change that is occurring in the aggregate scenario for which we are producing a spatial age 

structure outcome, and to focus the model on the differences across counties relative to the national 

trend. We tested various alternative specifications of the dependent variable, including the raw 

age-specific shares of population or differences in those shares compared to the national shares. 

The best fit to the observed shares was achieved by the change in the relative share variable in 

equation (1). 

In choosing independent variables, care was taken to use variables that would be available in the 

context of projections (see full list in Table S3). Lacking information on the drivers of population 

change at the county level, temporally lagged shares of all five age groups in the total county 

population up to three census waves in the past allow us to study the influence of historic 

demographic shifts on future developments. The use of lagged shares of all age groups to project 

the future changes in a single age group provides a cohort perspective that mimics the behavior of 

a cohort-component model. If, for example, a baby boom produces an especially large share of 

population in the 0-19 age group in one time period, older age groups should expect to grow in 

future time periods as the baby boomers age. The lagged structure of the full set of age groups 

allows for this dynamic to be represented in the model. To rule out the possibility of linear 

dependence among our predictors, we conducted a thorough collinearity investigation (see SI 

section 3.1 for details). 
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Training and Validation: The trees use lagged information on age structure from the previous 

three census waves to project changes over a given decade. We trained the model by closely 

reproducing observed change over the 2000-2010 decade using patterns and trends observed in the 

census waves of 1980, 1990 and 2000. While training the model on one decade of change may 

seem limiting for supporting century-scale projections, additional confidence in the applicability 

of the model comes from (1) the use of three preceding decades of data in estimating the model, 

(2) a validation test run on a different decade, and (3) the fact that the 2000-2010 decade is not 

unusual with respect to trends since at least 1970 (see Figure S1).  

As shown in section 3.2 of the SI, the goodness of fit for all five regression trees is confirmed by 

values of R2 close to and above 0.90. To evaluate the model’s generalizability, we applied it to 

estimate changes over the 1990-2000 period, using data from the census waves of 1970, 1980, and 

1990. The performance continues to be high with values of R2 well above 0.80 for all five trees. 

In addition, no spatial pattern could be identified in the residuals, supporting the quality of the 

model for short-term modeling.  

Longer-term performance of the model would be supported by successfully capturing demographic 

processes related to fertility, mortality or migration. To examine whether this is the case, we tested 

the trees’ sensitivity to county level migration and crude birth rates, even though information on 

those would not actually be available for use in future projections. Neither variable added to the 

trees’ explanatory power, as the trees did not pick them and were able to find appropriate surrogate 

variables, implying that the informational content of these omitted variables is already captured by 

lagged age structures and neighborhood characteristics, and that our projection model is reasonable 

without them. 

National Population Projections: The main input to our future projections are the SSPs. At the 

national aggregate level, population aging is the dominant trend in all five of them, but the speed 

of aging varies between them (Figure S5) and so do the drivers of population change. While under 

SSP5 (“Fossil-fueled development”) rich OECD countries, including the U.S., are assumed to 

experience high fertility and migration combined with low mortality, which limits the rate of aging, 

the opposite is true under SSP3 (“Regional rivalry”), leading to faster aging of the U.S. population. 

Under SSP2 (“Middle of the road”), all three of these drivers are assumed to be at medium levels, 

yet the resulting national share of elderly population in 2100 is relatively large, almost the same 

as in SSP3, albeit for very different reasons. While under SSP3 population aging is driven by low 

fertility and low migration, under SSP2 it is the higher net in-migration in the first half of the 

century that leads to increased aging once migration starts to decline in the second half of the 

century, as is the assumption with all SSPs. Despite all SSPs sharing the same assumptions for the 

U.S. with regard to urbanization (Jiang and O’Neill 2017), they lead to substantially different 

spatial population outcomes at the sub-national scale (Bryan Jones and O’Neill 2016).  
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Our statistical model is capable of distinguishing between those different national level pathways, 

providing different sub-national distributions of aging depending on which demographic forces 

drive them. 

Projection: Given the SSPs as input, we then used the five regression trees to project county-level 

population shares of the five age groups independently from each other in ten-year steps covering 

the 2010-2100 period. At each ten-year step, the regression trees determine which branches are 

used to make projections for any given county. Depending on the evolution of each county’s age 

related characteristics, different tree branches may be used for the same county at different times. 

To ensure that (1) the five age-group shares of each county sum to one, and (2) the adjusted 

outcomes are consistent with the national aggregate age structure given by the SSPs, we 

renormalized the counties’ age-group shares estimated by the trees using iterative proportional 

fitting (IPF). Running this renormalization at every time step avoids potentially larger errors 

caused by the accumulation of small mismatches over time. It is worth noting that the regression 

trees performed highly, and the sum of their unconstrained estimates within each county is already 

close to one. As shown in SI section 4, IPF leads only to minor changes to the age structures 

predicted for individual counties.  

The outcomes of our county age structure model depend on the existing national and spatial 

population models in two main ways. First, national population size acts as a constraint on the 

spatial population model, and that model produces population size and density by county that 

enters the county age structure model as independent variables. Second, national age structure is 

used as a constraint on the county age structure model as part of the IPF. Therefore, national-level 

population outcomes, such as high growth rates and a young age structure from a high fertility 

scenario, and spatial population outcomes, such as concentrated growth in urban areas, will both 

influence the results from the county age structure model. These factors interact with the current 

and lagged demographic conditions across counties to produce future outcomes. What would not 

be reflected in the model are changes in spatial patterns of demographic change relative to 

historical patterns. For example, if domestic or international migration patterns strongly shift their 

spatial pattern, so that new cities and states become preferred destinations (or origins in the case 

of domestic migration), this will not be reflected in the spatial population model and therefore also 

not in the county age structure model. If the age structure of rural-urban migration changes 

substantially relative to historical trends, this will change the nature of rural-urban differences in 

age structure away from historical patterns and not be reflected in the model. 

 

Results 

We applied the regression tree methodology described above to project county-level age structure 

for the conterminous U.S. consistent with all five of the SSPs. We show results for the Middle of 

the Road scenario (SSP2) as well as for SSPs 3 and 5, which bound future assumptions on the 
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drivers of population change in the U.S.; results for the remaining SSPs are reported in the SI 

Appendix section 5. 

Figure 1 shows observed (1940-2010) and projected (2020-2100) proportions of total county 

population in five different age groups. In accordance with the general trend of population aging 

predicted for the U.S. under all five SSPs, the proportions of children under the age of 20, as well 

as the population of working age (30-54), decrease over time. In contrast, there is a steady increase 

in the population share above age 70, an age group particularly vulnerable to the consequences of 

climate change, such as increased frequency and intensity of heat waves. While at the national 

level this proportion is predicted to increase from around 9 % in 2010 to between 26 % (SSP5) 

and 34 % (SSP1) in 2100, results show that in 25 % of counties, that proportion can rise to between 

33 % and 40 % by the end of the century. In places like Charlotte County, FL, where the proportion 

70+ is already high in 2010 (24 %), it is projected to reach between 40-50 % in 2100. This would 

be twice as high as observed in any single county in 2010 (27.6 % in Sumter County, FL). The 

spatial distribution of these sub-national differences in aging are explored below. 

 

 

Figure 1. Observed (1940-2010) and projected (2020-2100) proportions of population at the U.S. county level in five different age 
groups under SSP2 (top), SSP3 (middle), and SSP5 (bottom). Boxes around the median indicate inter-quartile range. Outliers which 
are more than 1.5 times inter-quartile range from the median are indicated individually as dots. 
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We also find a large increase in the number of counties with very little population under the age 

of 20. While currently there are no counties with less than 5% of their population under age 20, in 

SSP2 and SSP5 this figure grows to 10 % of all counties, and in SSP3 it reaches 35 % of all 

counties by the end of the century. This result is driven by (1) fertility decline at the national level, 

most strongly in the population decline future described by SSP3 where the total fertility rate 

(TFR) for the U.S. in 2095-2100 is assumed to reach 1.47 (compared to 1.87 today; CIA 2017), 

corresponding to a decline in the proportion aged 0-19 at the national level from 27 % in 2010 to 

15.3 % in 2100; (2) negative population momentum, as the proportion of potential parents is also 

going down steadily; (3) the increase in the proportion of elderly population above the age of 70; 

and (4) a spatial model that keeps the variance in proportions of total national population across 

counties approximately constant over time (for details see Bryan Jones and O’Neill 2016). Only 

under SSP5 is national level TFR expected to rise to above replacement level (2.29) by the end of 

the century, limiting the number of counties with very small proportions of children.  

The substantial aging of the population even in the Middle of the Road scenario is reflected 

spatially throughout the entire conterminous U.S. (Figure 2). Yet counties with large cities, as well 

as their high-density neighboring counties, which attract large amounts of working age population 

and their children, maintain a relatively high proportion of youth and conversely, a lower 

proportion of elderly people. This is most visible in California, the East Coast and in the Chicago 

area. The thinly populated counties in the Midwest and the Rocky Mountains experience aging 

most drastically.  

 

Page 10 of 17AUTHOR SUBMITTED MANUSCRIPT - ERL-107399.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



 

Figure 2. Observed (2010) and projected (2050, 2100) proportion 0-19 (left) and 70+ (right) under SSP2. 

 

Although similar at the national level, patterns of aging by the end of the century differ 

substantially between SSP2 and SSP3 at the sub-national level. These two scenarios have similar 

shares of national population in the 70+ age group late in the century, but most counties have a 

larger fraction of population in this age group in SSP3 than in SSP2 (Figure 3), while urban 

counties, where most of the population resides, are affected by aging to a lesser extent in SSP3. 

The more intense urban concentration of younger people in SSP3 is due to the differences in the 

drivers of population change at the national level, as well as their manifestation at the county level. 

As the total U.S. population starts to shrink in the second half of the century under SSP3, a large 

proportion of counties are left with almost no population under the age of 20 due to sustained low 

fertility. Yet the empirical model allocates more youth to places with both high population density 

and growth that are surrounded by counties with similar characteristics. Positive neighborhood 
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effects, resulting from the gravitational force of large agglomerations, diminish with distance from 

the urban cores and lead to the pattern that urban areas maintain higher fractions of children than 

rural areas despite population decline at the national level.  

A similar effect is at play in SSP5, which also produces a more intense concentration of the 

younger population in urban areas than in SSP2 (Figure 3). In this case, however, it is the more 

rapid population growth (rather than a shrinking population) that favors concentration of younger 

age groups in and around cities. In addition, the higher population density plays a role in creating 

more extensive urban and suburban areas of relatively young populations. Aggregated results for 

all five SSPs in rural and urban counties across four macro-regions of the conterminous U.S. can 

be found in Figure S15 of the SI Appendix. They support the finding of more rapid aging in rural 

America described here, particularly in the Western parts of the country. 
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Figure 3. Difference in proportion 70+ between SSP3 and SSP2 (top) and SSP5 and SSP2 (bottom), U.S. in 2100. 

 

While results in terms of proportions of population by age give a clearer indication of age structure 

changes separate from overall population growth, total numbers of people in each age group are 

also an important indicator of vulnerable populations. For example, the spatial distribution of the 

total numbers of people above the age of 70 by county (see Figure S16) shows that SSP5, which 

has a younger population overall than SSP2, actually has a larger number of people in the 70+ 

category in most counties due to the strong population growth in that scenario. Conversely, SSP3 

has an older age structure but fewer people in the oldest age group due to slower overall population 

growth. Across SSPs, the spatial distribution of the number of people above age 70 does not shift 

in dramatic ways, in contrast to the substantial differences in the spatial distribution of population 

shares above age 70.  

 

Discussion 

Our projections provide plausible county level age distributions that are consistent with existing 

national and county-level population projections based on each of the SSPs.  

Spatial projections of age-structured populations are critical to understanding risks posed by 

hazards from climate and other environmental changes, as well as to consumption behavior that 

may drive those changes. Our model provides a new category of demographic information to 

existing projections of U.S. population distribution that makes those projections much more 

relevant to risk analysis. We find the possibility of wide variation in age structure outcomes at the 

county level, as well as substantial aging clustered in particular parts of the country: Across all 

SSPs, cities and surrounding counties maintain a younger population age structure with a lower 

proportion in the most vulnerable 70+ age group. The largest of these clusters can be found in 

California, as well in the southern parts of New England and the Mid-Atlantic region, ranging 

roughly from Albany to Richmond. Remote rural counties, on the other hand, tend to age more 

rapidly. According to the U.S. National Climate Assessment’s recent Climate Science Special 

Report (2017), climate change impacts will also vary regionally. Northern regions of the U.S. are 

expected to see the largest increases in the intensity of heatwaves, while chronic, long-duration 

drought will become increasingly likely in the Southwest. Combining societal projections with 

projections of environmental hazards such as heat waves, droughts, or floods can yield improved 

estimates of potential impacts on the most vulnerable segments of society with the potential for 

improving the rigor of intervention efforts and lowering their cost.  

The model also represents a novel method in demography for projecting future age structure that 

is especially well suited to regions with data limitations. Although it differs from traditional cohort-

component methods that treat components of population change directly, it takes these into 

consideration indirectly through proxy variables whose ability to implicitly capture the effects of 
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demographic rates has been successfully tested. We anticipate that the model will be useful for 

projecting spatial age structure in places where the data requirements of conventional models 

cannot easily be satisfied.  

Data limitations for supporting empirically-based models used to make long-term (almost century 

scale) projections pose a common challenge across many fields, and the work presented here is no 

exception. The use of changes observed over one decade to project changes over a century can be 

problematic, as the changes in age structure shares observed over that decade can be anomalous. 

However, our analysis draws on 40 years of data (1970s through 2000s), substantially more than 

many projection models in common use in the global change field, and our exploratory data 

analysis (see SI section 1 for details) confirms that this period is in fact characterized by a data 

generating process that is both stable and markedly different from the one observed in the earlier 

(1940-1960) period.  

Future work is planned to improve the model in the following aspects: (1) Investigate possibilities 

to generate future scenarios beyond historically observed patterns, e.g. using empirical models 

trained for different countries as representations of different sociodemographic trends. (2) 

Incorporate a larger number of age groups. This requires dealing with the trade-off between model 

performance and the number of age groups tracked simultaneously. (3) Improve validation to 

better assess the model’s performance in long-term projections. (4) Allow city size and distance to 

city to vary dynamically across time and SSP. (5) Integrate further important dimensions of 

population heterogeneity besides age, e.g. gender, race or educational attainment. 

 

Data Availability Statement 

The data that support the findings of this study are openly available at DOI. >>link to be included 

before formal publication<<. 

 

Code Availability Statement 

Codes and materials used in this work are available upon requests. Correspondence should be 

addressed to striess@iiasa.ac.at. 
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