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There are practically no quantitative tools for understanding how
much stress a health care system can absorb before it loses its abil-
ity to provide care. We propose to measure the resilience of health
care systems with respect to changes in the density of primary
care providers. We develop a computational model on a 1-to-1
scale for a countrywide primary care sector based on patient-
sharing networks. Nodes represent all primary care providers
in a country; links indicate patient flows between them. The
removal of providers could cause a cascade of patient displace-
ments, as patients have to find alternative providers. The model
is calibrated with nationwide data from Austria that includes
almost all primary care contacts over 2 y. We assign 2 properties
to every provider: the “CareRank” measures the average num-
ber of displacements caused by a provider’s removal (systemic
risk) as well as the fraction of patients a provider can absorb
when others default (systemic benefit). Below a critical number
of providers, large-scale cascades of patient displacements occur,
and no more providers can be found in a given region. We quan-
tify regional resilience as the maximum fraction of providers that
can be removed before cascading events prevent coverage for all
patients within a district. We find considerable regional hetero-
geneity in the critical transition point from resilient to nonresilient
behavior. We demonstrate that health care resilience cannot be
quantified by physician density alone but must take into account
how networked systems respond and restructure in response to
shocks. The approach can identify systemically relevant providers.

coevolving networks | dynamics of collapse | robustness |
quality of care | patient-sharing network

For the last 50 y, health-related expenditures in almost all west-
ern countries have been growing faster than national incomes

(gross domestic product) (1). This has raised concerns about
the sustainability of health care systems all across the Orga-
nization for Economic Cooperation and Development (2). In
several developed countries, health care demand will further
increase, because the population is aging and the prevalence
of chronic disorders is increasing (3). The situation is exacer-
bated by impending retirement waves (4). Is there a point beyond
which these pressures will severely impair the quality of care?
If so, how close are we to it? To answer these questions, a
quantitative understanding of the resilience of health care sys-
tems is required. Resilience quantifies the rate of recovery and
the extent to which a system is able to recover from disruptive
events (5). In health care systems, such events include sudden
increases in patient numbers or reductions in the number of
health care providers within a specific region. Resilience captures
how fast and the extent to which it is possible to deliver ade-
quate health services to the entire population in the wake of such
a shock.

Health care is undergoing a digital revolution (6) driven by
the increasing availability of observational health care data (7).
As countries adopt systems of shared electronic health records,

such data become available at national scales (8). These systems
enable analysts to answer questions, such as “Who did what,
when, for whom, where and at what costs?,” for practically all
medical services in a given country. For instance, in Austria, it
has been shown that such data can be used to identify genetic,
environmental, and epigenetic disease risks (9, 10) or to investi-
gate how individual health care providers coordinate with each
other in the treatment of patients (11–14). Health care providers
are embedded in multiple formal and informal relationships,
because they share information or patients. These relationships
can be formalized in so-called patient-sharing networks, which
consist of nodes (providers) connected by links if they share the
same patients (15, 16). Such networks show large structural vari-
ations that can be related to differences in the cost and quality of
care (17–19).

Here, we show how to quantify the resilience of health care
systems with respect to changes in local densities of health
care providers by means of dynamical simulations of structural
changes in the patient-sharing networks. Further, we show how
this method can be used to benchmark and stress test 121 Aus-
trian regions (political districts) in terms of their resilience. The
central idea of our approach is as follows.

Significance

We shock a full-scale simulation model of a national health
care system by locally removing health care providers. We
measure resilience of the system in terms of how fast
and to what extent it can recover its ability to deliver
adequate health services to the population. The model is
based on actual regional primary care networks in Aus-
tria, where all patients and physicians are represented as
anonymized avatars that are calibrated with nationwide data.
After removal of a critical fraction of physicians, networks
generically undergo a transition from resilient to nonresilient
behavior, where it is impossible to maintain coverage for all
patients. These “stress tests” allow us to quantify regional
health care resilience and identify systemically risky health
care providers.
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Fig. 1. Schematic representation of patient displacement dynamics. (A)
Doctors are represented as nodes (size represents the number of patients
treated per year). They are linked if they share patients in the patient-
sharing network, A (black arrows). The color represents their current
capacity; green means that they have capacity, and red means that they can
no longer accept new patients. (B) Doctor a retires at time step 1; his/her
patients are distributed to other doctors according to the weights of the
links from a to b and from a to c (yellow arrows). This, in turn, changes the
capacity of the other doctors. (C) As c has reached its capacity limit (red),
he/she must send patients to other doctors (blue arrows from c to b and
d). This creates a cascade of patient displacements of size 2. D–F show the
same steps as in A–C in a simulation of a realistic environment. Doctors are
localized (due to data protection) at random locations within a district, and
a real patient-sharing network is used. (E) A doctor is removed, and his/her
patients are shared (yellow). (F) Those doctors who reach their capacity send
excess patients to others in a second round (blue). At this point, all patients
are cared for, and the model dynamic terminates.

Consider 4 physicians a , b, c, and d who share patients with
each other: say 20% of a ’s patients have also visited b, and 10%
have seen c (Fig. 1). Links between physicians may arise for a
multitude of reasons (e.g., because b is a ’s holiday locum, a is
on maternity or sick leave, etc.). How doctors share patients is
given by a network, A, in which doctors are nodes connected by
patient-sharing relations. Assume that, at time t =1, doctor a is
closed for business. As 20% of a ’s patients already have a treat-
ment relationship with b, it is natural to assume that many of
these patients will now seek treatment with b. The removal of
node a induces a displacement flow of patients along the link
from a to b but also from a to c. By receiving new patients
from a , both b and c will get closer to their maximum capac-
ity. In Fig. 1B, this is shown by the change in node color. Green
means high spare capacity; red means that the capacity limit
is reached. In the example, c now has exceeded its capacity
(received more patients from a than can be treated within rea-
sonable time). Doctor c must, therefore, in the next time step
send the excess number of newly inherited patients to yet other
doctors (along the links in the patient-sharing network), here to
b and d (Fig. 1C). Nodes b and d get closer to their limits but
are still capable of absorbing more patients. The removal of doc-
tor a leads to a cascade of patient displacements of size 2. In
other cases, where doctors are closer to their limits, cascades can
become large and eventually span a large region of the patient-
sharing network.

A highly resilient health care system should be able to redis-
tribute a ’s patients with a minimal number of patient displace-
ments in a short interval of time. The initial shock (a ’s removal)
is then quickly absorbed, and the system becomes fully func-
tional again soon afterward (all patients find a new doctor).
A nonresilient system, however, is characterized by cascades of

patient displacements that push multiple doctors beyond their
capacities. If a substantial number of patients do not find a new
doctor, the health care system will essentially lose its ability to
deliver adequate care. We can identify 2 related indicators to
distinguish resilient from nonresilient behavior. The higher the
resilience of a health care system, 1) the lower the number of dis-
placements that the removal of doctors causes, and 2) the lower
the number of patients unable to find a new doctor. The sys-
temically beneficial doctors (i.e., those who contribute most to
regional resilience) are those who take over the largest shares
of patients.

Cascading processes are examples of dynamical phenomena
that take place on networks (20). To model such processes, a
localized perturbation is considered by shocking or removing a
single node. This initial event spreads via the links of the per-
turbed node to other nodes, which might trigger another step
in a cascade as those nodes propagate the shock to their neigh-
bors and so on. Such processes can be formulated by means
of recursive centrality measures (e.g., the PageRank algorithm)
(21) or models that consider load distribution on networks (22).
In concrete applications, these network measures often require
modifications that reflect specific properties of the system under
consideration, such as the propagation of shocks between finan-
cial institutions (23), failures in power grids (24), or cascading
failures in interconnected infrastructures (25).

Here, we develop a data-driven computational framework
to estimate the impact of doctor removals through cascading
processes of displacements on patient-sharing networks of prac-
tically all physicians in Austria. We construct patient-sharing
networks A(δ) of primary care providers (PCPs) for 121 districts
δ from an extensive dataset containing about 97% of all outpa-
tient contacts over 2 y in Austria (9–12) (SI Appendix, Fig. S1
and Text S1). We formulate a dynamical model that simulates
the removal of one or several providers and computes the size
and duration of the resulting cascades of patient displacements
in the following way.

Every PCP i is a node in the patient-sharing network with
weighted directed links from i to j . The link strength, Aij , cor-
responds to the number of patients of i who occasionally also
visit PCP j . In every quarter of a year q , every PCP i treats pq

i

unique patients. The average number of unique patients who a
doctor sees in a quarter is µi =

∑T
q=1 p

q
i /T , where T is the total

timespan of the data. Every PCP i is further characterized by
a fixed capacity ci , which is estimated from historical data. In
the simplest case, we assume ci =(1+C )µi , where C is a free
model parameter.

The model dynamic takes place on a timescale, t , that is
shorter than a quarter, say days. Initially, each patient is assigned
to the PCP who he/she most frequently consulted in the past.
A PCP is in 1 of 3 internal states: available, fully booked, or
unavailable (removed) (SI Appendix, Text S2). Assume that a
PCP i is removed from the network of district δ at time t .
Those µi patients who usually visited PCP i now transfer to
j with probability Pij =Aij (δ)/

∑
k (Aik (δ)). We allow for the

possibility that not all patient displacements follow the links
of the patient-sharing network. With probability Q , patients
select a random doctor in the same district with a uniform
probability (SI Appendix, Text S3). To every PCP i , we assign
the average number of displacements, Di , that i ’s patients
must undergo before finding a new and available PCP. Rank-
ing PCPs according to their value of Di (from high to low)
identifies physicians with the largest contributions to systemic
risk; we call this rank the CareRank of a PCP. For each PCP
i , we also measure average systemic benefit, Bi , which is the
fraction of displaced patients who end up at i averaged over
removals of all other providers in the district. The displace-
ments, Di , and benefits, Bi , are proxies of the systemic risk
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and benefit contributions of every doctor i ; a definition is in
SI Appendix, Text S4.

We use this model to quantify the resilience of individual
regions in which multiple PCPs are removed. The set of doctors
removed at time t =0 is denoted by S. The size of this initial
shock f is the fraction of PCPs who become unavailable at t =0,
f = |S|/N (δ), where N (δ) is the number of doctors in district
δ. Following this shock, we count the number of patients in dis-
trict δ unable to find an available PCP, LS(f , δ) (SI Appendix,
Text S4). We refer to LS(f , δ) as the number of “lost patients.”
For each district, δ, we are interested in the smallest shock size,
fc(δ), for which LS(f ≥ fc , δ)> 0 holds in a certain fraction of
model runs. This means that there will be patients no longer
able to find primary health care services within a given district.
At this critical shock size, the district has reached its “resilience
point.” The parameter, fc(δ), serves as our resilience indicator.
We show that, surprisingly, the critical doctor removal density
fc(δ) is practically uncorrelated with regional physician densi-
ties, a conventional indicator to assess health care coverage (26).
To explore how the resilience indicators depend on properties
of the PCPs and the networks that they are embedded in, we
use 2 different types of linear regression model (SI Appendix,
Texts S5 and S6).

We consider 4 alternative model variants. First, we assume
that doctor capacity, ci , can be estimated from the historically
observed fluctuations in a doctor’s patient numbers (i.e., ci is
proportional to the variance of pq

i ). Second, ci is implemented as
a multistep function to take differences in staffing into account
(that is, physicians hire additional staff, which increases their
capacity by a constant factor). Third, the next variant is equal to
the main variant except that patients seeking a new PCP do not
contact the same doctor twice during their search (they perform
a self-avoiding random walk on the patient-sharing network).
Fourth, the dynamics of the main model variant is studied on
the countrywide patient-sharing network without being broken
down into districts. SI Appendix, Text S7 has a description of
these model variants.

Results
The model dynamic is illustrated in Fig. 1. Initially (Fig. 1D),
all doctors operate well below their capacity (green). At time
t =1, PCP a becomes unavailable (Fig. 1E). His/her former
patients seek a new doctor on the patient-sharing network (yel-
low in Fig. 1E). PCP c now is fully booked. At t =2, patients
can no longer be accommodated by c and move from PCP
c to nodes b and d (Fig. 1F). After all patients find a new

PCP, the dynamic stops. A web-based interactive visualiza-
tion of a simplified version of the model on a real regional
primary care network is available online (https://csh.ac.at/vis/
med public/pcn-resilience) (SI Appendix, Text S8). Structural
properties of these patient-sharing networks have been reported
previously (11–14).

We now study the validity of 2 central model assumptions.
First, we test whether patients who lose their PCP are indeed dis-
placed along links in the patient-sharing network. We identify as
removed doctors those who had at least 100 quarterly patients on
average in the first year but no patients in the second half of the
second year; 28,795 patients with at least 2 different physicians
were displaced this way. Of those, 84% most frequently consulted
a PCP in 2007 who they had already seen in 2006. In these cases,
the removal of a doctor did indeed lead to displacements along
the patient-sharing network. Second, we inquire to what extent
the nationwide patient-sharing network can be decomposed into
individual districts; 77% of links between doctors from the same
district are nonzero compared with 3.6% of links between doc-
tors of different districts being nonzero (SI Appendix, Fig. S1 and
Text S1). How these interdistrict links influence the model results
is investigated in the model variant that uses the countrywide
patient-sharing network.

Systemic Relevance of PCPs. We next determine the average num-
ber of patient displacements, Di , caused by the removal of
doctor i , S = {i}. As the model is not deterministic, we per-
formed 500 model runs. The median of µi , the average quarterly
patient number per PCP, is 945 (corresponding to about 10
patients per day) (Fig. 2A). Fig. 2B shows the relation between
µi and average displacements Di . The most systemically rele-
vant PCPs cause almost 3 displacements per patient on average,
while many cause slightly more displacements than the theo-
retical minimum of 1. Doctors with displacements close to this
minimum tend to have low patient numbers within the range
from 20 to 500. The majority of physicians have patient num-
bers between 500 and 2,500, for which we observe displacements
that vary between 1 and 3. These 2 “modes” of the bivariate
distribution of physicians in the µi −Di plane result in a weak
linear correlation (Pearson’s R=0.52, p value of p< 10−4).
To explore how differences in Di relate to other network or
demographic properties, we perform univariate and multivari-
ate regression analyses (SI Appendix, Fig. S2, Table S1, and
Text S6). Overall, high-impact doctors tend to have high num-
bers of patients, low numbers of links with high weights, low
numbers of closed triadic relationships (low clustering), and low

Fig. 2. Systemic risk profile of Austrian health care providers. (A) The distribution of average quarterly patient numbers µi of doctors has a median
of 945 patients. (B) Displacements, Di , for every doctor in Austria tend to correlate with patient numbers µi of doctors (Pearson’s R = 0.52, p< 10−4).
The color encodes the number of doctors with a given (µi , Di) pair. (C) Systemic risk contributions of doctors, Di , show only little correlation with
their systemic benefit (Pearson’s R = 0.42, p< 10−4), Bi . The 4 quadrants indicate regions where Di and Bi are above or below their population
medians, respectively.
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Fig. 3. Number of patients, LS (f , δ), who cannot be cared for as a function
of the fraction of unavailable PCPs, f , in district δ. LS (f , δ) is shown for 2 dif-
ferent scenarios where doctors are removed in a different order: sequence A
(green) and sequence B (blue). Labels display indexes of the removed PCPs
at each step (i.e., the green sequence first removes PCP 2 followed by 13,
10, and so forth, whereas the blue sequence first removes PCP 4 followed
by 7, 3, etc.). The shaded area envelops all observed values of LS (f , δ) (100%
CI). Sequence B gives a scenario where 44% (8PCPs) have to be removed
before losing patients, whereas 22% (4PCPs) are sufficient to put the district
in a condition where it cannot care for all patients for sequence A. The red
arrow marks the position of the critical fraction fc, which is the smallest f
such that LS (f , δ)> 0 holds for each observed sequence.

centrality in the network. In Fig. 2C, we show that the systemic
risk contributions of doctors, Di , can substantially deviate from
their systemic benefit, Bi (Pearson’s R=0.42, p value of p<
10−4). PCPs in the upper left region of Fig. 2C combine high sys-
temic risk contributions with low benefit, whereas the lower right
region shows physicians with high benefit and relatively small
risk contributions.

Resilience of Districts. After removal of a single doctor, patients
typically find a new doctor in district δ, LS(f , δ)= 0; no patients
are “lost.” In the situation where a larger fraction f of PCPs is
removed, this can change. We now ask at which critical fraction
fc we find the onset of lost patients, LS(fc , δ)> 0. fc indicates
the location of a regime shift in the model behavior (in the
Introduction).

Fig. 3 shows the number of lost patients, LS(f , δ), as a function
of the shock size f for the district of Reutte in Tyrol. Doc-
tors are removed sequentially. We show 2 different sequences
(green and blue in Fig. 3). The smallest value of f for which
LS(f , δ) becomes nonzero depends on the sequence order. A
critical fc can be defined using the sequence that leads to the
largest (upper bound, red arrow in Fig. 3) or smallest (lower
bound) fc (SI Appendix, Text S4). We perform 500 model runs
(50 different choices of specific sequences S for 10 model realiza-
tions) in which |S|= fN (δ) doctors have been removed initially.
In Fig. 4, the upper bound for the resilience indicator fc(δ) for
each district is encoded in the district color from green (most
resilient) to red (least resilient). For most districts, the transition
occurs after about 30% of the doctors are removed (SI Appendix,
Fig. S3). However, there are also districts where the transition
occurs for substantially smaller (about 20%) or larger (about
40%) values of f . SI Appendix, Fig. S3 shows that the width
of this transition varies substantially across districts. Note that
fc(δ) depends on the choice of the capacity parameter C and
is, therefore, not in itself informative unless reasonable choices
are made. However, the relative ranking of individual districts
by their fc(δ) for regional comparisons can be carried out
for any C .

In Fig. 5, we compare the lower bounds of the resilience scores,
fc , with the de facto standard indicator for health coverage (i.e.,
physician density; number of PCPs per thousand population). SI
Appendix, Fig. S4 shows a similar comparison using the upper
bound of fc . In both comparisons, districts with similar resilience
scores, fc , can have physician densities that vary by up to 1
order of magnitude. The regression analysis additionally shows
a negative correlation of the resilience scores with the district-
averaged clustering coefficient [CC (δ) Pearson’s R=−0.48,
p< 10−4] and a positive correlation with district-averaged
closeness centrality, [CL(δ) Pearson’s R=0.38, p=0.003] (SI
Appendix, Fig. S4). Both of these correlations are confounded
by the demographic properties of the districts (SI Appendix,
Table S3).

Robustness. We obtain qualitatively similar results in all 4 differ-
ent model variants and for a wide range of choices in the model
parameters (SI Appendix, Figs. S5 and S6). Results for the patient
displacements, Di , present no qualitative change with respect to
the standard variant for values of C in the range from 0.01 to 0.1.
For even larger values of C , cascade sizes approach 1 for many
patient displacements, whereas for smaller values, the cascades
might easily span the entire system, even for small shocks. We
study 2 alternative definitions of the doctor capacity, namely by
inferring ci from the observed variance of patient numbers, pq

i ,
and by assuming a multistep function of capacity to take different
levels of staffing into account. The model was also evaluated on
the countrywide patient-sharing network (patients can cross dis-
tricts) and by assuming that patients perform a self-avoiding walk
on the network. Due to computational costs, particularly for the
latter 2 variants, the results of these variants are compared for
the doctor displacements, Di . Overall, we find substantial corre-
lations between all model variants, in many cases with correlation
coefficients close to 1 (SI Appendix, Fig. S5). Considering pair-
wise comparisons between the main model and the other variants
(SI Appendix, Fig. S6), we find the lowest agreement with the
variance definition of doctor capacity (for very low values of C )
and with the multistep variant, where we observe correlations
around 50%. All other correlation coefficients fall in the range
between 70 and 95%. Finally, we confirmed that the relations
between our doctor- and district-level systemic risk measures,
Di and fc , show similar correlations with other demographic
and network properties as in the main model (SI Appendix,
Tables S2 and S4).

Discussion
The primary aim of this paper was to quantify the resilience of
regional primary care networks on a fully data-driven basis. We
were able to quantify resilience on 2 scales. First, we determined
the systemic relevance of individual doctors by estimating the

Fig. 4. Map of Austria that shows the upper bound of the resilience indica-
tor, fc(δ), for all districts. Districts colored in green (red) have a particularly
high (low) resilience: that is, critical removal fractions of fc(δ).
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Fig. 5. Resilience vs. (primary care) provider density. Every circle (size is
proportional to the district population) is a district with its provider den-
sity (number of PCPs per thousand population) on the x axis and the lower
bound of resilience indicator, fc(δ), on the y axis. While there is some cor-
relation between them (Pearson’s R = 0.38, p< 10−4; Spearman’s R = 0.37,
p = 0.0002), physician density can vary by up to 1 order of magnitude for
districts of similar resilience.

number of patient displacements, Di , caused by her/his removal.
Second, we were able to estimate the critical fraction, fc , of PCPs
who can be removed before the regional health care service
breaks down. We developed a full-scale simulation model for
how regional patient flow networks reorganize after the removal
of one or several doctors. By full scale, we mean that the actual
data of each Austrian patient and each PCP are represented as
a fully anonymized individual avatar in the model. Avatars are
used to infer patient-sharing networks and capacities of doctors.
The decisions and behavior of these avatars (that is, how they
choose their doctors based on the patient-sharing networks in
which they are embedded) have been formulated and calibrated
on a large-scale database of observational health care data. The
model has 2 relevant free parameters: the shortcut probability,
Q , that captures whether patients choose new doctors through
the network, or if they base their choice on other factors, and
the capacity parameter, C , that quantifies the willingness of doc-
tors to accept additional patients. The introduction of Q avoids
dynamical traps in the model and has only a marginal impact
on the results. We showed that our main results are robust with
respect to the remaining free parameter, the capacity parame-
ter, C . Therefore, it is unlikely that our results are idiosyncratic
features of particular choices of the used free parameters, but
rather, they reflect genuine structural and dynamical properties
of primary care networks.

Regions show considerable differences in their resilience
scores. Districts with similar resilience can have very different
physician densities (a difference of up to 1 order of magnitude).
Physician density assumes that doctors and patients circulate
freely in their regions and meet with a probability that is inde-
pendent of their actual position. This view neglects the actual
structure of the underlying patient-sharing networks. Our results
show that resilience of the primary care sector is largely a
network effect that is determined by the onset of cascading
processes of patient displacements triggered by the removal of
one or several nodes. After we take the demographic char-
acteristics of the districts into account (e.g., their population,
number of doctors, population density, etc.), we find no signif-
icant correlations between the regional resilience scores, fc(δ),
and a number of conventional network measures (connectiv-
ity, clustering, centrality, and so on). Our measure of resilience,

therefore, quantifies a genuine network capacity effect of how
efficiently the network distributes cascades of patient displace-
ments. Consequently, policy makers should exercise caution
when using physician density indicators to estimate the impact
of changes in the density of care providers on health service
accessibility or coverage, since ignoring the network structure
of the health care system might severely under- or overestimate
these impacts.

Alongside the systemic risk contributions of individual doctors,
we show how to quantify their systemic benefit, Bi , in terms of
how many patients they typically absorb in a patient displace-
ment cascade. We find a large number of PCPs who combine
relatively high systemic risk with rather low systemic benefits or
low risk with high benefit. This is to be expected, since the first
is determined by the flow of patients from the PCP, while the
second is determined by the flow to the PCP. As the network
is not symmetric, these need not be the same. Our results sug-
gest that the health care system could be made more resilient
by protecting doctors with high benefit, Bi (or prioritizing their
immediate replacement after they leave). Our study also high-
lights the necessity for an investigation on how specific structural
changes (e.g., increased number of multiprofessional primary
care centers) impact resilience.

Several limitations originate from the quality of the underly-
ing dataset; a thorough discussion is found in refs. 11 and 12.
For resilience assessment, a relevant limitation is that the data
allow us to reliably estimate only the quarterly patient numbers
of a doctor; we do not observe the maximal number on a given
weekday, which would serve as a better proxy for the capacity.
Capacity might depend on several nonobservable characteristics
in the data, such as working hours, age, sex, number of assis-
tants, infrastructure, or characteristics of the patient set (27).
Capacity might also show seasonal variations and be lower dur-
ing holiday periods. However, while these factors may certainly
be helpful in better determining the capacity of a single doctor,
they can be expected to have little impact on the overall systemic
properties of the networks, such as the existence of a criti-
cal fraction of removed doctors on which nonresilient behavior
sets in. The factors mentioned could certainly shift the posi-
tion of fc(δ) but would not necessarily impact the comparison of
individual districts.

There is a tradeoff between increasing resilience and decreas-
ing overcapacity. One should be careful about interpreting the
proposed resilience scores literally as excess capacity. Currently,
we overestimate regional resilience by providing upper bounds
for how much capacity is needed to avoid disruptions. For
instance, if we choose fc(δ) such that removals of this size will
lead to patients being lost with certainty, there is a chance
that patients may already be lost for smaller shocks. We also
assumed that patients have near-unlimited patience in search-
ing for new doctors, when in reality, they may just abstain from
consulting any further doctors after 1 or 2 unsuccessful attempts.
Factors like these may decrease resilience and thereby, over-
capacity. A diagnosis of overcapacity would also require an
overrepresentation of providers with low financial income.

Our approach can be easily modified to include scenarios other
than removals of doctors. There could be surges in patient num-
bers due to an influx of refugees (28) or an epidemic (29). The
method can be transferred to other settings as long as the con-
struction of a patient-sharing network is feasible (i.e., there is
a negligible number of isolated nodes or groups of nodes). The
structure of patient-sharing networks has already been studied
in the United States (15–19), Canada (30), Italy (31), and Aus-
tralia (32). To transfer our model to other settings, one would,
therefore, need to 1) identify suitable data, 2) identify the rele-
vant health sector (e.g., primary care), and 3) confirm that the
networks are connected (no substantial isolated components).
Most model parameters are estimated from historical data and
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therefore, take the heterogeneity of providers and health care
delivery models explicitly into account. For instance, in Aus-
tria, each federal state has its own social security institution
(as do certain occupation groups), which could confound the
results. In the regression analysis, we showed that our regional
resilience indicators are not driven by such state-level effects,
while adjustments might be necessary to compare doctor-level
results across different federal states. Finally, it should be noted
that the underlying dataset is more than 10 y old and therefore,
cannot be expected to adequately represent the current situation
in Austria.

Our results clearly show that the resilience of health care sys-
tems cannot be described by trivial summary statistics, such as
physician density. Resilience must be understood and measured

as the property of how networked systems absorb and restructure
themselves in response to shocks (5). We show how resilience can
be quantified and used to aid decisions on optimal allocations
and how investments for the increase of regional PCP densities
would be most beneficial. We can estimate the systemic relevance
of individual providers and therefore, identify which providers it
would be particularly important to replace immediately on their
retirement.
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