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Abstract. The requirement to assign precise numerical values to model entities 
such as criteria weights, probabilities, and utilities is too strong in most real-life 
decision situations, and hence alternative representations and evaluation 
mechanisms are important to consider. In this paper, we discuss the DecideIT 3.0 
state-of-the-art software decision tool and demonstrate its functionality using a 
real-life case. The tool is based on a belief mass interpretation of the decision 
information, where the components are imprecise by means of intervals and 
qualitative estimates, and we discuss how multiplicative and additive 
aggregations influence the resulting distribution over the expected values.  

Keywords: Decision analysis, decision software, imprecise criteria weights, 
imprecise probabilities. 

1. Introduction 

There have been many suggestions for how to deal with the strong requirements of most 
decision models to provide precise information. One basic idea is to simply assign 
homogenous distributions over the variables, but this is done to the cost of significant 
information loss, which is why it is preferred to at least ordinally or cardinally rank the 
components such as probabilities, utilities, and criteria weights, and thereafter utilise 
one of several techniques to handle them. A quite useful approach is to utilise surrogate 
weights, derived from the rankings, and several authors have suggested various means 
for that, such as (Stewart, 1993; Arbel and Vargas, 1993; Barron and Barrett, 1996a,b; 
Katsikopoulos and Fasolo, 2006), and many others. The rankings are then transformed 
into numerical weights by dedicated mapping functions. Despite some controversies, 
many surrogate weight methods have been suggested, such as in (Stillwell et al., 1981) 
rank-sum weights and rank reciprocal weights), ROC (rank order centroid), e.g., Barron 
(1992). Entropy arguments also occur, such as (Ahn, 2011; Barron, 1988; Barton and 
Barrett, 1996b; Jaynes, 1968). Yager (1988) used an ordered weighting average method 
and (Fuller and Majlender, 2001, 2003) used the Maximum Entropy OWA (MEOWA) 
method based on minimal variability. The MEOWA is, however, a more complex 



measure than, e.g., ROC, and requires an attitude (similar to a pessimism-optimism) 
parameter. In many situations, there is a need utilise entirely different frameworks for 
representing vagueness, such as the theory of capacities, sets of probability measures, 
interval probabilities, evidence and possibility theories, fuzzy measures, preference 
rankings, and higher-order probability theory, or combinations of rankings with other 
representation formats  (see for example Dubois, 2010; Rohmer and Baudrit, 2010; 
Shapiro and Koissi, 2015; Danielson et al., 2014; Dutta, 2018; Herrera and Herrera-
Viedma, 2000; Jansen et al., 2018 to name just a few in the extensive literature in the 
fields). Often, for these theories to be reasonably transparent to the decision-maker, 
(s)he is required to possess significant mathematical knowledge, and even then 
sometimes the theories include relatively harsh (and hence non-transparent) methods 
for discriminating between decision alternatives. Furthermore, the computational 
complexity can be high in various respects, as we have argued (for an extensive 
background, see, e.g., (Danielson and Ekenberg, 2007)), and there is a strong need for 
user-friendly tool support, while still maintaining a high capacity for evaluations of a 
wide range of assessment types.  

We have during the last 20 years created evaluation software for these purposes. Our 
earlier versions of decision support software have been successfully used in a wide 
variety of contexts, e.g., long-term storage of nuclear waste, land use planning, choice 
of insurance portfolios against catastrophe events, massive-scale energy policy 
formation, gold mining evaluations, health-care planning, assessments for medical 
risks, emergency management, and so on (Fasth et al., 2020; Hansson et al., 2011; 
Komendantova et al., 2018; Mihai et al., 2015; Kivinuke et al., 2015; Caster et al., 2012; 
Larsson et al., 2010).  

In this paper, we demonstrate a significantly extended software tool DecideIT 3.0 
(Preference AB, 2019), implementing our latest findings regarding aggregations of 
distributions. This is a landmark in the handling of imprecise information and differs 
significantly from earlier versions of the tool which handled only a pure interval 
approach with orderings.  In the earlier versions, the result of an evaluation still 
contained unnecessary uncertainty regarding the final outcome. This is due to overlaps 
in expected values making it difficult to discriminate between the alternative options 
involved. By adding second-order information in the way done in DecideIT 3.0, we can 
significantly enhance a decision-maker’s understanding of decision situations when 
handling aggregations of imprecise representations. 

We will thus in this paper discuss the underlying framework enabling evaluations 
that are subject to incomplete input data. The software is able to evaluate decision 
situations including imprecise utilities, probabilities, and criteria weights, and 
qualitative estimates between these components. We avoid the introduction of new 
concepts into the decision models, such as set membership functions or similar 
formalisms, and instead use higher-order distributions of belief in the basic utilities, 
probabilities, and criteria weights which then allows for better and more transparent 
discrimination between the resulting values of the decision alternatives. The ability to 
use ordinary belief distributions over probabilities, values, and criteria weights 
enhances the transparency of the results since no new concepts have to be introduced 
in the evaluation of the model. There are no other known software tools (including 
earlier versions of DecideIT) that are able to calculate the resulting belief in expected 



values based on user input in terms of belief in probabilities, values, and criteria 
weights.  

The next sections cover the decision-theoretical framework and explain the data 
model, and are followed by a description of an application to a real-life problem 
involving the largest Swedish energy provider. The presentation starts with the 
representation model in which the decision data is structured and stored. The tool 
supports elicitation models as discussed in (Riabacke et al., 2012). Having successfully 
elicited and stored the decision data in the tool, the evaluation can commence. Thus, 
the evaluation model is described next. To illuminate the entire process, a real-life 
example concludes the paper, in which the framework and the tool are utilised. 
Needless to say, in a real-life situation, the decision-maker(s) will iterate between the 
elicitation and evaluation steps, and also iterate repeatedly within the steps.  

2. Representation Model 

Probabilistic decision situations are often described by a decision tree, as shown in 
Figure 1.  

 
Figure 1 A decision tree representation of a probabilistic decision situation  

The components of such a decision tree are a root node (also called a decision node), a 
set of probability nodes (representing uncertainty) and consequence nodes (the final 
outcomes). The probability and consequence nodes are in a standard model assigned 



unique numerical probability and value distributions. The semantics employed here are 
as follows: when an alternative Ai is selected, there is a probability pij that an event 
occurs that leads either to another subsequent event or to a consequence with a value 
vijk. A common evaluation rule in this context is the maximisation of the expected 
value; for instance, in the case of alternative Ai in Figure 1, the expected value is: 
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which can be straightforwardly generalised to the multi-linear equation: 

E(Ai) = ,  

where the pij with varying indices denote probabilities and the vij counterparts denote 
values. 

This modelling can be generalised to cases where there is imprecise or incomplete 
information with respect to probabilities and consequence or alternative values, which 
we collect using the concept of a multi-frame to gather all necessary information. We 
discuss the theory for this below in an informal way. 

User statements may be range constraints or comparative statements, which are 
translated into systems of inequalities in a value constraint set. Probability statements 
are collected in a node constraint set. User statements have the following forms: 
• Range constraints: a probability or value yi lies between a1 and a2, denoted as yi ∈ 

[a1, a2] and represented by yi > a1 and yi < a2 for real numbers a1 and a2. 
• Comparisons: yi is larger than yj by a difference from d1 to d2, denoted yi–yj ∈ 

[d1, d2] and represented by yi–yj > d1 and yi–yj < d2, for real numbers d1 and d2. 

Constraint sets thus consist of linear inequalities and probability and value node 
constraint sets, characterising sets of (discrete) probabilities and distributions. 
Probability node constraint sets also involve the usual normalisation constraints 
(∑ j xij = 1) that require the probabilities to sum to one. 

Let T be a consequence tree and N be a constraint set for the variables { n…i…j… }. 
Then we substitute the intermediary node labels x…i…j… with n…i…j…. N is then a node 
constraint set for T if for all sets {n…i1,…,n…im} of all sub-nodes of nodes n…i that are 
not leaves, the statements n…ij ∈ [0,1] and ∑ j n…ij = 1, j∈[1,…,m] are in N. We will 
also use the term multi-frame as a structure 〈T,N〉, where T is a consequence tree and 
N is a set of all constraints sets relative to T.  

Given a set of variables {xi}i∈I a solution to a system X of inequalities in {xi}i∈I is a 
real vector a = (a1,…,an) where each ai is substituted for xi such that every inequality in 
the system is satisfied. (There exists a solution if the substitution of ai for xi in X, for 
all 1 ≤ i ≤ n, does not yield a contradiction). The vector a is called a solution vector to 
X. The solution set for X is {b | b is a solution to X}. A constraint set X in {xi}i∈I is 
consistent iff the system of weak inequalities in X has a solution. A minimal 
requirement is that there must exist some vector of variable assignments that 
simultaneously satisfies each inequality in the constraint sets, i.e., given a consistent 
constraint set X in the variables {xi}, Xmax(xi) =def sup(a  {xi > a} ∪ X is consistent). 



Similarly, Xmin(xi) =def inf(a  {xi < a} ∪ X is consistent). Furthermore, given a 
function f, Xargmax(f(x)) is a solution vector that is a solution to Xmax(f(x)), and 
Xargmin(f(x)) is a solution vector that is a solution to Xmin(f(x)). Finally, the set of 
orthogonal projections of the solution set is the orthogonal hull, more formally defined 
as the set of pairs 〈 Xmin(xi), Xmax(xi)〉 given a consistent constraint set X in 
{xi}i∈[1,…n]. 

An orthogonal hull is thus straightforwardly found by solving a set of linear 
programming problems in standard fashion. 

3. Introducing Second-Order Beliefs 

When specifying an interval, the actual beliefs in the values are probably not uniformly 
distributed. Earlier versions of the DecideIT tool handled such second-order belief 
approaches only to a limited extent in essentially two different ways, by contraction 
analysis and by Monte Carlo simulations. Contraction analysis was done by decreasing 
the interval widths by “contracting” the interval endpoints towards a focal point, the 
latter either being provided by the decision-maker or suggested as the centre of mass of 
the polytope defined by the intervals. Hence, the second-order representation was not 
explicit as the contraction analysis relied on the assumption that points closer to the 
centre of mass have larger belief mass compared to points closer to extreme points of 
the intervals. The amount of contraction (percentage of intervals cut off from the ends) 
required until the expression min[E(Ai) – E(Aj)] < 0 was not satisfied in any single 
point of the remaining polytope (i.e. there existed no solution) was therefore viewed as 
a measure of robustness for a preference in favour of an alternative Ai compared to 
another alternative Aj. The level of contraction was given as a percentage of the original 
intervals but was restricted with respect to the granularity of the analyses. See, 
(Danielson et al., 2007) for an extended presentation.  

The Monte Carlo simulation approach took advantage of transformations between 
randomly generated points in a unit cube and a subset of the cube constructed from a 
user stipulated constraint set. A sampling algorithm was used for generating Dirichlet 
distributed probabilities (Tervonen and Lahdelma, 2007) while a factorization of a joint 
uniform distribution was used for generating ordered utility variables in the case of 
comparative constraints. See (Larsson et al., 2014) for an account of this approach. The 
simulation approach could not allow both for upper probability bounds and for partial 
rankings of consequences and probabilities. 

As a significant improvement over these earlier attempts, the tool now utilises belief 
distributions that indicate the strengths with which a decision-maker believes in these 
different values, and this approach is able to evaluate the results without any of the 
former constraints. The key differences can be seen in Table 1. 

 
Functionality                   Version 1.0 2.0 3.0 
Probabilistic models ● ● ● 
Probability intervals ● ● ● 
Utility/value intervals ● ● ● 
Multi-criteria models  ● ● 
Combined prob. and multi-criteria  ● ● 



Evaluation using contractions 
(first-order information) ● ● (●) 

Evaluation using belief mass 
(second-order information)   ● 

 
Table 1. Key DecideIT functionality 

 
In this extended model, we first introduce parameters for belief distributions for 

probabilities and values; thereafter, we can operate on these distributions by utilising 
additive and multiplicative combination rules for random variables.1  
 
A unit cube is all tuples (x1, …, xn) in [0,1]n and a second-order distribution over such 
a cube B is a positive distribution F defined on B such that 

 
∫ 𝐹𝐹(𝑥𝑥) 𝑑𝑑𝑑𝑑𝐵𝐵(𝑥𝑥) = 1𝐵𝐵 , where VB is the n-dimensional Lebesgue measure on B. 

 
We use different distributions for probabilities and values because of the normalisation 
constraints for probabilities; natural candidates are the Dirichlet distribution for 
probabilities and two- or three-point distributions for values. The properties of the 
Dirichlet distribution as a parameterised family of continuous multivariate probability 
distributions make it suitable for this purpose.  

 
The probability density function of the Dirichlet distribution is defined as 

𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝,𝛼𝛼) =
Γ(∑ 𝛼𝛼𝑑𝑑)𝑘𝑘

𝑑𝑑=1

∏ Γ(𝛼𝛼𝑑𝑑)𝑘𝑘
𝑑𝑑=1

𝑝𝑝1𝛼𝛼𝑖𝑖−1𝑝𝑝2𝛼𝛼2−1 …𝑝𝑝𝑘𝑘𝛼𝛼𝑘𝑘−1 

 
on a set {p=(p1,…pk)| p1,…,pk ≥ 0, Σpi =1}, where (α1,…, αk) is a parameter vector in 
which each α i > 0 and Γ(α i) is the Gamma function.2 
 
The Dirichlet distribution is thus a multivariate generalisation of the beta distribution, 
and the marginal distributions of Dirichlet are beta distributions. For instance, when a 
distribution is uniform, the marginal distribution is a polynomial of degree n−2, where 
n is the dimension of a cube B, i.e. when all α i = 1, then the Dirichlet distribution is 
uniform with the marginal distribution   

 

𝑓𝑓(𝑥𝑥𝑑𝑑) = � 𝑑𝑑𝑑𝑑𝐵𝐵𝑖𝑖−(𝑥𝑥) = (𝑛𝑛 − 1)(1 − 𝑥𝑥𝑑𝑑)𝑛𝑛−2
𝐵𝐵𝑖𝑖
−

 

 
For our purposes, we use a different form, namely the bounded Dirichlet distribution 
over a (normally user-specified) range instead of the interval [0,1]. Bounded beta 

 
1 The detailed background theory of belief distributions and aggregations in this sense is described in 

(Ekenberg and Thorbiörnson, 2001; Ekenberg et al., 2006; Danielson et al., 2007, Ekenberg et al., 2014; 
Sundgren et al., 2009). 

2 The details of this are provided in any standard textbook on Bayesian statistics, such as (Kendall and 
Stewart, 1969). 



distributions are then derived from this, giving four-parameter beta distributions. Thus, 
we define a probability belief distribution through a bounded Dirichlet distribution 
f3(ai, ci, bi) where ci is the estimated most likely probability and where ai and bi are 
the boundaries for the support of the distribution (ai < ci < bi)   (cf. Kotz and van Dorp, 
2004).  

For the values (i.e. without the normalisation constraint), the generalisation to a 
trapezoid is straightforward. A delta distribution is a two-point distribution (uniform or 
trapezoidal) or a three-point distribution (triangular). When we have no reason to make 
any other specific assumptions, for instance when there is large uncertainty in the 
underlying belief distributions involved, a two-point distribution modelling the upper 
and lower bounds (the uniform or trapezoid distributions) seems to be reasonable, even 
if this is seldom the case. However, when modal outcomes can be estimated to some 
extent, the beliefs would probably be better represented by three-point distributions. In 
this case, Beta and Erlang belief distributions generally give results similar to triangular 
distributions. Here, we assume that we only have limited sample data, but that the 
variable relationships are known in addition to the minima, maxima, and modal values. 
For instance, Golenko-Ginzburg (1988) discusses PERT networks and their distribu-
tions. The mean value of a number of three-point value belief distributions f3(ai, ci, bi) 
is μ(λ) = (ai + bi + λci) ⁄ (λ + 2), with λ = 1 for triangular distributions and λ = 0 for a 
two-point uniform or trapezoid distribution.3 For practical purposes, there is normally 
no reason to use any three-point distribution other than a triangular distribution, since 
the risk of underestimation is lower. When the decision data has been successfully 
elicited, the evaluation model can be applied to the data. This is covered in a later 
section, while the next section provides a brief review of our previous approaches to 
deal with second-order beliefs in the DecideIT software. 

4. Evaluation Model 

The evaluation model is based on the resulting distribution over the generalised 
expected utility mentioned above, i.e.,  

E(Ai) = ,  

where we have distributions over the random variables p and v. Let G be a distribution 
over two cubes A and B, and assume that G has positive support for the feasible 
distributions at level i in a decision tree, and for the feasible probability distributions of 
the children of a node xij . Furthermore, assume that f(x) and g(y) are marginal 
distributions of G(z) on A and B, respectively. Then the cumulative multiplied 
distribution of the two belief distributions is 

H(z) = �𝑓𝑓(𝑥𝑥)𝑔𝑔(𝑦𝑦)𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 = � � 𝑓𝑓(𝑥𝑥)𝑔𝑔(𝑦𝑦)𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 = � 𝑓𝑓(𝑥𝑥)𝐺𝐺(𝑧𝑧/𝑥𝑥)𝑑𝑑𝑥𝑥
1

𝑧𝑧

𝑧𝑧/𝑥𝑥

0

1

0Γ𝑧𝑧

 

 
3 Beta-PERT usually uses λ = 4 and Erlang-PERT λ = 3. However, higher values of λ tend to 

underestimate the uncertainties involved.  



where G is a primitive function of g, Γz   = {(x,y) | x∙y ≤ z}, and  0 ≤ z ≤ 1. 
 
Let h(z) be the corresponding density function. Then  
 

h(z) = 𝑑𝑑
𝑑𝑑𝑧𝑧 ∫ 𝑓𝑓(𝑥𝑥)𝐺𝐺(𝑧𝑧/𝑥𝑥)𝑑𝑑𝑥𝑥1

𝑧𝑧 = ∫ 𝑓𝑓(𝑥𝑥)𝑔𝑔(𝑧𝑧/𝑥𝑥)
𝑥𝑥

𝑑𝑑𝑥𝑥1
𝑧𝑧 . 

 
Addition is handled by the standard convolution of two densities, restricted to A and B 
and the distribution h on a sum z = x+y, where we have the belief distributions f(x) and 
g(y) is consequently given by 
 

h(z) =
𝑑𝑑
𝑑𝑑𝑧𝑧

� 𝑓𝑓(𝑥𝑥)𝑔𝑔(𝑧𝑧 − 𝑥𝑥)𝑑𝑑𝑥𝑥
𝑧𝑧

0
. 

 
Iterating this, we obtain the distribution over the generalised expected utility.  
 
4.1 The B-normal Method 
 
The B-normal (business normal) method employs distributions that are qualified by 
assumptions made about the environment in which the method is going to be applied. 
These assumptions involve the frequency of the decisions made and the survival of the 
business over time. They allow methods from both risk and decision theory and 
business administration to be employed in forming the B-normal decision method.  

In the same way as in standard risk and decision theory, we assume that a large 
number of events will occur and a large number of decisions will be made. In this way, 
maximising the expected value becomes a reasonable decision rule, and at the same 
time, the belief distributions over the expected values tend to normal distributions or 
distributions of a similar kind. Note that even when we assume that the expectations 
are estimated a large number of times (due to repeated decision making) and can 
consequently be approximated by a normal distribution, there are three observations in 
particular that should be considered here: 

1. The resulting distributions will be approximately normal only when the original 
distributions are symmetric, which of course is not usually the case for beta and 
triangular distributions. The result will instead be skew-normal. 

2. Even if the original distributions are symmetric, the non-linear multiplication 
operator breaks the symmetry. The result will again be approximately skew-
normal. 

3. To obtain a resulting approximate normal distribution, both the original 
distributions and their aggregations must allow for long tails. In general, this is 
not the case in our situation; this is because our estimates have lower and upper 
limits due to the fact that we use bounded Dirichlet distributions and uniform and 
triangular distributions, yielding approximately truncated normal distributions. 

We therefore employ the skew-normal distribution to generalise the normal 
distribution by allowing for non-zero skewness, i.e. asymmetry. This is accomplished 
by introducing a shape parameter α, where α = 0 represents the standard normal 
distribution, and α = 1 yields the distribution of the maximum of two independent 



standard normal variates. We can then conveniently represent truncated (skew-)normal 
distributions as probability distributions of (skew-)normally distributed random 
variables that are bounded. The skewness of the distribution increases with the absolute 
value of α, and when |α| → ∞, we get folded normal or half-normal distributions. 
Distributions are right-skewed when α > 0 and left-skewed when α < 0. When the sign 
of α is changed, the density is reflected about x = 0. The skew-normal probability 
density function with location ξ, scale ω, and shape parameter α is 

𝑓𝑓(𝑥𝑥) =
2
𝜔𝜔
𝜑𝜑(
𝑥𝑥 − 𝜉𝜉
𝜔𝜔

)Φ(α �
𝑥𝑥 − 𝜉𝜉
𝜔𝜔

�) 

which turns into a standard normal distribution for α = 0. 
Assume that a distribution X has a normal distribution within the interval (a, b). Then 

X, a < X < b, has a truncated normal distribution and its probability density function is 
given by a four-parameter expression that tends to normality as the intervals are 
widened (see for instance Loeve, 1977). 

The B-normal distribution method employs a skew-normal distribution as above, 
adapting it to business use. It expresses the resulting distribution of outcomes of events 
in the context of business operations. The joint distribution of all modelled consequence 
pairs is approximately skew-normally distributed, and this approximation improves as 
the number of consequence pairs increases.  

The adaptations of skew-normality to business use (B-normality) consist of: 
• location and scale parameters that match the expected value and variance 

with the normal distribution while maintaining the same skewness; 
• interpolated truncation toward the theoretical minimum and maximum 

expected values (i.e. the approximation tails extend further); 
• handling of large skew, where standard skew-normality does not hold, by a 

successive limiting of the shape parameter; 
• interpretation of binary risk trees as a going concern (the business operates 

over an indefinite time in the future). 

To employ the B-normal method, the skewed distribution must be aligned to give 
the same variance and expected value as its unskewed counterpart and must display the 
correct shape (skew). Assuming that the desired expected value is E(X), the desired 
variance is σ2, and the desired skew is s. The alignment (matching) of the B-normal 
distribution is done in three steps: 

1. Obtain the shape parameter α that describes the desired skew s of a skew-
normal distribution; 

2. Once the shape parameter α is determined, this changes the variance of the 
B-normal distribution compared to a normal distribution. Adjust the scale 
parameter ω until the variance of the B-normal distribution is σ2 and thus 
coincides with the corresponding normal distribution; 

3. Since the shape and variance have been determined, this in turn changes the 
expected value of the distribution. To obtain the desired expected value E(X), 
use the standard formula for the mean of a skew-normal distribution and 
solve for the location parameter ξ.  



This procedure will yield the parameters α, ω2, and ξ, and once these have been 
obtained, the B-normal distribution is parametrically determined. From this 
distribution, the belief (or confidence) in the different expected values can be 
determined in the same way as with standard normally distributed information. This is 
the core of the evaluation step using the B-normal distribution method. In real-life usage 
of the framework and the tool, a user will iterate repeatedly between the steps and 
phases within the steps. This paper merely describes the essentials of each step. Next, 
we try to illuminate the decision process supported by the tool using a real-life decision 
example from industry that was solved and decided using the DecideIT software tool. 
The example in the next section illuminates the discriminative power of second-order 
information since although the resulting alternative values are overlapping, we can 
quite strongly conclude a clear preference order.  

5. Large-Scale Example 
What sets DecideIT apart is the capacity to enter vague information in a large variety 
of ways and nevertheless get a solid result as is shown in the following example. The 
example is slightly simplified to not obscure the central features of the analyses. It is 
also anonymised but still reflects the essence of the original real-life case. It involves 
the management of a hydropower plant that experiences sensitive weeks in the late 
autumn when temperatures start to fall below 0°C and the water freezes. At this stage, 
it is very important to let ice form with a thick enough surface, acting as a coating, to 
allow water to run free below it. Otherwise, there is a risk of frazil ice jamming the 
flow, possibly causing turbine failure, and also a risk of having to bypass the water 
flow, possibly causing flooding downstream and damage to critical infrastructure. 
However, allowing the ice to form a surface typically requires limiting power 
production, and this may result in large opportunity costs if the market price of electric 
power is high, which it typically is when the temperature drops. The decision problem 
thus involves whether to proceed with the production according to the normal sales 
plan, based upon certain prices (Alt. 1), or to reduce the runoff according to a pre-
defined setting to allow an ice surface to form (Alt. 2). 
 
Due to the multi-faceted consequences of frazil ice and floods, the firm considered the 
following seven evaluation criteria: 

 
Cr. 1: Direct opportunity costs 
Cr. 2: Indirect losses 
Cr. 3: Power station safety 
Cr. 4: Civil utility safety 
Cr. 5: Public safety 
Cr. 6: Local badwill 
Cr. 7: Global badwill 
 

For each criterion, three potential scenarios were defined, and these were modelled as 
three uncertain consequences, each corresponding to one scenario, with interval 
probabilities. Scenario 1 corresponded to the most likely scenario with no severe 



consequences, Scenario 3 corresponded to the worst-case scenario, and Scenario 2 was 
an in-between scenario akin to a previous situation that had occurred approximately ten 
years prior to the analysis. The probabilities were assessed by an expert panel consisting 
of on-site hydrologists and operations managers and were intentionally delivered with 
imprecision, due to a scarcity of historical data and the complexity of the causal effects 
of an increase in water level. Figure 2 shows a screenshot of the software with the 
criteria model window, and Figure 3 shows a decision tree for a criterion, with the 
outcomes for each scenario under the two alternatives. Thus, there was one such tree 
for each of the seven criteria.  
 

 
Figure 2 Screenshot of software with window holding the criteria model. Beneath each node, the 

corresponding scenario decision tree is written out and can be accessed by a mouse click.  

 

 
 

Figure 3 Scenario decision tree for Criterion 1 showing direct opportunity costs,  
with interval probabilities and interval values for consequences 

 
The values of the consequences were either pointwise or interval estimates of the 
monetary costs the firm would incur should a particular scenario occur. The criteria 
weights were calibrated to yield a one-to-one trade-off such that, for example, one Euro 



in direct cost would equal one Euro in cost incurred from securing public safety. To 
sum up, the overall decision problem is shown in Table 1. 
 
Table 1. Criteria weights, scenario probabilities, and consequence values 

Criterion, weight Alternative Scenario 1 Scenario 2 Scenario 3 
Cr. 1 
w1 = 0.002 

Alt. 1 p∈[0.3;1] 
v∈[−50; −10] 

p∈[0.01;0.5] 
v∈[−200; −100] 

p∈[0.01;0.2] 
v∈[−500; −400] 

Alt. 2 p∈[0;0.5] 
v∈[−50; −10] 

p∈[0.5;0.7] 
v∈[−50; −10] 

p∈[0;0.4] 
v∈[−50; −10] 

Cr. 2 
w2 = 0.004 

Alt. 1 p∈[0.12;0.23] 
v∈[−50; −10] 

p∈[0.75;0.85] 
v∈[−200; −100] 

p∈[0.02;0.03] 
v∈[−400; −100] 

Alt. 2 p∈[0.39;0.6] 
v∈[−50; −10] 

p∈[0.4;0.6] 
v∈[−200; −100] 

p∈[0;0.01] 
v∈[−1000; −500] 

Cr. 3 
w3 = 0.2 

Alt. 1 p∈[0.89;1] 
v = 0 

p∈[0.01;0.1] 
v = −50 

p∈[0;0.01] 
v = −50000 

Alt. 2 p∈[0.97;0.99] 
v = 0 

p∈[0.01;0.02] 
v = −50 

p∈[0;0.01] 
v = −50000 

Cr. 4 
w4 = 0.02 

Alt. 1 p∈[0.7;0.9] 
v = 0 

p∈[0.1;0.2] 
v = −500 

p∈[0.01;0.1] 
v = −5000 

Alt. 2 p∈[0.93;0.98] 
v = 0 

p∈[0.01;0.05] 
v = −500 

p∈[0.01;0.02] 
v = −5000 

Cr. 5 
w5 = 0.16 

Alt. 1 p∈[0.97;0.99] 
v = 0 

p∈[0.01;0.02] 
v = −300 

p∈[0;0.01] 
v = −40000 

Alt. 2 p∈[0.99;1] 
v = 0 

p∈[0.97;0.99] 
v = −300 

p = 0 
v = −40000 

Cr. 6 
w6 = 0.18 

Alt. 1 p∈[0.85;0.99] 
v = 0 

p∈[0.01;0.1] 
v = −1000 

p∈[0;0.05] 
v = −45000 

Alt. 2 p∈[0.98;1] 
v = 0 

p∈[0;0.01] 
v = −1000 

p∈[0;0.01] 
v = −45000 

Cr. 7 
w7 = 0.43 

Alt. 1 p∈[0.89;1] 
v = 0 

p∈[0;0.1] 
v = −1500 

p∈[0; 0.01] 
v = −100000 

Alt. 2 p∈[0.97;1] 
v = 0 

p∈[0;0.02] 
v = −1500 

p∈[0; 0.01] 
v = −100000 

 
The weighted expected value intervals of the two alternatives then become 
 
[min(E(A1)); max(E(A1))] = [−11; −1.4]  
[min(E(A2)); max(E(A2))] = [−4.8; −0.2]  
 
which clearly overlap. However, when additionally utilising second-order information 
(see below), we can make use of new analytical means for decision evaluation, foremost 
support and remaining mass, and here the new software features demonstrate their 
practical usability. 
 
The support for alternative Ai as compared to alternative Aj is the joint belief mass 
where E(Ai) > E(Aj). The remaining mass relies on the concept of contraction. 
Contraction analysis consists of shrinking the outer feasible boundaries of the expected 
value for each alternative while measuring max[E(Ai)−E(Aj)]. The contraction level is 
indicated as a percentage, where at a 100% level of contraction, all feasible boundaries 
have been reduced to points (see Danielson and Ekenberg, 2007). The contraction level 



when min[E(Ai)−E(Aj)] > 0 (or the complementary max[E(Ai)−E(Aj)] < 0) is called 
the intersection level, and the joint belief mass remaining over the contracted 
orthogonal hull, when the intersection level is reached, is the remaining mass. The more 
mass that remains after the intersection level, the more confidence we can have in the 
final outcome of the analysis. See Figure 4 for a so-called robustness graph evaluation 
showing these results for the current example. In the figure, the upper graph depicts the 
maximum difference max[E(A1) – E(A2)] and the bottom depicts min[E(A1) – E(A2)]. 
These boundary graph lines form a cone that shrinks as the contraction increases, i.e. 
as the intervals are having more and more of their outer boundaries cut off toward a 
centre (focal) point. In the figure, it can be seen that as a result of the analysis 98% of 
the belief mass lies in the region where E(A1) – E(A2) < 0 which is a very confident 
result indeed and thus serves as a solid recommendation for a decision-maker. 
Furthermore, another result of the analysis is that 95% of the belief mass lies in the 
region to the right of the intersection with the x-axis, i.e. where max[E(A1) – E(A2)] < 
0 (remaining mass). Both of these results together point to a clear-cut result, which 
would not have been possible to obtain without exploiting second-order information in 
the decision evaluation.  
 

 
Figure 4 Second-order decision evaluation. Screenshot from DecideIT software version 3.0. 

 

Another evaluation in the DecideIT tool involves stacked bar charts of part-worth 
values for each criterion in combination with support information. The part-worth value 
φ il for each alternative Ai under Criterion l is simply given by φ il = cw l·cvil where cw l 
and cvil are the focal point weight for Criterion l and the focal point expected alternative 
value for alternative Ai under Criterion l, respectively. The height of each bar is then 
the sum φ i1 + φ i2 + … + φ in for n criteria, which represents the aggregated value of each 
alternative. However, since this information is imprecise, the stacked bar charts are 
supplemented with support information, indicating confidence in the resulting ranking. 
90% support is required for the result to be considered a confident result.  



 

 
Figure 5 Stacked bar chart evaluation showing the value contribution to an alternative from each criterion, 

together with the results of a support analysis showing that the support is 98%. 

 
In Figure 5, the height of the bars is normalized relative to the highest bar, which in this 
case is the bar for Alt. 2 which (as was seen in Figure 3) has a significantly higher value 
in absolute terms. But in the figure, the value differences are relative to the minimum 
value of the selected main scale corresponding to “Direct cost” which is −500. 
Therefore, the bars seem to have similar heights, despite a substantial difference. The 
overall conclusion of the example is that Alt. 2, reduce the runoff to allow an ice surface 
to form, was clearly to prefer. This was also the action that was undertaken as a 
consequence of the decision analysis performed.  

6. Concluding Remarks 

In real-life problems, it is usually impossible to assign precise numerical values to the 
different components of a decision model, and there is hence a need for representation 
and evaluation mechanisms that can effectively handle information incompleteness. 
Higher-order analyses such as belief mass can add both information and transparency, 
thus enabling a much more discriminative analysis than using intervals alone. We 
describe a higher-order framework realised by a software tool, based on an evaluation 
method using a belief mass interpretation of the data involved. We discuss a model and 



its implementation where second-order information is used for analysing both decision 
trees and a multi-criteria models, and as a demonstration, we apply it to an actual real-
life decision problem from industry (power generation) to illustrate our new software 
features by demonstrating how second-order effects affect the resulting distribution 
over the expected values. The framework presented in this paper is put to use for solving 
decision situations using the tool that packages the framework and makes it available 
to real-life decision-makers with limited mathematical and decision theoretical 
knowledge, but an understanding of the decision context. Future work includes the 
design and development of efficient elicitation methods taking advantage of belief mass 
interpretations, and applications of the framework and accompanied software tools for 
analysing complex decision problems in business and public policy. 
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