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ABSTRACT 

This paper investigates the robustness of the Brass child- 

survivorship indirect mortality estimation technique. It develops 

an analytical method for studying the error or bias caused in 

indirect mortality estimates by poor data, badly chosen model 

functions, and specific demographic assumptions that are often 

violated in practice. The resulting analytical expressions give 

insight into the rationale of indirect methods, the conditions 

under which they are robust, and the magnitude of errors that 

occur when specific assumptions are violated. 
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1. INTRODUCTION 

Since the seminal work of Brass and Coale (1968), demographers 

have become highly skilled in the estimation of demographic para- 

meters from indirect data. In many developing countries, the 

classical demographic data sources -- a registration of vital 
events or periodic censuses -- are far from adequate. Brass, Coale 

and their co-workers have developed a set of powerful and less 

demanding techniques based on simple survey or census questions 

to replace the classical methods. 

All of the new methods capitalize on the substantial 

regularity of the age pattern of demographic events across regions 

and time. These methods use the minimum amount of information 

required to match a standard schedule to a specific situation. 

By careful choice, the indirect methods rely on easy-to-obtain 

data which are the least subject to known sources of bias. 

Simulation studies, internal consistency checks, and 

comparisons with independent results have shown the new methods 

to be accurate and reasonably robust. Yet it is natural to exa- 

mine the sensitivity of such methods to the many assumptions on 

which they are built. Just how robust are the methods? To which 



assumptions are they most sensitive? What would their error be 

in certain cases? How might they be corrected? 

Questions like these have been examined before, largely 

through the medium of numerical studies and regression analyses. 

Some results are well known and the methods clearly understood. 

This paper adds to this literature by providing and employing an 

analytic technique for studying the sensitivities of the esti- 

mates to the assumptions that underlie them. This new technique 

provides algebraic expressions which are both more general and 

easier to interpret than computer results. 

One purpose of this paper is to develop an analytic method 

for the derivation of errors in indirect data estimation. A 

second is to use the method to derive general and specific results. 

The resulting expressions give us insight into the rationale of 

the indirect methods, the conditions under which they are appro- 

priate, and the possibilities for correcting the effects of 

inappropriate assumptions. 

We illustrate the use of the analytic method in the simplest 

and most widely used indirect data technique -- the Bass child- 
hood survivorship method. As we will indicate more concretely 

later, we expect the approach to be fruitful for other techniques 

as well. 

Our plan is as follows. In the next section we briefly set 

out the notation and assumptions of the Brass childhood mortality 

method. Section 3 develops a general theory of errors for this 

estimator. We follow this, in Section 4, with four specific 

analyses of practical interest. A concluding section sums up the 

specific and general results for Brass's childhood mortality 

estimator. 



2. THE BRASS CHILD-SURVIVORSHIP TECHNIQUE 

The Brass child-survivorship technique (Brass and Coale 

(1 968) ; Brass (1 975) ) is designed to estimate q (M) , the proba- 
bility of dying before age M . ~  Ideally, to estimate q(M) , we 
would like to identify by census a large group of children at 

birth, follow them M years, and see how many do not survive. 

But in countries where census data are unreliable, this direct 

method is impossible: death and birth records may undercount 

certain social groups and be badly incomplete. 

The Brass technique circumvents census-record problems by 

identifying the group it follows i n d i r e c t Z y ,  as the children ever 

born to a representative collection of mothers who are directly 

questioned. For mothers of the same age x, the ratio of their 

children who have died to all children ever born to them, D,, is 

a mortality statistic both easy to obtain and relatively reliable. 

The only trouble that enters is that the children "indirectly 

surveyed" do not conveniently all have the same age M -- they are 
spread over a range of ages. Dx, the proportion dead, is thus 

a composite of child-mortality levels. ~rass's technique must 

provide a map from the statistic Dx to the sought-for mortality 

level q (M) . 

The technique does this in an ingenious way. In the absence 

of knowledge of the true ratio q(M)/&, it simulates this ratio, 

by calculating it in a "model" or artificially constructed popu- 

lation, chosen under particular assumptions to be similar to the 

population surveyed. With the simulated "translation ratio" k 

 or related methods of mortality estimation, see Feeney 
(1 980) and Preston and Palloni (1978) . 



at hand, the demographer need only multiply his measured Dx by k, 

to estimate the unknown q(M). In its simplest form, the Brass 

estimate for q(M) may thus be written as 1 

To examine this procedure in more detail, we need to dis- 

tinguish between three different populations: the a c t u a l  popula-  

t i o n  which is the target population whose vital rates we want 

to- estimate; the survey .  p o p u l a t i o n  -- children of the mothers 
selected for interview; and the artificial or model p o p u l a t i o n ,  

chosen in the simulation of the translation ratio k. 

TABLE 1 

q(a) = probability of dying c(a) = density or relative 
between birth and frequency of children 
age a  in the a c t u a l  
p o p u l a t i o n  

at "age" a  (whether 
alive or dead) of 
mothers aged x in the 
a c t u a l  p o p u l a t i o n  

qs (a) = probability of dying cS (a) = density of children at 
before age a  for "age" a  (whether alive 
children in the or dead) in the s u r v e y  
s u r v e y  p o p u l a t i o n  p o p u l a t i o n  at the time 

of survey (where mothers 
selected have age x) 

* * 
q (a) = probability of dying c (a) = density of children at 

before age a  in the age a  (whether alive or 
model p o p u l a t i o n  dead) of mothers aged x 

in the model p o p u l a t i o n  

We summarize in Table 1, for each of these populations, the 

functions that play a key role in the technique. "Agen denotes 

' 1n practice, x, the age-group of mothers questioned, is 
chosen so that their children are clustered around M, the estima- 
tion age. Each M therefore has a "corresponding" mothers' age- 
group, x, and for each of these age-groups a translation ratio k 
must be calculated. Often k is keyed to ancillary information. 
Brass (1975) provides a table indexed by the parity ratio, P /P2, 
the number of children ever born to women aged 15 to 19 divi a ed 
by the similar number for women aged 20 to 24. Sullivan (1972) 
provides an equation relating k to P1/P2. Trussell (1975) 
improves this equation by including P2/P3. 



throughout this paper, years since birth whether children are 

living or deceased. An asterisk denotes model or guessed functions; 

and an S-superscript survey population functions. "True" demo- 

graphic functions, the ones for the target population in question, 

have no superscript. A"*" will denote an estimate. 

With the help of Table 1 ,  we may write the proportion of 

deceased children measured by the survey as 

where integration here and throughout the analysis is understood 

to be taken over the appropriate age range of children. We may 

also write the translation ratio k, the ratio of the model pro- 

bability of death by age M to the model proportions deceased, as 

The Brass estimate of q(M) is the survey proportion deceased 

times the translation ratio. Written in terms of the survey and 

the model functions, it becomes 

Note immediately a key virtue of this estimator. If there are 

no errors -- if the survey population perfectly represents the 
actual population, so that qS = q and cS = c, and if the model * * 
functions have been chosen perfectly so that q = q  and c = c 

-- then the estimate is exact: $ ( M )  = q ( M )  . Furthermore, if the 
* ,  

choice-of q =aq, the a: cancels in ( 2 . 4 )  and the estimate is 

still exact. Thus, the demographer need only guess the shape, 

not the level, of the true mortality curve. 

It is clear that in general, the usefulness of ( 2 . 4 )  as an 

estimator for mortality at age M depends crucially on 

whether the survey can be executed with accuracy and on whether 

the model functions can be chosen judiciously. If women sur- 

veyed are representative of their age group in the actual popu- 

lation, if women's ages and children's numbers and deaths are 

correctly reported, and if there are no sampling errors, then 



the survey functions cS and qS correctly represent the true 

population functions c and q, and Dx measures the true proportion 

of children deceased, to all women in the population aged x. If 

vital rates have not changed in the years preceding the survey, 

if the actual mortality function is close to some member of a 

selected model family of mortality functions, if the true age 

density of children whose mothers aged x can be simulated by amode1 

density function calculated from a standard family of model ferti- 
- * * 

lity functions, then c and q can beaccurately chosen to simu- 

late the true population functions c and q.l If all such conditions 

underlying the technique are fulfilled, G(M) will be an accurate 

estimate. If, on the other hand, women interviewed are a biased 

sample of the actual population at large, or if the true morta- 

lity experience in no way resembles that of the model mortality 

family, the estimate 6 (M) will be in error. 

In the analysis that follows, we aim to sharpen our 

knowledge of the robustness of the child-survivorship technique 

to errors in the collection of the survey statistic I + ,  to imperfect 

choice of model schedules, and to certain specific demographic 

assumptions underlying the technique that are likely to be 

violated in practice. We adapt methods of demographic sensitivity 

analysis (Arthur (1 981 ) ) to this purpose. 

* 
'It is usual not to choose c directly from a model famil 

but to calculate it from an assumed model fertility schedule m Y 
as * * 

c (a) = m (x-a) . , --- 

~5~m.l~ dy 

Thus the model age density of children aged a of mothers aged x 
is simply the proportional fertility rate a years ago, when 
mothers were aged x-a. 



3. ERROR ANALYSIS 

We may write (2.4) , the Brass estimator of q (M) , more con- 
veniently in terms of the survey statistic Dx and the model * * 
functions q and c as 

* . Dx . 
/C (a) q (a) da 

This will serve as our standard form of the estimate. 

We have already established that if the survey statistic is 

correct, and the model schedules are chosen perfectly, the esti- 

mator will be correct. This fact provides the starting point for 

our analysis. Observe that errors can arise from only three 

sources: the statistic Dx may be in error; the model schedule * 
c , which must be guessed, may be in error; or the model schedule * 
q , which also must be guessed, may be in error. Our strategy 

will be to analyze errors from each source separately, using the 

correct estimate as a bench mark. In each case we view the 

source of error as a differential or small perturbation from the 

true observation or true vital schedule, and assume the other 

inputs to be correct. We then use differential calculus to 

derive analytical expressions for the differential--the first- 

order approximation to the actual change caused in the estimate 

4 (MI . The differential measures the error in (M) due to errors * * 
in Dx or to incorrect selection of q and c . Stated another 

way, we view the estimate G(M) as a number that depends on three * * 
inputs, the datum Dx and the guessed functions q and c . We 

seek general analytical expressions for the differential in 
A 

q (M) assuming each one of these inputs in turn is in error. * 
(Exactly how a particular error, in c say, arises is not con- 

sidered in this section; it is taken up in section 4.) 



Since the total differential in the estimate is the sum of the 

differentials from each source of error, we may treat each source 

of error separately. 

3 . 1 .  E r r o r s  i n  t h e  S u r v e y  S t a t i s t i c ,  Dz 

Sampling errors, or systematic bias such as caused by the 

omission of children who have died, in general mean that the 

population surveyed misrepresents the actual population. Both cS 

and qS, the age density of children in the survey population and 

their mortality experience, may differ from c and q, the "true" 

density of children of mothers aged x, and "true" mortality 

experience in the population as a whole. This will in turn 

cause Dx to deviate from the "true" proportion dead in the 

actual population. (To say exactly how Dx deviates, would require 

additional assumptions about the nature of the omissions or the 

sampling process.) We seek an expression that links the general 

error or deviation 6Dx in Dx with the error caused in the 

estimate. 

We start by assuming all parts of the estimate are correct, 

so that 

The differential 6q(M) caused by the deviation 6Dx is simply 

(In this case the differential 64(M) exactly equals the error 

4 (M) - (M) . ) In proportional form, we can write 

64 (MI 
Err G(M) = - - 6Dx - 6Dx - -  

q (MI ida)q(a)da Dx 



We have, in this case, the simple general result that the 

proportional error in the estimate equals the proportional error 

in Dx. 

* 
3.2 Error in Choice of c .  

* 
Now assume that only c , the model age density function, is 

in error, and that it deviates from the true function c by the * 
function 6c = c - c. Using standard operations from differen- 

tial calculus we can calculate the associated differential in 

q(M). At the starting reference point, where all parts of the 

estimate are correct, we can write (3.1) in quotient form as 

where U = q(M) Dx and V = Ic b.) q (a) da . We may view the substitu- * 
tion of the guessed density c in V for the true density c as 

causing a perturbation 6c in the function c; this changes V 

(exactly) by the differential 

It causes no change in U, so that 6U = 0. From the quotient 

rule in calculus, we can write the differential ~G(M) as 1 

Therefore, dividing through by q(M) = U/V, the relative change * 
or relative differential in e(M) due to the error in choosing c 

 he reader will recall from elementary calculus that the 
differential is the linear part of the change in f(x) caused by 
the change 6x i~ x. In our case the change 6c is itself a 
function, and 6q is therefore technically called a functional 
(or Frdchet) differential. For details see Arthur (1 98 1) . 



instead of c is 

6^(~) -6V Err $(M) = = - 
q (MI v 

.- Err <(M) = - 

We shall use this general result in our subsequent analyses. 

-. 
3 . 3  Error i n  Choice o f  q 

* * 
NOW assume that c and Dx are correct, but that q , the 

model mortality function, deviates from the true mortality func- 

tion q by the function 6q. In this case the differential in the 

estimate, as before, can be computed from (3.4). Here 

6v = Ic(a)6q(a)da1 

so that 

A 6U U 6V 6q (M) = - - v vv 



Therefore, the proportional error is 

6s (M) - Jc(a) 6q(a) da Err ;(MI = q (MI /c(a) q(a) da 

Again, we shall use this general result in subsequent analyses. 

Note that (3.7) confirms our earlier remark that the 

user need only guess the shape of the mortality curve, not the 

level. If the guessed mortality schedule is off by a multipli- * 
cative constant, so that q =aq, then 6q = (a-1 ) q, and the rela- 

tive error is zero. In this special case the error cancels 

itself. This is one key advantage of the Brass technique. The 

user need not worry about precise choice of the correct level of 

mortality function in the model family. Providing all functions 

in the family have the same more or less "correct" shape, no 

appreciable error will be introduced. 

3.4 P r a c t i c a l  I m p l i c a t i o n s  

The above analytical results provide some guidance for the 

practicalities of using the Brass technique. Little can be said 

about protection against errors in the datum Dx beyond the simple 

observation that "representati~eness~~ in the survey population 

is crucial. 

* 
Choice of the model schedule c (or equivalently, of the * * 

model fertility function m on which c is based) merits 

somecomment. We see from (3.6) that the effect of an error in * 
the choice of c -- in the simulation of the actual population's 
age density of children to mothers aged x -- is, in general, 
neither self-cancelling nor avoidable. There is no recourse * 
beyond fitting c as correctly as possible. This is reflected * 
in the usual practical procedure of basing the selection of c * 
(or of m ) on ancillary information that improves greatly its 

accuracy: the parity ratios P1/P2 and P2/P3 are often used to 

this purpose. 



* 
Choice of the model mortality schedule q is in a somewhat 

better position. We have already seen that what matters for the 

model mortality schedule is that it have the right shape. 

Guessing the "shape" of the unknown life-table may not be easy; 

but here an extra measure of protection can be afforded by a 

wise choice of the estimation age M. We see from the error 

expression (3.7) that, for some M = y, the error would be 

minimised or zero. Unfortunately, however, the "unbiased esti- 

mation age" y varies with the specific character of the error 

function 6q. As a v e r y  rough guideline, we can say that if M 

is set not far from A, the average age of children of mothers 

aged x, the technique will be reasonably robust against errors 

in choice of qfl The reason is that Dx estimates the probabi- 

lity of death, very approximately, at the average survey age A. 

If the technique is forced to map this observation into a q(M) at 

age M far from A,it is forced to extra~olate along a guessed 

mortality function that may have the wrong shape. Error will 

result. 

On this last point, we note in passing that the indirect 

mortality technique is poorly suited to the estimation of infant 

mortality. To estimate q at M = 1 ,  we should, by the above 

advice, include only very young children (with average age about 

one year) in the survey, which means we should interview only 

very young mothers, aged 15 - 20 say. But responses of women in 

this age group are unreliable. Furthermore, the denominators of 

both (3.6) and (3.7) are small for young women, so the estimates 

would be especially sensitive to any errors in the model fertility 

and mortality schedules. The alternative, to interview older 

women, would raise the average age of children surveyed far above 

one. Estimation of q(1) would then be an "extrapolation" using a 

particularly poorly known part of the guessed mortality function-- 

the infant years. In general, indirect mortality estimation 

performs best for ages five upwards. 

'TO first order, lc(a)q(a) da = q(A) + ql(A) l (a-A) c(a)da + lo2da = 
q(A) where A is /ac(a)da,the average age of children, alive or 
deceased, of mothers aged x. In turn, from (3.7), 

Err 3M) - Bq(M)/q(M) - Bq(A)/q(A) , 
which is zero when M is set at A. 



4. SPECIFIC ANALYSES 

In this section we present four specific analyses based on 

the general theory of the previous section. Our goal in these 

analyses is to understand better the structure of the estimation 

technique and to explore its robustness in the face of various 

assumptions that are often violated or only partially fulfilled 

in practice. 

The first and second analyses look at the effect on the 

estimate of fertility and mortality rates that are not stationary 

over time. The third example studies the effect of specific 

errors in the shape of the model mortality schedule. The final 

example uses sensitivity results to explore the tradeoffs 

between census and survey data. 

Two particular age densities and two average values appear 

often in these analyses. As noted above, c(a) is the "age" dis- 

tribution of all children (whether living or dead) of mothers in 

the population aged x. We denote the expected value of a over 

the distribution of c as A; it is the average age of all such 

children, had they survived. A second distribution, 

is the "age" distribution of deceased children of mothers aged x 

in the population. The expected value of a with respect to this 

distribution is Ad; it is the mean present "age' of the non- 

surviving children. Note that the mean age of non-survivors, Ad, 

will be greater than the mean age of all children, A, since 

chances of non-survival increase with age. 



4.1. Changing F e r t i 2 i t . q  R a t e s  

A key assumption of the standard version of the childhood 

survivorship technique is that the fertility and mortality sche- 

dules of the target population have not changed in the recent 

past. But this assumption is frequently not valid, especially in 

developing countries where we most commonly apply the technique. 

It is easy to see qualitatively how falling fertility rates 

would bias the estimate. If we assume mistakenly that present 

low fertility rates obtained in the past as well, and calculate * 
c , the simulated age density of children of mothers aged x ,  using 

a model fertility schedule that underestimates past fertility, we 

will under-calculate the frequency of children at higher ages 

(when fertility was high) and over-calculate it at younger ages. 

Since q increases with age, as in Figure 1, the guessed model * 
proportion dead /c (a) q(a) da (the denominator of the estimate) will 

be smaller than it should be and $(M) will over-estimate. 

Figure 1. 

To make a more precise analysis of this type of error, we 

must assume some specific dynamics for fertility change. Let 

m(y,~) be the fertility rate for y year-old women in the popula- 

tion T years before the survey. And suppose the fall in ferti- 

lity is linear over time, so that 

(Since m(y,O) must be positive, we assume BT is less than one.) 
Suppose also the surveyed population is properly representative 



of the actual population, and that there are no measurement 

errors in Dx. And finally, suppose we have exact knowledge of 

the present true fertility rates in the actual population: we * 
err only by assuming in our calculation of the model c that these 

rates have applied in the past. Under this mistaken assumption we * 
calculate c as 

c*(a) = m (x-a, 0) 

.< m (x-a, 0) da 

Now, the true fertility schedule a years ago equals m(y,a), so 

that the actual age-density of children (of mothers aged x) in 

the population is 

m (x-a, a) 
c:(a) = 

X /, m (x-a ,a) da 

Using (4.2) we substitute (l-Ba)m(x-a,a) for m(x-a,0) in (4.3) 

and obtain 

* 
c (a) = (1 -Ba)m (x-a,a) 

/ ,  (1 -6a)m (x-a,a)da 

where A is the average age of children of women aged x, in the 

actual population. The differential bc is then 

* 
6cta) = c (a) - c (;a) 

From the error expression (3.6) 

A 

Err q ( M )  = - B / (A-a) c(a) q(a) da 
/c(a)q(a)da 



Noting that the expression /ac(a) q(a) da/Jc(a) q(a) da is Ad, the 

average age of deceased children of mothers aged x in the 

population, this becomes 

This is the result we seek. Since Ad always exceeds A, the 

erroneous assumption of fertility constant at present levels does 

indeed cause q(M) to overestimate. The overestimation, moreover, 

is more than proportional to the rate of fertility decline. At 

younger ages, the error is usually not too serious. In a typical 

case1 for 22.5 year old women, A is 2.22 years and Ad-A is 0.83 

years, thus the relative error is 1.7% with f3= 0.02 and 4.6% with 

f3=0.05. But, as we would expect, the error is more serious for 

older women, whose children were born when fertility differed con- 

siderably from present rates. With the same fertility and morta- 

lity schedules as before, for 42.5 year old women A is 14.0 years 

and Ad-A is 0.79 years, yielding relative errors of 2.2% with 

f3=0.02 and 13.4% with B=0.05. 

4.2. Changing Mor taZ i t y  R a t e s  

The bias introduced by mortality rates that fall over the 

period before the sample has been investigated, using numerical 

methods, by Kraly and Norris (1 978) , Sullivan and Udofia (1 979) , 
and Palloni (1 979,1980) . Here we seek analytical expressions. 

Changing mortality is more difficult to analyze than changing fer- 

tility because the mortality rate we seek, q(M), itself depends on 
time. We must first specify the time at which we measure q(M) 

then analyze the error. 

Let q(a,~) be the probability that a child born T years 

before the survey date dies before age a. Our target estimate is 

q(M,M) the probability that a child born M years ago lives to 

today. As in the previous example, we assume a simple model for 

- - 

'~ssum~tions: (1 )q(a) from Brass's European life table 
derivatives evaluated numerically; (2) present fertility from 
Brass Is (1 975) fertility polynomial, s = 14.5; (3) fertility 
deciining linearly with time at rate B=0.02 or 0.05. 



the falling rates: q (a,~) is a multiple of q (a,O) and the level 

falls linearly with time so that 

We further assume that the survey population is representative 

and correctly measured and that we guess the shape of the current 

mortality q (a, 0) correctly. Error enters because we believe mis- 

takenly that this mortality schedule has obtained in the past, so * 
that we select q (a) = q (a, 0). 

The situation is illustrated in Figure 2, where mortality 

schedules of pastcohortsare shown as proportionally higher than 

the present curve, q(a,O). Each age group of children surveyed 

Figure 2. 



will have an associated schedule, with higher mortality schedules 

"belonging" to children born further in the past -- children who 
are older. Children aged one at the time of survey have q(1,l); 

children aged five have q(5,S); and so on. Thus the true morta- 

lity schedule of children in the actual population is the composite 

schedule q(a,a). To avoid excessive notation, we shall write this 

simply as q (a) . 
* 

Now, from (4.6) we can write q (a), the chosen mortality * 
schedule, as ( 1 -  f3a)q(a), so that the relative error in q due to 

believing present mortality rates have held in the past is 

Substituting this into (3.7) yields the relative error expression: 

The sign can be positive or negative, reflecting the fact that the * 
mistaken q appears in both numerator and denominator of the esti- 

mator, and the numerator depends on the choice of M. It is not 

uncommon for A-Ad to be three or four years, yielding large rela- 

tive errors. For instance, with Brass' European standard life 

table and fertility polynomial with S =  14.5, for women aged 32.5 

the value of Ad is 7.8 years, and M is usually taken to be 5 years. 

With f3= 0.02, this leads to a relative error of 5.6%. With 

f3=0.05, the relative error is 14.1%. 

We would expect this error in mortality estimation to be 

larger still if we were to make the further mistake of believing 

that ~ M , M )  -- the mortality estimate of children born M years ago-- 
were an estimate for the mortality, q(M,O), of children born today. 

We have 

We may write (4.7) as 



Combining these yields 

As expected, q overestimates the mortality of those born today, and 

by an amount somewhat greaterthanthe rate of fall of mortality times 

the average time elapsed since the death of the nonsurviving chil- 

dren in the population. To return to the example just given, a B 
of 0.02 now leads to a relative error of 17.41, and a B of 0.05 
now yields an error of 52.21. 

4.3. Errors in the Assumed MortaZitu Pattern 

Here we analyze a case where the assumed or model pattern * 
of mortality q differs from the true pattern in a specific way. 

Brass (1975) has found that a simple two-parameter equation ade- 

quately represents most life-tables. In particular, for any two 

life tables El and L2 observed in practice, one can find para- 

meters a and $ that relate them according to 

logit (1-Ll (a) ) = a + B logit (1-R2 (a) ) . (4.9) 

Let the true life table for the population be R ,  with the mortality 

function q given by 1 - 2. 
* 

Suppose now we guess a mortality function q . By (4.9), we 

can represent it as 

* 
logit (q (a) = a + B logit (q (a) ) . (4.10) 

Values of zero for a and one for B imply that the guessed function 
is correct. We can therefore represent errors in the choice of 

life table as departures of a from zero and B from one. 

In the range under consideration q(a) is generally small, so 

that 
1 logit (q(a)) 21n(q(a)) ; (4.11) 



t h u s  from t h i s  approximation and (4.10) 

F i r s t ,  w e  see t h a t  non-zero va lues  of a correspond t o  e r r o r s  i n  

t h e  l e v e l  of t h e  m o r t a l i t y  f u n c t i o n ,  which w e  showed i n  Sec t ion  3 

t o  have no e f f e c t  on t h e  r e l a t i v e  e r r o r  i n  t h e  e s t ima te .  The 

choice of a t h e r e f o r e  makes no d i r e c t  d i f f e r e n c e .  Second, va lues  

of B d i f f e r e n t  from one correspond t o  an e r r o r  i n  t h e  assumed 

p a t t e r n  of m o r t a l i t y .  W e  may w r i t e  

The r e l a t i v e  e r r o r ,  from ( 3 . 7 ) ,  t h u s  becomes 

/e2a ( ( a )  -1 c (a)  q(a) da ( 4  3)  E r r  :(MI = e2a (qB-' (MI  -1 - jda)za)da 

E r r  ( M I  = e2a{qB-1(M) - AV (qB-1 1 (4.14) 

where Av denotes  an average taken  wi th  r e s p e c t  t o  t h e  d e n s i t y  cd.  

Now, whereas q i n c r e a s e s  wi th  age,  qB-I has  t h e  u s e f u l  

proper ty  t h a t  it remains r e l a t i v e l y  cons tan t  f o r  B c l o s e  t o  one 

i n  t h e  age range over  which deceased c h i l d r e n  a r e  spread.  Thus 

i n  gene ra l  qB-'(M) d i f f e r s  l i t t l e  from Av(q a s  t h e  example i n  

Table 2 shows. 

TABLE 2a 

%te: A s a s  M = 5 and c and q as given in the example in 4.1. 



These e r r o r s  a r e  i n  a l l  c a s e s  less t h a n  h a l f  a  p e r c e n t .  I n  

g e n e r a l  w e  can conc lude  t h a t  p rov id ing  t h e  model m o r t a l i t y  sche-  

d u l e  is  chosen from t h e  c o r r e c t  Brass  l o g i t  f ami ly ,  t h e  m o r t a l i t y  

e s t i m a t e  w i l l  be  r o b u s t  t o  c h o i c e  w i t h i n  t h e  f ami ly  ( cho i ce  o f  a 

and @ ) .  It  i s  t h i s  p r o p e r t y  t h a t  l e n d s  t h e  l o g i t  model f ami ly  

i t s  power i n  i n d i r e c t  e s t i m a t i o n  of  m o r t a l i t y .  

4 . 4  Census Versus Survey S t a t i s t i c s  

When t h e  Brass  p rocedure  i s  a p p l i e d  t o  complete  census  d a t a ,  

t h e r e  i s  no sampling e r r o r  i n  t h e  observed Dx ( a l t hough  t h e r e  

may, o f  c o u r s e ,  b e  b i a s  e r r o r s  cor responding  t o  t h e  e x c l u s i o n  of 

c e r t a i n  mothers.  o r  deceased c h i l d r e n ) .  E r r o r s  a r i s e  because  t h e  * * 
model s chedu le s  c and q a r e  i n c o r r e c t l y  guessed .  With survey  

d a t a ,  on t h e  o t h e r  hand,  t h e  Dx a r e  observed w i t h  random v a r i a -  

t i o n  and a r e  t h e r e f o r e  s u b j e c t  t o  sampling e r r o r ,  b u t  w e  have an  

advantage t h a t  w e  can i n c l u d e  s p e c i f i c  q u e s t i o n s  t h a t  h e l p  i n  * 
gues s ing  c . A t echn ique  due t o  P r e s t o n  and P a l l o n i  (1978) ,  f o r  * 
i n s t a n c e ,  a l l o w s  u s  t o  estimatec w i t h  some accuracy  from add i -  

t i o n a l  su rvey  d a t a .  I n  census  v e r s u s  survey  s t a t i s t i c s ,  t h e r e  

i s  t h e r e f o r e  o f t e n  a t r a d e o f f  between t h e  accuracy  of  t h e  model * * 
schedu le s  c and q and t h a t  o f  t h e  s t a t i s t i c  Dx. The t h e o r y  

developed earl ier  and assumpt ions  abou t  t h e  v a r i a n c e  o f  Dx i n  a 

random sample a l l o w  u s  t o  compare t h e  s i z e  o f  e r r o r  invo lved .  

W e  i l l u s t r a t e  t h e  census  v e r s u s  survey  t r a d e o f f ,  u s i n g  a 

r a t h e r  s imp le ,  s t y l i z e d  example. For  census  d a t a ,  w e  assume t h a t  

Dx i s  c o r r e c t ,  b u t  t h a t  i n  absence  o f  good i n fo rma t ion  on c ,  t h e  * 
model age  d e n s i t y  c has  been c a l c u l a t e d  under a " t y p i c a l " ,  n o t  * 
l a r g e ,  e r r o r  i n  t h e  c h o i c e  o f  model f e r t i l i t y  m , cor responding  

t o  be ing  o f f  by one o r  two y e a r s  i n  t h e  B r a s s  (1975) polynomial  

family .  (The model f e r t i l i t y  s chedu le  h a s  s = 1 4 . 5  o r  13.5, n o t  

s =  15.5 a s  w e  assume f o r  t h e  a c t u a l  p o p u l a t i o n . )  These assumpt ions  
cor respond  t o  p a r i t y  r a t i o s  (P2/P3) o f  0.49 o r  0.54 r a t h e r  t h a n  

0.44 and s o  a r e  n o t  v e r y  l a r g e  e r r o r s .  

* 
For survey  d a t a ,  w e  assume t h a t  c i s  c o r r e c t l y  s e l e c t e d ,  

b u t  t h a t  Dx i s  s u b j e c t  t o  sampling e r r o r .  S ince  Dx i s  a p r o p o r t i o n  

and i s  approx imate ly  e q u a l  t o  q ( A ) ,  w e  can t a k e  t h e  s t a n d a r d  
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deviation of a sample of N births, as the "typicall1 error in D : 
X 

* 
Note that both estimates are equally sensitive to errors in q , 
so we ignore these in the illustration. 

Table 3 lists the absolute values of the relative error in 

the estimate-in this illustrative case for the census estimate * 
(c in error) and the survey estimate at different sample sizes N. 

TABLE 3. 

Census Err G(M) S =  14.5 6.4 2.8 1.9 1.8 1.9 

96 S =  13.5 10.5 5.0 3.5 3.3 3.5 

N =  500 9.5 8.7 8.2 7.9 7.5 

Survey Err 4 (M) N = 2000 4.7 4.3 4.1 4.0 3.8 
96 N = 5000 3.0 2.8 2.6 2.5 2.4 

We do not wish to conclude from this example that a survey is 

better or worse than a census. The user of the technique 
should be aware, however, that where surveys carry with them 

specific information not reliably gleaned from census date, the 

value of the additional information can often compensate for the 

main disadvantage in survey data, namely sampling error. This 

is especially true in the case of young women being surveyed, 

where the mortality estimates are most sensitive to fertility 

assumptions. 



CONCLUSIONS 

I n  t h i s  paper w e  have a t tempted t o  s tudy  t h e  robus tnes s  of  

t h e  Brass Childhood Surv ivorsh ip  m o r t a l i t y  e s t i m a t e  t o  t h e  assump- 

t i o n s  t h a t  u n d e r l i e  it. To do s o ,  w e  i n t roduce  a  method t h a t  

g i v e s  a l g e b r a i c  express ions  f o r  t h e  e r r o r  o r  b i a s  caused by poor 

d a t a ,  badly chosen model f u n c t i o n s ,  and s p e c i f i c  demographic 

assumptions t h a t  a r e  o f t e n  v i o l a t e d  i n  p r a c t i c e .  A s  a  most 

gene ra l  conc lus ion ,  t h e  technique i s  r e l a t i v e l y  robus t  w i th  regard  * 
t o  poor choice  of t h e  m o r t a l i t y  schedule  q  , a s  long a s  t h e  est i-  

mation age M i s  chosen n o t  f a r  from t h e  average age,  A,  of t h e  t a r -  

g e t  c h i l d r e n  -- c h i l d r e n  of mothers aged x .  E r r o r s  caused by poor * 
choice  of c  a r e  more d i f f i c u l t  t o  p r o t e c t  a g a i n s t ;  a d d i t i o n a l  * 
informat ion t h a t  improves t h e  accuracy of c  i s  t h e  on ly  s a f e  

recourse .  And good e s t i m a t e s  of t h e  i n f a n t  m o r t a l i t y  r a t e  a r e  

d i f f i c u l t  t o  o b t a i n  under t h e  Brass  method. I f  w e  a r e  w i l l i n g  

t o  model e x a c t l y  how c e r t a i n  s p e c i f i c  demographic assumptions a r e  

v i o l a t e d ,  w e  can d e r i v e  a l g e b r a i c  express ions  f o r  t h e  b i a s  i n  t h e  

e s t ima te .  

The e r r o r  theory  w e  have developed r e s t s  on an a p p l i c a t i o n  

of d i f f e r e n t i a l  c a l c u l u s .  A s  such,  our  g e n e r a l  e r r o r  expres s ions  

(3.3) , (3.6) and (3.7) a r e  d i f f e r e n t i a l s  -- f  i r s t - o r d e r  approxi-  

mations t o  . the  t r u e  ' e r r o r .  W e  would* expec t .  t h e s e  approximations 
t o  be reasonably c l o s e ,  however, f o r  t h e  reason t h a t  t h e  e s t i m a t e ,  * * 
a s  i n  (3.1), i s  f a i r l y  l i n e a r  i n .  bo th  c  and q . For t h e  s p e c i f i c  

ana lyses  i n  Sec t ion  4 ,  w e  made f u r t h e r  assumptions and approxi-  

mations.  Although n o t  e x a c t ,  our  r e s u l t s  h e r e  should be regarded 

a s  i n d i c a t i v e  of t h e  type  of b i a s  in t roduced ,  i t s  magnitude, and 

t h e  f a c t o r s  on which it depends. 



Although we have not calculated numerical values for all 

the error expressions, they are well suited to computation. 
In specific situations such calculation could help provide error 

bounds or sensitivity analyses. 

Throughout we have been concerned with robustness of the 

technique and the structure of biases introduced. We have had 

little to say about the calculation of correction factors based 

on additional information. 

The child-survivorship technique considered in this paper 

is but one of a growing number of indirect estimation techniques. 

Hill and Trussel ( 1 9 7 7 )  describe similar techniques based on 

data on surviving parents, spouses and siblings. Preston and 

Palloni ( 1 9 7 8 )  introduce a method that replaces the model ferti- 

lity schedule with the age distribution of surviving children. 

Similar analyses of these various techniques could be performed. 

They would provide useful information about the techniques 

themselves and the conditions under which one might be considered 

better than another. 
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