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Highlights

• Model enables investigation of individualized effects of anti-PD1 immunotherapies

• Analysis of tumor burden, treatment times and T-cell loss by cytostatic treatments

• Model-based design of treatment schedules: initiation, duration and repetition

• Classes of patient trajectories including fixed steady states and cyclic attractors

• Combination of targeted and immunotherapy has better effect than mono-immunotherapy
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Abstract

Each patient’s cancer has a unique molecular makeup, often comprised of distinct cancer cell subpopula-
tions. Improved understanding of dynamic processes between cancer cell populations is therefore critical for
making treatment more effective and personalized. It has been shown that immunotherapy increases the
survival of melanoma patients. However, there remain critical open questions, such as timing and duration
of immunotherapy and its added benefits when combined with other types of treatments. We introduce a
model for the dynamics of active killer T-cells and cancer cell subpopulations. Rather than defining the can-
cer cell populations based on their genetic makeup alone, we consider also other, non-genetic differences that
make the cell populations either sensitive or resistant to a therapy. Using the model, we make predictions
of possible outcomes of the various treatment strategies in virtual melanoma patients, providing hypothe-
ses regarding therapeutic efficacy and side-effects. It is shown, for instance, that starting immunotherapy
with a denser treatment schedule may enable changing to a sparser schedule later during the treatment.
Furthermore, combination of targeted and immunotherapy results in a better treatment effect, compared
to mono-immunotherapy, and a stable disease can be reached with a patient-tailored combination. These
results offer better understanding of the competition between T-cells and cancer cells, toward personalized
immunotherapy regimens.

Keywords: combination therapy, immunotherapy, personalized medicine, killer T-cells, side-effects

∗Corresponding author. E-mail: teanai@utu.fi; Postal address: Vesilinnantie 5, 20500 Turku

                  



1. Introduction

Each patient’s cancer has a unique molecular makeup, often comprised of populations of genetically, func-
tionally or epigenetically distinct cancer cell subpopulations that undergo dynamic evolutionary processes
throughout the disease course and treatment periods. The goal of making cancer treatment more effective
and personalized therefore requires an improved understanding of such dynamic processes, including evolu-
tionary competition of space, glucose and other resources between cell populations that lead to the survival
of fitter populations (Gillies et al., 2012; Glauche et al., 2018; Greaves, 2015). Mathematical modelling of
heterogeneous cell population dynamics and treatment responses has shown great promise as a means to
suggest mono- or combination therapies that can theoretically control or even inhibit distinct cancer cell
populations, as well as provide mechanistic insights into treatment sensitivity and resistance for adaptive
intervention designs (Bozic et al., 2013; Bozic and Nowak, 2014; Fischer et al., 2015; Louzoun et al., 2014;
Michor and Beal, 2015; Zhang et al., 2017; Zhao et al., 2016). However, most of the modelling works have
focused on genetic differences and architecture of sub-clones and their evolution, even though also non-
genetic differences between or within tumors are known to contribute to the individual disease course and
personalized responses to therapies in various hematological cancers and solid tumors, including patients
with advanced malignant melanomas.

Melanoma is initiated by DNA mutations in melanocytes with major risk from exposure to ultraviolet light.
Melanomas typically occurs in skin, where it forms lesions of irregular size, shape and color. In localized dis-
ease, common treatment is removal by surgery. However, in the case of advanced malignant melanoma where
the disease has metastasized, multidisciplinary treatments, such as radiation therapy, targeted therapy (e.g.,
BRAF inhibitors such as vemurafinib), chemotherapy (e.g., dacarbazine) or immunotherapy (e.g., anti-PD-1
such as nivolumab and pembrolizumab) are recommended (Bhatia et al., 2009; Garbe et al., 2016; Maverakis
et al., 2015). Novel immunotherapies have greatly improved the response rate, duration and tumor stability
in patients with advanced melanoma even after treatment discontinuation (Huang et al., 2019; Topalian
et al., 2014). However, varying treatment outcomes persist (Gauci et al., 2019), and despite the improved
clinical benefit, a proportion of patients remain non-responsive leading to progressive disease (Robert et al.,
2015). In some cases, the treatment has to be repeated periodically to control the cancer, leading to a
chronic disease (Lipson et al., 2013). However, dormant cancer can also be reached (Aguirre-Ghiso, 2007;
Ossowski and Aguirre-Ghiso, 2010; Schreiber et al., 2011; Senft and Ronai, 2016), where undetectable cancer
persists after treatment.

Immune-checkpoint inhibitors are revolutionizing the treatment of patients with advanced-stage cancers. In
particular, the blockade of programmed cell death protein 1 (PD-1) increases the survival of patients with
metastatic melanoma and other solid tumors. Despite encouraging results, however, clinical outcomes of
anti-PD-1 therapy remain highly variable and durable treatment benefit is limited to a minority of patients
(Keenan et al., 2019). Immune-checkpoint inhibitors reactivate patient’s immune system to defeat cancer,
especially antigen-specific killer T-cells (or CD8+ T-cells). Approximately 20–50% of human cancers ex-
press programmed death-ligand (PD-L1) that inhibits the killer T-cell function by binding to its receptor
PD-1 on the T-cell surface (Chen and Mellman, 2013). Monoclonal antibodies, such as anti-PD-1, block
the inactivating binding of PD-L1 to its receptor protein PD-1 on killer T-cell surface, enabling the T-cell
to attack the tumor (Pardoll, 2012) (see Supplementary Figure 1). Additionally, antigen delivery from
dying cancer cells leads to increased activation of killer T-cells that elevates the regulation of T-cells also
by other mechanisms, for example T-cell self-regulation. To understand the patient-specific responses to
immunotherapies, one needs to take into account the dynamics and competition between active killer T-cells
and cancer cells. Some of the currently unaddressed questions in melanoma therapy concern the timing of
checkpoint blockage, respective benefits of targeted versus checkpoint inhibitors, and how to optimize the
benefit-risk ratio of these regimens (Robert, 2018).

Immunotherapies are also being tested in combination with other cancer therapies, including targeted or
cytotoxic chemotherapies, where the former inhibits the growth of cancer cells by interfering with specific
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target molecules (e.g., oncogenes), whereas the latter prevents proliferation of the rapidly proliferating cells
(e.g. traditional chemotherapy). The use of targeted treatments is preferred as they selectively kill cancer
cells harboring a specific mutation or other molecular aberration that drives the particular cancer cell, and
therefore they often cause less toxic effects in noncancerous cells. However, cancer cell populations without
the aberration often remain resistant against the targeted treatment, and resistant subpopulations may
also emerge by new mutations. For clinical applications, it is important to study the often subtle balance
between the therapeutic efficacy and the degree of side-effects, especially when modelling the response of
chemotherapies that lead to the death of both cancerous and T-cells. Even though heavy treatment dosage
may potentially kill most cancer cells, the patient might not tolerate very intense treatment periods. There
is a need to better understand various treatment choices and their scheduling, as those currently used in the
clinics may not be optimal, but rather a result of trial and error or other considerations, such as cost issues.

In the present work, we introduce a comprehensive model for the dynamics of active killer T-cells and
their competition against distinct cancer cell populations under various treatment modalities, including im-
munotherapies, targeted and chemotherapies. Rather than defining the cancer cell populations based on
genetic differences alone, we consider cell populations that are either sensitive or resistant to a targeted
therapy. Using the model, we make predictions of possible outcomes of the various treatment strategies
and provide experimentally-testable hypotheses regarding, for example, therapeutic efficacy of treatment
schedules (timing and duration) and toxic effects at different doses. As the first disease model, we chose
melanoma, due to its clinical relevance and variety of options actually used in melanoma treatment. We
demonstrate the behavior of the model dynamics in several case studies that model the effects of anti-
PD-1 and targeted therapies, as well as their combinations, in comparison with chemotherapies in virtual
melanoma patients characterized by key model parameters. Our modelling questions focus on the effects
of therapy (particularly, targeted, chemo- and immunotherapy) on the cancer cell populations. In particu-
lar, how do patients respond to these treatments, when using different treatment initiation criteria (Case
study 2), durations (Case studies 2, 3 and 4), dosages (Case study 4) or combinations (Case studies 3 and 4).

2. Materials and methods

2.1. Model overview
The dynamics of cancer cells and active killer T-cells are illustrated in Figure 1 for one cancer cell population
(see Supplementary Figure 2 for multiple cancer subpopulations). Resources R correspond to nutrients, such
as glucose, that flow in to and out of the microenvironment of cancer being modelled. Cancer cells (C) use
these resources to divide. When a cancer cell dies, it delivers antigens, which then cause the activation of
killer T-cells (T ), leading to the increase in their number. The activated killer T-cells divide as well in the
microenvironment. Each of the cell types undergo cell death caused either by apoptosis or drug treatments.
T-cells have also self-regulation that is a way of the immune system to prevent overpopulation of killer T-cells.

The model parameters are listed in Table 1 and functions in Table 2. The cell-type specific proliferation
strategy si is one of the key model parameters as it corresponds to the rate at which cancer cells consume
resources to proliferate. The higher the strategy parameter, the more aggressive is the cancer subpopulation.
Parameter γ specifies how much one resource unit contributes to cell division, assumed to be equal in all
the cancer cell subpopulations.
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R

C T

+ h(dC)
Activation

− (1− ρ)ϕCθT
PD−1/PD−L1 binding

− ξCθT
Elimination

− Death

+ λR̂ − λR

− Death

+ αT(1− pT)T
T−cell division

− Resource consumption

+ Division of cancer cells

Figure 1: Presentation of the model as relations between different cell types (T for active killer T-cells, C for cancer cells) and
resources (R). The other parameters are explained in Table 1. Positive terms increase the density and negative terms decrease
the density with the ellipse pointing the affected entity. Cancer cell death includes both normal cell death and inhibition
caused by targeted treatments and chemotherapies. T-cell death includes normal cell death, self-regulation and death caused
by chemotherapy. Cancer cells consume resources to maintain their proliferative capacity. Killer T-cells get activated when they
encounter cancer cells’ antigens, but cancer cells can also inhibit T-cell activation by binding their ligands (such as PD-L1) to
inhibitory receptors on T cell surface (such as PD-1). Lightning bolt arrows point the relations which are affected by different
treatments. The extension of the model to multiple cancer cell subpopulations is presented in Supplementary Figure 2.
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Symbol Value Unit Meaning

R̂ 1.5 mass/volume Concentration of resources flowing into the region of interest.

λ 1 - Relative flow speed of resources.

si varies - The proliferation strategy of cancer cell subpopulation i.

α0 0.1 1/(timeunit*#C) Lower limit of α(s̄i).

a 1 1/(timeunit*#C) Upper limit of α(si) is α0 + a.

b 0.5 - The strategy value at which α(si) = α0 + a/2

γ 0.8 #C/(mass/volume) Resource usage common to all cancer cells.

K 8 #C The maximum amount of cancer cells in the region of interest.

µT 0.5 1/timeunit Normal apoptosis rate of active killer T-cells.

µi 0.4 1/timeunit Normal apoptosis rate of cancer cell subpopulation i.

w 0.7 - Maximum proportion at which cancer cells limit
each other’s resource consumption.

m varies #T /timeunit Maximum rate of killer T-cell activation.

u 0.1 #/timeunit The amount of antigen delivery giving the half maximal activation.

v 2 - The effect on the slope of h(dC) at u.

αT varies 1/(timeunit*#T ) Birth rate of active killer T-cells.

θ 0.6 - Proportion of active killer T-cells that enter the region of interest.

ε 0.015 - The proportion of delivered antigens by one normal cancer cell
apoptosis, compared with death caused by drugs or killer T-cells.

ξi varies 1/(timeunit*#T ) Rate at which T-cells kill cancer cell subpopulation i.

ϕi varies 1/(timeunit*#C) Rate at which cancer cell subpopulation i makes killer T-cells ineffective.

δ 0.6 1/(timeunit*#T ) Rate of active killer T-cell self-regulation.

c(τ ) varies mass/volume Concentration of a drug at time τ after adding the drug.

Table 1: Parameters of the model. Boldfaced parameters are changed in the case corresponding to cancer microenvironment of a
virtual melanoma patient (see also Tables 2 and 3). #T and #C denotes density unit of T-cells and cancer cells as mass/volume
and - denotes unitless variables.
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Symbol Equation Unit Meaning

α(si) eq. (4) 1/(timeunit*#C) Resource consumption rate specific for subpopulation i.

dC eq. (8) #C/timeunit The antigen delivery rate by dying cancer at time t.

h(dC) eq. (9) #T /timeunit Activation of killer T-cells.

Hp eq. (10) - Hill equation expressing the effect of a cytostatic drug.

pi eq. (11) - Killing effect of cytostatic drug on cell type i

βi eq. (12) 1/timeunit Killing effect of targeted drug on cell type i.

ρi eq. (13) - Effect of immunotherapy.

Table 2: Functions of the model. #T and #C denotes density unit of T-cells and cancer cells as mass/volume; - denotes unitless
variables

2.2. Model dynamics
We obtain the following ordinary differential equations (ODEs) for resources (R), cancer cell subpopulations
(Ci) and active killer T-cells (T ):

dR

dt
= λ(R̂−R)−


1− w

∑
j

Cj

1 +
∑
j

Cj



∑

j

α(s̄Cj )RCj (1)

dCi
dt

= γα(s̄Ci)


1− w

∑
j

Cj

1 +
∑
j

Cj


RCi


(1− pi)


1−

∑
j

Cj

K


− pi


− µiCi − βiCi − ξiCiθT (2)

dT

dt
= h(dC) + (αT (1− pT )− µT )T − αT pTT −

δ

2T
2 −

∑

i

(1− ρi)ϕiCiθT. (3)

These ODEs are explained and justified in more detail in section 2.3. The Runge-Kutta method (RK45)
was used to calculate numerically the dynamics of ODEs with R version 3.4.4 and RStudio version 1.1.453.
Parameter values, especially the ones related to treatments, are altered to obtain multiple situations in the
case studies corresponding to virtual melanoma patients characterized by combinations of model parameters.
These virtual patient cases are presented in section 3.

2.3. Model details
This sub-section describes the model in more detail in the form of ODEs for resources R and each cancer
cell subpopulation Ci in the microenvironment of cancer as well as for active killer T-cells T in the body.
A resource-consumer model was used with logistic equation as the basis of competition between the cancer
cell subpopulations.

2.3.1. Resources and cancer cells
Let R denote the concentration of resource (such as glucose) in the region of interest. Resources flow in and
out following chemostat dynamics, that is, there is a constant inflow of medium with resource concentration
R̂, and the resource concentration of the outflowing medium equals R. The inflow and the outflow have the
same flow speed λ, so that the volume of the resource medium in the region of interest remains constant. In
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the absence of consumption, the resource concentration follows the differential equation dR/dt = λ(R̂ − R)
(Smith and Waltman, 1995).

When the cancer cell density is low, cancer cells consume resources according to the law of mass action
(Tóth and Érdi, 1989), with the proliferation consumption rate α(si). It is assumed that this rate is of the
form

α(si) = α0 + a
si/b

1 + si/b
, (4)

which is an increasing function of si with the upper limit of α0 +a. The upper limit is given since cells cannot
consume resources infinitely fast. Even if cancer cells would lack division regulation, the cell cycle cannot
happen infinitely fast. Additionally, high cancer cell density restricts resource consumption, for example,
through increasing the distance between veins (Tannock, 1968). Therefore the resource consumption rate
α(si) is multiplied by the factor

1− w

∑
j

Cj

1 +
∑
j

Cj
, (5)

which is a decreasing function of the total cancer cell density and where w is the maximum proportion of
restriction. The half saturation is reached when the total cancer cell density is one. However, with the
chosen parameter values, the maximum total cancer cell density is around 0.8 in all case studies investigated
in section 3 due to other restrictions, such as the amount of inflowing resources (R̂), and thus the saturation∑
j

Cj/(1+
∑
j

Cj) < 0.5.

The dynamics of cancer cells are determined by the balance between proliferation and apoptosis. It is
assumed that cells attempt division with a rate that is directly proportional to their resource usage, with
the conversion coefficient γ:

γα(s̄Ci)


1− w

∑
j

Cj

1 +
∑
j

Cj


RCi. (6)

However, not all attempted divisions are successful. In the presence of a cytostatic drug, mitosis is interfered
and the attempted cell division results in the death of the dividing cell with a probability pi, which is
further discussed in section 2.3.3. The division proceeds with the probability of (1 − pi). Furthermore,
the microenvironment of cancer is assumed to have a carrying capacity, e.g., due to limitations of space,
resulting in a variable likelihood of a successful division

1−

∑
j

Cj

K
, (7)

which decreases with the total cancer cell density.
Cancer cells of type i have a natural death rate µi, and targeted drugs increase the death rate by βi, depend-
ing on sensitivity or resistance of the cancer subpopulation to the drug. Modelling of the treatment effects
are discussed in more detail in section 2.3.3. Additionally, active killer T-cells that enter the microenviron-
ment of cancer (θT ) kill cancer cells with the subpopulation-specific rates ξi. If a cancer cell subpopulation
i does not present the antigen that T-cells are specific for, active killer T-cells do not recognize the cells at
all (ξi = 0).
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2.3.2. Active killer T-cells
When cancer cells face cell death, they deliver antigens to the blood stream (Chen and Mellman, 2013). The
total rate at which such antigens are delivered is given by

dC =
∑

i

(
εµi + γα(s̄i)

(
1− w

∑
Cj

1 +
∑
Cj

)
Rpi + βi + ξiθT

)
Ci, (8)

which includes normal cancer cell death (µi), death by drugs as well as death caused by active killer T-cells
(ξiθT ). Here, ε < 1 specifies the proportion of delivered antigens by one normal cancer cell apoptosis (poorly
immunogenic), compared with death caused by drugs or killer T-cells (immunogenic cell death) (Ferguson
et al., 2011; Zhou et al., 2019). The delivery of antigens leads to the activation of antigen-specific killer
T-cells from naïve T-cells, so that killer T-cells are produced with the rate

h(dC) = m− m

1 + (dC/u)v , (9)

which is an increasing function of antigen delivery rate dC , where m is the maximum rate of killer T-cell
activation and h(u) = m/2 and v affects the slope at u. Sigmoid function is chosen since small amount
of antigen delivery might not be sufficient to invoke proper activation due to lack of a robust signal and
complexity of immune response (Motz and Coukos, 2013). The amount of naïve T-cells is assumed to be
large compared with the activation rate h(dC), so that the amount of naïve T-cells can be assumed to be
constant and h(dC) is scaled accordingly.

Active killer T-cells proliferate with the rate αT and they go through normal cell death at the rate µT .
Since killer T-cells do divide, they are inhibited by cytostatic drugs with the rate pT , leading to restricted
proliferation and increased cell death, which are considered toxic side-effects. In contrast, targeted treat-
ment is assumed not to affect T-cells directly but only trough increasing antigen delivery (8) by cancer
cell death. Active killer T-cells circulate in the body until they detect their target and infiltrate into the
tumor microenvironment (Chen and Mellman, 2013). The proportion of active killer T-cells present in the
microenvironment of cancer is assumed to be constant θ for simplicity. These T-cells θT then proceed to kill
cancer cells. However cancer cells use the PD-1/PD-L1 binding to make active killer T-cells ineffective, with
the subpopulation-specific intensities ϕi. If a cancer subpopulation i does not have PD-L1, then ϕi = 0.
The dynamics of the ineffective killer T-cells are not considered in the model. Immunotherapy, such as
anti-PD-L1/anti-PD-1, is be used to prevent the binding of PD-1 and PD-L1 (Chen et al., 2012), and this
happens with the cancer cell-type specific rate ρi, as further discussed in section 2.3.3. The immune system
uses self-regulation to prevent overpopulation of killer T-cells and autoimmune disease (Disis, 2010), and
this is modelled as T-cells interacting with each other with the rate δ.

2.3.3. Treatment modelling
The dose-response effect of a cytostatic drug with a concentration of cp(τ) is modelled using the Hill equation
(Gesztelyi et al., 2012):

Hp = H(cp(τ), IC50p, np) = 1− 1
1 + (cp(τ)/IC50p)np

, (10)

where IC50 is the half-maximal inhibitory concentration and n, so called Hill coefficient (Gesztelyi et al.,
2012), affects the slope of the Hill function at the concentration IC50.

The activity of chemotherapy is based on the proliferation rates of cells. For example, some nerve cells
hardly divide, whereas most cancer cells divide rapidly, making them more vulnerable to the cytostatic
drugs. However, there might be differences in the proliferation rates between cancer cell subpopulations
within the same tumor. Chemotherapy disrupts cell division by damaging benchmarks in the cell cycle
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(Malhotra and Perry, 2003). The more rapidly dividing cell populations reach those benchmarks more of-
ten, and therefore do not have time to repair, causing a cell death. Cytostatic drugs cause failure of division,
followed by cell death, with the probability pi, and so division proceeds with the probability 1− pi, where

pi = p(s̄i) = si
1 + si

H(cp(τ), IC50p, np) (11)

with the subscript p denoting the Hill parameters of the cytostatic drug. In addition to the dose-response
effect by Eq. (10), the probability pi depends on the proliferation strategy si, since the speed of cell division
affects the outcome of cytostatic treatment.

Molecularly-targeted treatments often have less side-effects, and therefore their clinical use is warranted
provided one can select treatments targeting the patient-specific cancer driver mutations or other molecular
targets. In case there are no effective drugs for a resistant cancer subpopulation, there is another way to
control the resistant subpopulation by letting more rapidly dividing, sensitive cancer cells dominate the
resistant ones. The sensitive cancer subpopulation is controlled by the treatment (Zhang et al., 2017). Tar-
geted therapy increases death rate by βi which follows the Hill equation (12). If the drug does not affect
cell type i, the rate βi = 0, otherwise

βi = 1− 1
1 + (cβ(τ)/IC50β)nβ , (12)

where the subscript β denotes the Hill parameters for the targeted drug.

In this model, cancer cells use PD-1/PD-L1 binding to disturb the immune response, and hence anti-
PD-L1/anti-PD-1 can be used as immunotherapy. Immunotherapy reduces PD-1/PD-L1 binding by the
cancer cell subpopulation-specific intensity

ρi = (cρ(τ)/EC50ρ)nρ
1 + (cρ(τ)/EC50ρ)nρ

, (13)

where EC50ρ is the concentration that produces half-maximal efficacy and nρ affects the slope at EC50ρ.
When the drug concentration cρ(τ) gets bigger, ρi approaches 1. This is desired since ρi = 1 would mean
complete prevention of unwanted PD-1/PD-L1 binding modelled by (1− ρi)CiθT .

The treatment is given as an infusion at the beginning of a treatment period, during which the drug
concentration is assumed to be a positive constant for simplicity. After the treatment period the drug con-
centration is assumed to be zero. The length of the treatment period is varied to consider the differences
in drug clearance in the case of infusion. If the treatment is given as daily dosages, it is done only during
the treatment period that determines for how long the daily dosages are given without a break (drug holiday).

2.4. Measures
The following numeric measures are calculated from the model dynamics. They are used to quantify and
compare different situations in terms of medical outcomes.

Treatment effect
The treatment effect is monitored by cancer cell population mean density, calculated as the integral of the
amount of cancer cell population over time divided by the length of the selected time period. Additionally,
the maximum of total cancer cell density (Cmax) quantifies the maximal tumor burden of the patient during
the given time interval. In some cases, the total cancer cell density decreases after reaching the Cmax. How-
ever, even a transient high Cmax may be fatal to the patient. The methods to measure of total cancer density
or cancer burden depend on the cancer type. For melanoma and many other solid tumors, changes in tumor
burden in the clinical evaluation of cancer therapeutics is typically measured with anatomical assessment of
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tumor volume or area using imaging technologies (Dancey et al., 2008).

Side-effects
The side-effects are considered as the amount of T-cell loss caused by cytostatic drugs, which is calculated
as the proportion of the amount of dead T-cells caused by cytostatic drugs to the overall loss of T-cells
(death or changing to inefficient form because of PD-1/PD-L1 binding). The scaling is done so that levels
of multiple situations can be compared with each other.

Time in treatment
Treatments cause also complications other than toxic effects on the patient, such as time spent in hospital,
which results in variable tolerability. Additionally, more treatment cycles usually means more drugs, lead-
ing to higher costs of treatment. To take such burdens of treatment into consideration, we calculated the
proportion of time in treatment by dividing the total period of time spent in treatment by the overall time
interval.

3. Results

We demonstrate the model dynamics using several case studies that correspond to virtual melanoma pa-
tients characterized by key biological model parameters. We especially focus on modelling the personalized
effects of immunotherapies, such as pembrolizumab or nivolumab, which are anti-PD-1 molecules with sim-
ilar mode-of-action. In clinical practice, nivolumab is given to patients every 2nd week and pembrolizumab
every 3rd week. However, the optimal timing and duration of these treatments is poorly understood either
alone or in combination with other therapies, such as targeted therapies (e.g. BRAF or C-KIT inhibitors) or
chemotherapies (e.g. dacarbazine or temozolomide). Therefore, our case studies are determined by changing
personal model parameters that affect the dynamics of active killer T-cells and their competition against
cancer cell subpopulations, for example cancer cells’ effectiveness against killer T-cells (ϕi) or maximum
activation of killer T-cells (m) in an individual patient. Those parameters that are changed in the case
studies are marked with bold font in Table 1, and their values are listed in Table 3. Each case is started
with cell densities of 0.05 for all cell types.

The majority of parameter values were obtained by testing if numerical solutions are reasonable in compar-
ison to the observed clinical outcomes in melanoma and other solid tumors (Aguirre-Ghiso, 2007; Ossowski
and Aguirre-Ghiso, 2010; Schreiber et al., 2011; Senft and Ronai, 2016; Topalian et al., 2014; Wolner et al.,
2018). Additionally, sensitivity analysis of the model parameters was performed to identify those param-
eters having highest effect on the numerical solutions (see section 3.6 and Supplementary section 8). The
doubling times were calculated for melanoma cells in each case study as explained in Supplementary section
3. The doubling times were reasonable compared to experimental results in melanoma cells (Laing et al.,
2003). Killer T-cell parameters were chosen so that small density is reached in the absence of cancer cells if
initial T-cell value is positive (some T-cells remain in the system after defeating cancer). Additionally, the
maximum rate at which cancer cells limit each other’s resource consumption (w) multiplied by the saturation
of cancer cells (maximum around 0.44) was compared to observations of 4–56% relative volume of necrotic
tissue in melanoma (Tufto and Rofstad, 1998).

As different cancer types share similar qualities, some of the parameters are more generally related to
cell functionality (R̂, λ, γ, w and ε), while others are specifically linked to cancer type, here melanoma
(α(si), µi, θ, ξi and ϕi). Parameters related to T-cell dynamics (αT , µT , m, u, v and δ) do not specifically
concern only killer T-cells working against melanoma. Treatment parameters (c(τ) and Hill-parameters) are
specific to a drug and its effect on specific cancer type. Here the drug concentration is assumed constant
during the treatment period, therefore also the effect (pi, βi or ρi) is constant. In addition to cancer speci-
ficity, some parameters are also considered patient specific as individuals have different melanoma subtypes
and different physiology. Ideally, all parameters should be estimated individually, but in clinical practice
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Unit Fig.2a Fig.2b Fig.2c Fig.3 Fig.7 Fig.8
Pa

ra
m
et
er

sC1 - 1 1 1 1 1 1

sC2 - 0.95 0.95 0.95 - 0.95 0.95

αT 1/(timeunit*#T ) 0.505 0.505 0.267 0.505 0.505 0.505

ξ1,2 1/(timeunit*#T ) 1.5 1.5 1.5 1.5 2 1.5

ϕ1,2 1/(timeunit*#C) 5 1 1 3 4 3

m #T /timeunit 0.5 0.5 1.5 0.5 0.5 0.5

Tr
ea
tm

en
t

ρ1,2 - 0.999 - - 0.999 0.999 0.999

β1 1/timeunit - - - - 0 -

β2 1/timeunit - - - - 0.432 -

cp(τ) mass/volume - - - - - 0.5− 5

IC50p mass/volume - - - - - 2

np - - - - - - 2

Cancer doubling time in days 8 7 6 6 8 8

Table 3: Parameters and their values that vary between case studies. Cancer doubling time presents the doubling time of
cancer cells in total when no treatment is used (calculations in Supplementary section 3). Calculated doubling times are close
to median potential doubling time for melanoma cells of 8.6 days reported in experimental studies (Laing et al., 2003).

this is still impossible and generally estimated values have to be used. However, most important parameters
that should be estimated individually are parameters that relate to the interactions between cancer cells and
T-cells (ξi and ϕi). Additionally, the infiltration of T-cells (θ) varies as some cancers modify the environment
to block the T-cell infiltration, and cancer cells might even inhibit the development of immune response in
the first place (m = 0)(Chen and Mellman, 2013).

In the case studies, maximum of two cancer cell subpopulations were included for simplicity (denoted
by C1and C2) to demonstrate the model behavior when one subpopulation divides faster than the other
(sC1 > sC2). Additionally in the third case study (section 3.4), where targeted therapy is used, one subpop-
ulation was considered resistant (β1 = 0) and the other sensitive (β2 > 0) to the targeted treatment. There
could be also other differences between the cancer cell subpopulations, for example, one subpopulation might
not present the same antigen causing ineffectiveness of T-cells (ξi = 0). However, these possibilities are not
investigated here due to increased complexity. In the case studies, the concentration of targeted therapy and
immunotherapy are kept constant, hence for βi and ρi only the effect size is given instead of concentration.

3.1. Baseline cases: no treatment
We first investigated selected patient cases without any treatment (i.e. baseline cases). In some cases this
means that cancer cells will eventually dominate, resulting in a decreased amount of active (and effective)
killer T-cells in the body. Interestingly, changing the behavior of killer T-cells relative to that of cancer cells
may also lead to cases where killer T-cells are able to control cancer cells even without treatment. Some
representative cases are presented in Figure 2, where the cell densities of the model are shown as a function
of time.

Figure 2a presents a challenging case, where the amount of active killer T-cells decreases monotonically
and the total amount of cancer cells increases to a maximum level. Notably, after around 40 days, the
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Figure 2: Three representative cases of dynamic competition between active killer T-cell (T) and cancer cell populations
(C1 and C2) at baseline (no treatment). Here one subpopulation (C1) divides faster and eventually dominates the less
aggressive subpopulation (C2). The differences between subpopulations affect, for example, the treatment outcome, when the
different cancer cell subpopulations (here C1and C2) also have other undesirable qualities (e.g., treatment resistance, metastatic
capabilities or promotion of angiogenesis). In real patient case, for example, formation of metastases would be more likely if
the faster dividing subpopulation also has elevated metastatic capabilities. a) Active killer T-cells decrease without treatment,
leading to fast increase of cancer cells toward a maximum level (here, 0.80). The maximum amount of cancer cells is restricted
by carrying capacity of the cancer microenvironment as well as by the sufficiency of resources. This baseline case is further
investigated when treatment is given in section 3.3. b) The amount of active killer T-cells increases without treatment, leading
to decreased amount of cancer cells. The cancer cell amounts alternate, but they are approaching a fixed steady state, which
reflects the case when the initial immune response is effective and cancer is not even detected. c) Whenever the amount
of cancer cells try to increase, the active killer T-cells increase accordingly, but decreases steeply after cancer cell count has
decreased. In this case, the density of killer T-cells and cancer cells approach a cyclic attractor that defines their balance in
the absence of treatment or other intervention. All parameter values are listed in Tables 1 and 3. Trajectories of b) and c) are
presented in Supplementary Figure 4.

cancer cell subpopulation C2 also starts decreasing, since the other cancer subpopulation C1 proliferates
more aggressively, and therefore starts to dominate also C2. In this case, treatment is needed, and different
treatment options are further discussed in section 3.3.

Figure 2b presents a positive case, where active killer T-cells are more effective against cancer cells, whereas
cancer cells’ PD-1/PD-L1 binding is expressed less than in Figure 2a. This results in a situation where
active killer T-cells manage to control the cancer cells without treatment, and their amounts fluctuate and
approach a fixed steady state (stable attractor). If the active killer T-cells proliferate less often, while the
T-cell activation is increased, the active killer T-cells defeat cancer cells in each relapse attempt, resulting in
a cyclic attractor (Figure 2c). Periodic behavior has been found both in cancer (Fortin and Mackey, 1999)
and in the immune system (Stark et al., 2007) so likely it is possible also in the competition between immune
system and cancer cells. However, such cyclic behavior presents a phenomenon that is likely to take place in
the very early phases of the disease, when immune system is still able to control the growing tumor (Dunn
et al., 2004; O’Donnell et al., 2019). Thus the melanoma might not yet be diagnosed and treated and cyclic
behavior may well have gone undetected so far in real patient cases and clinical trials.

These representative cases demonstrate how different values in the key model parameters related to un-
derlying biology result in both inter-patient and intra-tumor variation in disease progression, and influence
the individual physiology and pathophysiology. In some cases, the immune system deals with the cancer
progression so early the cancer might not even be detected and diagnosed. However, some patients do need
treatment, and how to tailor it to the individual needs is investigated in the following sections.
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3.2. Case study 1 - single-shot immunotherapy
In the first case study we investigate the effect of immunotherapy on the virtual melanoma patient presented
in Supplementary Figure 5a without treatment. The dynamics without treatment are similar to Figure 2a,
however only one cancer cell subpopulation is considered in order to investigate the attractor landscape more
easily. To start treating the patient, an anti-PD-1 immunotherapy is given when the total amount of cancer
cells exceeds a pre-defined threshold (here, 0.5, a detection limit of a diagnostic test). Figure 3a shows the
case of this patient with one treatment period starting at day 18 (gray bar). One treatment period of 16
days is already enough in this case to increase the amount of active killer T-cells to a level that suffices to
control the cancer cells below the threshold. Such a dormant cancer has been also reported in real patients
(Aguirre-Ghiso, 2007; Ossowski and Aguirre-Ghiso, 2010; Schreiber et al., 2011; Senft and Ronai, 2016).
Additionally, major pathologic responses after a single dose of anti-PD-1 were observed also in real patients
(Huang et al., 2019; Tokuyasu et al., 2019).

From Figure 3a it can be seen that both the killer T-cells and cancer cells start to approach a fixed steady
state that is different from the steady state reached without treatment. To illustrate dynamics near the
different attractors, we constructed phase plane diagrams (Figures 3b and 3c). The two phase plane dia-
grams show how the given treatment causes a change in the isoclines and the steady state changes from
the red circle in Figure 3b to the intersection of black lines in Figure 3c. During treatment the trajectory
starts to reach the new attractor (solid blue line in Figure 3c). Once the treatment is stopped, the phase
plane and attractors return to that of Figure 3b and the cell densities are located on the phase plane in such
relation to attractors that the original attractor is unattainable; instead, a better situation for the patient,
with decreased cancer cell density and increased killer T-cell density, is reached. With insufficient treatment
(too short duration or too small dosage), the cell population dynamics end up to the original attractor,
corresponding to no treatment (red circle).

This case study demonstrates how there may exist multiple attractors, and the ones with smaller den-
sity of cancer cells could be considered as more favorable for the patient. It is also evident that differently
behaving cells (e.g., more aggressive cancer cells or less effective killer T-cells) result in different phase planes
and attractor landscapes. Some steady states could be reached with only one sufficient treatment period,
whereas cyclic attractors are observed when repeated treatments are required, both indicating stable diseases
that are under control with the proper treatment. An absence of an asymptotic trajectory (either fixed or
cyclic) indicates a progressive disease. In the following sections, the virtual patient cells harbor more than
one cancer population, which cause more complex phase planes and model behavior.

3.3. Case study 2 - repeated immunotherapy
Let us next consider another virtual patient, with such aggressive cancer, consisting of two subpopulations,
that cannot be stabilized with single treatment period alone, but who requires repeated immunotherapy. At
baseline, without any treatment, the cell population densities of this patient are as in Figure 2a. Therapy is
clearly needed, and it is considered to be given using two different regimens, either pre-defined or adaptive
treatment initiation, which are compared in the following subsections.

3.3.1. Pre-set treatment periods versus threshold-based treatment initiation
A widely-used treatment option is to pre-set treatment periods with pre-set intervals (e.g. Figure 4a). The
duration of treatment period and the intervals between treatments (so-called drug holiday) are changed to
illustrate different schedule options for pre-set periods. It is observed from the mean density of total cancer
cells, as expected, that shorter treatment durations require shorter drug holidays for an effective treatment
outcome (Figure 4c). The corresponding mean densities of the killer T-cells (Figure 4e) give similar results
as T-cell level does not increase if the drug holiday is too long compared to the treatment period.
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Figure 3: Single-shot immunotherapy. a) Immunotherapy is given for a period of 16 days (grey bar), started when the total
amount of cancer cells exceeds a threshold of 0.5 (dashed orange line). During the treatment, the drug concentration is assumed
constant resulting in a constant treatment effect. In this case, the treatment almost completely prevents PD-1/PD-L1 binding
and thus prevents cancer cells from making active killer T-cells ineffective (ρi ≈ 1). b) and c) Phase plane plots showing the
isoclines (black lines) of the killer T-cell density T and cancer cell density C, b) during no treatment and c) during treatment.
It is assumed that dynamics of resources are fast and in their stable state at each point. The trajectories shown with respect
to time in panel a) are shown also in the phase plane plots (blue lines). The trajectory is plotted with a solid curve when
the actual treatment status is the same as in the phase plane plot (treatment or no treatment). Red circle marks the fixed
attractor that would have been reached without treatment and this area is zoomed on the top right corner with blue line
denoting the trajectory when no treatment is used. c) The corresponding phase plane when immunotherapy is used. Solid blue
line corresponds to the trajectory during treatment while dashed blue line is the trajectory when no treatment is used.

Another, more adaptive option is to start treatment only when the total cancer cell count (i.e., total tumor
burden) exceeds a given threshold, and then treat for a pre-set period until the total tumor burden goes
below the threshold (e.g. Figure 4b). One interesting observation is that a selected treatment threshold
gives quite similar mean densities (Figures 4d and 4f) regardless of the treatment period, because shorter
treatment periods are repeated if the cancer cell count remains still over the threshold. As expected, the
mean density of total cancer cells increases when the threshold is increased since higher cancer levels are
allowed before the treatment is started.

A practical question is: which of these options, pre-set periods or threshold-based treatment initiation,
should be chosen for a given patient? Perhaps not surprisingly, the answer depends on the parameters of
the treatment regimen: the duration of the treatment period, relative to the intervals between treatments,
and the chosen threshold level. By choosing specific combinations, either one of the two regimens can result
in a smaller mean density, and hence better therapeutic effect. To give an example, where pre-set periods
results in a smaller total cancer mean density when equally long treatment periods are chosen, red boxes
are marked in Figure 4c (pre-set periods) and in Figure 4d (threshold). On the other hand, choosing of
treatment combinations of the blue boxes of Figures 4c and 4d results in smaller mean density for the
threshold-based regimen. These four cases are shown separately in Supplementary Figure 6.

Considering only the mean density as a measure of treatment benefit does not however give the whole
truth, since it does not take into account the overall time of treatment for the various regimens. For ex-
ample, choosing a long treatment period with short gaps between repeats means that treatment is almost
continuous. Small treatment threshold value might also result in nearly continuous treatment. It can be
seen from Figure 5, that the pre-set period has to be chosen carefully in order to reach beneficial results
(a population mean close to 0.8 means that the treatment fails). On the other hand, successful treatment
result can be reached also without increasing the time in treatment (in the chosen time interval), provided
the relative timing of treatment period and drug holiday is chosen based on the individual characteristics
(blue dotted line). When threshold-based treatment initiation is used, the shorter treatment periods are
repeated if necessary and this leads to equal levels of overall treatment time (Figure 5 green symbols).
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Overall, using a threshold-based adaptive regimen results in a successful treatment outcome (cancer is
kept in control) more often, compared to pre-set periods, since the treatment is given as long as needed,
although it might mean longer continuous treatment periods due to repeated periods. Drug holidays be-
tween the treatments, if too long, can easily cause a relapse that short treatment periods cannot overcome.
In practice it is difficult to determine the amount of cancer at each time point, especially if the cancer is
inside the tissues, therefore choosing the threshold-based treatment initiation might not be applicable unless
diagnostic tests are improved.

3.3.2. Changing pre-set period of immunotherapy
The previous section demonstrated that if the pre-set treatment periods are applied with too long gaps
between treatments, the treatment easily fails (i.e., cancer is not under control). On the other hand, it
would be preferred to apply treatment as seldom as possible to reduce side-effects and costs of treatment.
To investigate this trade-off, we next consider changing the pre-set treatment period after starting the
immunotherapy to test the effect of having longer drug holiday between treatments. In Figure 6a, the treat-
ment schedule is changed successfully after three treatment periods (48 days), which enabled increased drug
holiday from 6 days to 16 days. Interestingly, whereas having such longer drug holiday from the beginning
would result in a rapid treatment failure (Figures 4c and 6, and Supplementary Figure 6), starting with a
tighter schedule makes it later possible to increase the treatment gaps, provided those are chosen based on
patient characteristics. For instance, in Figure 6b, the new drug holiday is only slightly longer (20 days vs.
16 days), yet there is a marked increase in total cancer cell density due to longer drug holidays, during which
the amount of killer T-cells decreases to a level from where the amount cannot recover any more, at least by
the given treatment of 12 days. In Figure 6c, the treatment schedule is changed later (after 102 days), but
this also leads to a treatment failure in this patient case, indicating that scheduling of the first treatment
periods is critical for determining whether or not the treatment could be given with longer drug holidays later.

As the treatment starts to fail when going from the case of Figure 6a to 6b and 6c, it is not surpris-
ing that the cancer cell maximum and mean density increase, as well as the tumor burden after one year
(barplots on the right-hand side of Figure 6). On the other hand, the proportion of time in treatment is
longer in the case of Figure 6a than in the case of Figure 6b, since the treatment is given more often (the
barplots below the dynamics). When comparing the treatment response of Figure 6a to that of Figure 4a
(measures marked with blue lines on Figure 6) it is noticeable that the proportion of time in treatment is
smaller (due to a sparser treatment schedule), but still resulting in similar cancer total density after one
year. With the heaviest treatment schedule of Figure 4a (12 days treatment, 6 days drug holiday), the
lowest mean population density is reached, as expected, but this comes at the expense of time spend in
treatment. The practical question is: which one is more important for the patient. If the treatments are not
well-tolerated, then it might be preferred to reduce the time in treatment, even if the tumor burden stays
on a slightly higher level.

3.4. Case study 3 - combination of targeted and immunotherapy
In the previous sections, we investigated the virtual patients’ responses to various regimens of immunother-
apy only. In some cases, however, it might be more beneficial to combine the immunotherapy with targeted
treatments, especially if it can be targeted to the patient’s molecular aberrations, and in this way boost the
treatment responses. To make the situation more challenging, we assume that the targeted treatment is ef-
fective against only one of the cancer cell subpopulations (C2 in this case), whereas the other subpopulation
is resistant to the targeted treatment.

To study the potential benefits of such personalized immune-treatments, we treated the virtual patient
with various strategies, where the patient either receives immunotherapy alone (Figure 7a), which resulted
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Figure 4: Pre-set immunotherapy periods versus threshold-based treatment initiation. a) Pre-set period of 12 days of treatment
followed by 6 days of drug holiday. b) Immunotherapy is started when the total cancer cell density goes above the treatment
threshold of 0.3, followed by 12 days period. Treatment is repeated at first three times and later two times since the cancer
cell density stays over the threshold. c) Mean density of total cancer cells for different treatment periods and drug holidays
(marked with * in panel a)). To give comparative examples, a few treatment options are marked with red or blue boxes. The
red box corresponds to treatment period of 18 days, followed by a drug holiday of 18 days, with a mean population density of
0.20. In the blue box, the corresponding values are 8, 10 and 0.70. d) Mean density of total cancer cells for different treatment
periods and thresholds of treatment initiation. The red box corresponds to treatment period of 18 days and threshold of 0.75,
with a mean density of 0.49. In the blue box, the corresponding values are 8, 0.2 and 0.19. e) Mean population density of
active killer T-cells in the case of pre-set treatment period, and f) in the case of threshold-based regimen.16
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treatment initiation, treatment time depends on the used threshold level.

in a chronic disease with repeated treatment, or using a combination of targeted and immunotherapy (Fig-
ures 7b and 7c). Both of the treatments were initiated simultaneously, for simplicity, but their durations
differ so that the combined treatment duration is always set to 14 days and its division to the two treatment
options is varied. When both of the treatments have the same duration of 7 days (Figure 7b), the treatment
has to be repeated, due to rapid decrease in the amount of killer T-cells, and eventually only the resistant
cancer subpopulation C1 stays alive, and the targeted treatment becomes useless. In contrast, when chang-
ing the durations of the treatment periods, it is possible to come up with more effective modalities in which
the chosen drug combination leads to a situation where no further treatment is needed in order to keep the
cancer density below the treatment threshold of 0.5 (Figure 7c). This is because after the second treatment
period, the densities of cancer cells and killer T-cells trajectories reach a suitable balance that leads to a
better attractor for the patient (in similar fashion as in section 3.2).

To investigate these situations more systematically, the total cancer mean densities are calculated when
the treatment threshold is varied with the proportion of targeted treatment (Figure 7d). Additionally, to
investigate the trade-off between therapy effect and therapy intensity, the corresponding numbers of treat-
ment initiation are calculated (Figure 7e). One can see that with most treatment proportion combinations,
smaller threshold leads to smaller cancer mean densities, but that also requires more treatment periods.
Immunotherapy works by itself (0% of targeted therapy) but adding a small proportion of targeted therapy
decreases total cancer cell mean density, while with most of the treatment thresholds, equal number of
treatment initiations is needed.

Our model also predicts in this case study that combination therapy works better than targeted ther-
apy alone. When only targeted treatment is used , if treatment is initiated too early (threshold ≤ 0.1), total
cancer cell density increases rapidly to maximum value due to the targeted treatment being effective only
on one cancer subpopulation, which decreases rapidly and only the resistant subpopulation remains. Since
there is not enough sensitive cancer cells to deliver antigens in the first place, the density of T-cells does
not increase sufficiently to dominate the resistant cancer subpopulation (C1). However, if the treatment is
initiated too late (threshold ≥ 0.31), the treatment succeeds once, followed by relapse, since by the time of
the second treatment initiation, the density of the sensitive cancer subpopulation (C2) has fallen too low,
and the targeted therapy does not have enough effect to increase the level of killer T-cells.

Interestingly, if the treatment threshold is around 0.15–0.3 in this case, the targeted treatment is effec-
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Figure 6: The effect of changing pre-set immunotherapy schedules. The treatment is started with a period of 12 days of
treatment, followed by 6 days of drug holiday, which corresponds to Figure 4a. After 48 days (black arrow) treatment schedule
is changed to have a drug holiday of a) 16 days or b) 20 days. c) Treatment schedule is changed after 102 days (black arrow),
to have a drug holiday of 20 days. Right-side barplots: the treatment success measures are presented for each example, with
blue lines marking the corresponding values for the case of Figure 4a, where treatment is continued with shorter drug holidays
of 6 days. Cyan lines mark the case, where the treatment is started with 16 days of drug holiday from the beginning. Bottom
bars: proportion of time spend in treatment.
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tive also on its own without immunotherapy (when considering the total time interval of 160 days). For well
selected treatment thresholds (e.g., 0.3) only four treatment initiations are needed, leading to similar stable
disease as in Figure 7c. This surprising result is due to such optimal treatment initiation and period for this
patient case that drive the cancer cell densities on the attractor landscape in a region which leads to a fixed
steady state after the treatment. It should be noted that even though the combination treatment might
result in some cases in a smaller tumor burden (cancer cell mean density), it may not be still beneficial
from the treatment tolerability (and cost) point of view, when considering the total amount of drugs used,
since each treatment period includes two (expensive) drugs instead of one. In an optimal and cost-effective
therapy regimen, the amount of treatments needed should be minimized to compensate for the costs, along
with possible tolerability issues caused by adding more treatments.

3.5. Case study 4 - combination of chemotherapy and immunotherapy
In the final case study, we consider a situation where a virtual patient does not have any targeted therapies
matching to his/her cancer aberrations (C1 or C2) and who, without treatment, would have rapid increase
in the total cancer cell density (Supplementary Figure 5c). Therefore, chemotherapy is the only option,
used either alone (e.g. Figure 8a) or in combination with immunotherapy (e.g. Figure 8b). Since cytostatic
drugs cause side-effects, their minimal use is preferred with small concentrations.

When changing the treatment period and concentration of the cytostatic drug, the proportion of time
in treatment decreased in almost every case, when comparing the combination treatment to chemotherapy
alone (Figure 8c, green shapes appear on the left side of the corresponding blue shapes). This indicates
that adding the immunotherapy decreases the treatment time with additional possibility of smaller cancer
cell mean density (Figure 8c, green shapes appear below or on similar level to the corresponding blue shapes).

The side-effects in this case are calculated as the proportion of T-cell loss caused by cytostatic drug to the
overall T-cell loss, and they are investigated along with therapeutic effect (total cancer cell mean density)
in Figure 8d across various treatment periods. When the combination of chemotherapy and immunotherapy
is used and the treatment period is short (4 days), the side-effects are less than the side-effects caused by
chemotherapy alone. However, when the treatment period is increased (20 days) the combination therapy
causes slightly more side-effects than mono-chemotherapy, because the longer period of immunotherapy de-
creases more the overall loss of T-cells by preventing the PD-1/PD-L1 binding, and hence the proportion of
T-cell loss caused by cytostatic drug increases.

The combination therapy leads to smaller or similar cancer population mean densities compared to chemother-
apy alone, but the differences are not so dramatic that it would be clear which treatment regimen to choose
only by looking at the cancer cell mean density or proportion of T-cell loss caused by chemotherapy. Addi-
tional considerations in practice involve the trade-off between the use of two treatments simultaneously or
potential treatment tolerability issues caused by immunotherapy.
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Figure 7: Combined effect of targeted and immunotherapy. a) Immunotherapy with period of 14 is initiated when the total
cancer cell density goes over the treatment threshold of 0.4. b) Immunotherapy period of 7 days is given with simultaneous
7 days period of targeted treatment that is effective against the cancer cell subpopulation C2. c) Targeted therapy period of
10 days combined with simultaneous immunotherapy period of 4 days. d) Total cancer cell population mean density when
the treatment threshold and division of treatment durations is changed. The combined treatment time is fixed to 14 days,
and hence the durations of targeted and immunotherapy can be calculated from the proportion of targeted therapy. For
example proportion of 50% targeted treatment means 7 days of targeted treatment in combination with 7 days of simultaneous
immunotherapy. e) The corresponding numbers of treatment initiations.
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Figure 8: Combination effects of chemotherapy and immunotherapy. a) Mono-chemotherapy with a period of 4 days is initiated
when the total cancer cell count exceeds 0.3. b) Chemotherapy in a combination with immunotherapy with the same duration
of 4 days. c) The total cancer cell mean density drawn against proportion of time in treatment when the treatment period is
4, 10 or 20 days with and without immunotherapy. The concentration of cytostatic drug varies across the points marked with
the same symbol. d) Side-effects caused by chemotherapy on T-cells in the corresponding cases.

3.6. Sensitivity analysis
To investigate how sensitive the results are to the changes in the model parameters, we perturbed the un-
derlying biological parameter values that remained constant in the virtual melanoma patients (increased
and decreased 25% from their values listed in Table 1). It was observed, generally, that increasing R̂, K, γ
or λ led to increases in the maximum cancer cell density, as expected, whereas decreasing these parameters
reduced the maximum cancer cell density accordingly (Table 4). Similarly, increases in the resource com-
petition between the cancer cell populations w reduced the maximum cancer cell density, and vice versa.
Under treatment, these general conclusions remain the same. However, the cancer cell mean density did
not behave similarly with and without treatment. As the cancer cell density increased faster, the T-cell
density was affected as well, and accordingly the treatment succeeded more often with the treatment op-
tions that caused failure with the original parameter value. On the other hand, if the total cancer cell level
decreased below the specified treatment threshold, the treatment was naturally not initiated at all leading
to decreased killer T-cell mean density and increased cancer cell mean density. For example, the effect of
changing R̂ on total cancer cell mean density in the case study 2 (section 3.3) is shown in Supplementary
Figure 9. The sensitivity analysis shows that increasing the killer T-cell self-regulation parameter δ reduced
the killer T-cell levels, as expected, and decreasing δ had the opposite effect, with neither one changing
the general conclusions made about the treatment efficacy. Since θ affects many interactions in the model
(T-cell activation and interactions between cancer cells and T-cells), changing it had treatment sensitizing
effects. Systematic sensitivity analyses are detailed in Supplementary section 8.
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Figure 9: Steady states of cancer cells (C) and killer T-cells (T) as the value of ϕ is changed and other parameters are kept
constant as in the case study 1. The grey bar denotes the range where two stable steady states exist.

Analysis of steady states was performed in the case study 1 with more parameters and larger change ranges
(Supplementary section 8.1.1). It was observed, for instance, that when the rate at which cancer cells make
active killer T-cells ineffective (ϕ) is between 1.40 and 3.42, two stable steady states exist (grey bar in Figure
9), and it is possible to move from one attractor to the other with carefully scheduled treatment (e.g., one
used in Figure 3). In the case study 1, ϕ = 3, and the attractor is changed after single-shot immunotherapy
(see Figure 3). However, when the rate is high (3.42 ≤ ϕ ≤ 5), only a single stable steady state exists
with relatively high cancer cell density. In this case, the cancer cell density returns to that level even if it
is temporarily decreased during treatment. When the rate is small (0 ≤ ϕ ≤ 1.40), only one stable steady
state exists as well. However, the cancer cell density is already relatively low and depending of the treatment
threshold value, the treatment might not be initiated at all. For all investigated parameters, it is important
to identify, in which parameter value range there are more than one stable steady state (attractor can be
changed with treatment), and, in the case of single stable steady state, if the cancer cell density is high (treat-
ment is only temporary solution) or already relatively low (treatment might not be necessary). Steady states
for cancer cells and T-cells were calculated with R-script grind.R (http://tbb.bio.uu.nl/rdb/grindR/grind.R).

As the dynamics of cancer and immune system are complex, it is not surprising that the outcome of treatment
is sensitive to exact rates of interactions. Ideally, all parameters are patient-specific, and should be measured
from individual patients. However, this is not yet realistic in clinical practice and parameter values estimated
from cell lines or in general population have to be used. Individually, the most important parameters are
the interactions between cancer cells and T-cells. For example, if the rate at which T-cells kill cancer cells
(ξi) is too low (≤ 1.34 in the case study 1), only a single stable steady state exists and treatment can
only temporarily decrease the cancer cell density (see Supplementary Figure 8k). Similarly, the infiltration
of T-cells into the microenvironment of cancer depends on the individual’s physiology. If T-cells cannot
infiltrate the microenvironment of cancer (θ = 0), the possible effect of treatment is only temporary since
the only stable steady state for cancer density is relatively high. Additionally, the cancer cells might inhibit
the immune response (e.g., CTLA4), leading to decreased or non-existent activation of killer T-cells (m = 0).
The maximum rate of T-cell activation (m) should be high enough (≥ 0.45 in the case study 1) that a stable
steady state with lower cancer cell density exists (see Supplementary Figure 8i). Luckily, there are therapies
(e.g., anti-CTLA4), that may help patients with inhibited immune response (Chen and Mellman, 2013).

4. Discussion

We have developed a comprehensive model for the dynamics of active killer T-cells and their competition
against distinct cancer cell populations under various treatment modalities. To our knowledge, this is the first
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Without treatment With treatment

Change T mean dens. Tmax C mean dens. Cmax T mean dens. Tmax C mean dens. Cmax

R̂ ↑ +11% 0% +43% +42% +224% +79% −1% +15%

R̂ ↓ 0% 0% −45% −44% −73% −58% +20% −20%

K ↑ +1% 0% +4% +4% +6% +3% 0% +1%

K ↓ −2% 0% −6% −6% −11% −7% +4% −2%

γ ↑ +9% 0% +44% +42% +225% +78% −1% +14%

γ ↓ +5% 0% −45% −44% −73% −58% +20% −19%

δ ↑ 0% 0% 0% 0% −10% −8% +6% +1%

δ ↓ 0% 0% 0% 0% +7% +6% −7% −1%

θ ↑ −14% 0% 0% 0% +2% +9% −9% 0%

θ ↓ +22% 0% 0% 0% +17% −2% +18% +4%

w ↑ −3% 0% −13% −13% −23% −15% +10% −4%

w ↓ +4% 0% +14% +14% +45% +20% −4% +4%

λ ↑ +3% 0% +11% +11% +631% +173% −9% +1%

λ ↓ −3% 0% −14% −14% +401% +107% +6% −5%

Table 4: The change percentages of killer T-cell mean density, maximum T-cell density, cancer cell mean density and maximum
cancer cell density on average over all case studies and treatment options. Parameter values are increased (↑) or decreased (↓)
25% from their value listed in Table 1. Only one parameter value is changed at a time, while others are kept constant. Mean
dens. denotes mean density.
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mathematical model that incorporates all the key aspects required for studying the individualized effects of
anti-PD-1 immunotherapies in combination with targeted and chemotherapies, in terms of both therapeutic
and side-effects. Importantly, rather than using the traditional approach that defines the cancer cell popula-
tions based on their genetic makeup alone, we consider also other, non-genetic differences that make the cell
populations either sensitive or resistant to a therapy. Our model can be easily tailored to different scenarios,
consisting of individual patients and treatment regimens. Here, we showed how the model provides insights
into immunotherapy when comparing pre-set period treatment to more flexible threshold-based treatment
initiation. It was noted that pre-set periods have to be chosen carefully in order to receive positive outcome.
Interestingly, starting with tighter treatment schedule (shorter drug holidays) may enable a sparser treat-
ment schedule later on. Additionally combination of targeted and immunotherapy was investigated, which
results in a better treatment effect (cancer cell mean density) with fewer treatment initiations if used in
suitable relation to each other. A stable disease might be also reached with few treatment initiations using
combination therapy or targeted mono-therapy with carefully chosen treatment thresholds. Similar results
were seen when using combination of chemotherapy and immunotherapy in comparison to chemotherapy
alone. Combination results in smaller or equal level of cancer mean density and treatment times.

Systematic analysis of the effects of the various treatment choices was investigated through measures that
capture the therapeutic benefit and toxic side-effects of the considered regimens. For example, tumor bur-
den, measured as population mean of cancer cells, and time spend on treatment, both for immuno- and other
therapies, quantify the efficacy of the treatment and the possible stress it causes to the patient and expenses
to the health care operator, respectively. However, the eventual success of a treatment regimen is often
determined by a subtle trade-off between the therapy-driven tumor burden reduction and toxic side-effects,
as a function of the treatment intensity (so-called therapeutic window). Since there are individual differences
in how patients experience both the therapy and its side-effects, the preferred treatment regimen that maxi-
mizes the tumor reduction might not be tolerated in clinical practice. Therefore, it is important to consider
these different measures of treatment responses when deciding optimal regimens for a given patient. Pre-
vious model-based studies have also demonstrated the importance of high-resolution, dynamic monitoring
of the cancer populations to achieve a given objective (e.g. adaptive treatment or cancer control) (Fassoni
et al., 2019; Fischer et al., 2015; Khan et al., 2018; Komarova et al., 2014; Lai et al., 2019; Zhang et al., 2017).

In addition to the individual differences, the complexity of cancer and human biology poses challenges
to the treatment response modelling. In the future work, it would be interesting to include, for example,
the effect from disrupted angiogenesis (resistance to anti-angiogenic therapy (Bergers and Hanahan, 2008),
evolution of angiogenic potential in cancer cells (Nagy and Armbruster, 2012)), adaptation to low level of
resources, quiescent cells (trade-off of proliferation speed and adaptation to stressful conditions (Aktipis
et al., 2013)), or delay in the response to immunotherapy. Furthermore, the emergence of new mutations or
other molecular aberrations will be important to consider for modelling clonal evolution, since the relapse is
often caused by new resistant clones that occur either due to cancer evolution or in response to chemother-
apies (Gerlinger and Swanton, 2010; Kozłowska et al., 2018). In the present work, we considered two cancer
subpopulations (sensitive and resistant), but the model can be extended to multiple dynamically-adapting
populations, once the underlying rules of clonal evaluation are specified.

In the current model, it was assumed that cancer cells make active killer T-cells ineffective with PD-
1/PD-L1 binding and that the ineffective T-cells exit the system without possibility to become effective.
However, some drugs are able to cancel the PD-1 activation and render the ineffective killer T-cells effective
again (Sakuishi et al., 2011). This re-activation effect could be considered as an additional component in
the current model, as well as modelling different mechanisms of immunotherapies (e.g., CTLA4) or dif-
fering targeted therapies (e.g., those having direct positive or negative effect on T-cells, or those helping
T-cells to enter into the microenvironment (Chen and Mellman, 2013)). Additionally, different combination
treatment regimens could be considered, for example chemotherapy and immunotherapy given separately
in sub-sequent time periods. Furthermore, the amount of T-cells and their functionality does not go hand
in hand, meaning that higher amount of T-cells does not necessarily mean more efficacy against cancer,
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which could be considered in further investigations. Similarly, adding various types of immune cells, includ-
ing regulatory T-cells or natural killer cells, would more faithfully model the real immune-system component.

In order not to make it overly complicated, the current model lacks many aspects of cancer and immune
response, some of which are mentioned above. Multiple parameters (e.g., inflow of resources, drug concen-
tration) are thought as constants for simplicity, while in real patient these parameters change in time or
over the disease progression. Even though adding more aspects into the model will make it more realistic, it
also poses challenges to its analysis and estimation with limited data. Our aim in this work was therefore to
model only those aspects we deem most important for the dynamic competition between active killer T-cells
and cancer cell populations under the selected treatment modalities. To widen the potential applications of
the model, one of our future aims is to make use of laboratory measurements in cancer cell line co-cultures,
under selected treatment options, to fit the most critical model parameters with real-world measurements,
and to evaluate the model qualitative behavior against that seen in the laboratory experiments. Eventually,
with better estimated parameters, the model could be used to predict the effectiveness and consequences
of various treatment choices as well the occurrence and timing of cancer relapse. We hope this will lead to
more realistic set-up for tailoring treatment choices for individual cancer patients based on careful profiling
of their primary tumor samples.
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