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Behavioral Strategies in

Zero Sum Games in Extensive Form

1. Introduction

The purpose of these notes is to present some formal properties of

behavioral strategies in relation to some comments made by Aumann and

Maschler [A-M]. In their main example, they show that the behavioral

strategy generated by the optimal mixed strategy may be dominated in terms

of security level by some other strategy.

Wilson has proposed a constructive scheme to generate a decision tree

for each player from a game tree as long as it is with perfect recall [W].

Using this scheme, one may precisely define the expected payoff conditional

on being at a given informal set and on the other players' strategies. The

security level conditional on being at a given informal set may similarly

be defined using the player's decision tree. Note that since all moves

are "sequentially played" in a decision tree, randomization is irrelevant

for the security level.

Then the mathematical counterpart of Aumann and Maschler's argument

for zero sum games in extensive form may be stated as follows: at the

information sets of a game tree, the optimal behavioral strategies may only

satisfy one part of the double minimax inequality, namely the equilibrium part.

Furthermore, the only class of games for which the double minimax inequality

seems to remain valid is the class with perfect information since, in this

case, the player's decision trees are identical.

These notes are organized as follows: the second section merely consists

of an example to illustrate our restatement of Aumann and Maschler's argument.

Some more perplexing remarks about behavioral strategies after a non optimal

move will also be presented.



2. An Example

Consider the game tree depicted in Figure 1. It may be interpreted as

a one stage poker game with a high or low card and two possible raise moves

or a drop move for player 1 and a drop or call move for player 2. Assume

that player 1 is the maximiser.
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There are two information sets for player II each one including two

nodes. We want to define an expected payoff conditional on each information

set and a given strategy of player 1. The optimal behavioral strategy for

player I (which, for instance, may be obtained from the normal form) is to

play R2 if the chance move is H and to play R2 with probability 2/3 and D

with probability 1/3 if the chance move is L. Once player I's move is

played, player II's conditional expectations may be defined by constructing

his decision tree. According to Wilson's procedure, this decision tree
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is described in Figure 2. Note that the probabilities on Hand L are now

conditional on HI or H2. Conditional on HI, these probabilities are not

defined and we shall come back to this point later on. Conditional on H2,

these probabilities are easily seen to be 3/5 and 2/5 respectively.
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We are now in a position to define player II's expected payoff conditional

on H2 being played and on player I's strategy. The expected payoff is 1 if he

plays d and l. 3 - ~ • 2 = 1 if he plays c. His optimal behavioral stragegy5 5
at this information set is to play d with probability 2/3 and c with probability

1/3. As such, .it maximizes his expected payoff conditional on R2 being played

and on player I's optimal strategy.

What is the security level associated with his optimal strategy given that

H2 was played? If player I's strategy was to play H2 only if the outcome of

the chance move is H, then player II's expectation, given his own optimal

strategy and conditional on H2 being played and on player I's new strategy,

1 [ 2 c:;would now be 3 1.3 - 0.2J + 3 ·1 = 3 which is worse than 1 (remember that

player II is the minimiser).
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Let (s, t) denote behavioral strategies for player I and II respectively

and (s*, t*) denote the optimal strategies. Let E be a player's information

set and V(s*, t*1 E) be his conditional payoff at this information set.

Assume-that this information set belongs to player I. Then it is easy to

show that:

for all s, V( s, t*1 E) < V( s*, t*/ E),

whereas the following inequality may not be true as shown in the preceding

example:

(ii) for all t, V( s*, t*1 E) < V( s*, tIE)

Thus, in terms of conditional payoffs, only the equilibrium part of the

double minimax inequality remains satisfied. Note that as soon as the

players are called simultaneously to make a move in a game tree, it is likely

to result in different security levels for each of them since, according to our

definition of conditional payoffs at an information set, it cannot be increased

by means of randomization. Thus one would expect that the only class of games

for which (i) and (ii) could be satisfied at each information set are games

with perfect information. And indeed, one can easily show that for such

games, (i) and (ii) remain true since then both players have the same decision

tree.

This would suggest that the minimax principle is essentially appropriate

for the "static" normal form (and Von Neumann and Morgenstern do claim

repeatedly that they are building a static theory [N-MJ). SUbsequently,

"optimal" behavioral strategies in zero sum extensive games may ordinarily

only qualify as "equilibrium" strategies in a "non-zero sum" seTIf'e. But

would the equilibrium principle, with its well kno\-tn pi.tfalls, be actually

sui table for ttdYnamic" theory of extensive games? The following remarks are

presented so as to point out some difficulties in the ~ynamic aspect of the

equilibrium principle.

Consider again the poker example but now assume that player II is at the

other information set; that is, assume that Rl was played. Player II's

equilibrium behavioral strategy is degenerated and may be any convex combina­

tion of the following two strategies: the first one consists of playing d

wi th probabili ty ~ and c wi th probability~, and the second one of playing d

with probability t and c
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with probability ~. As we said earlier, player II's expectation conditional

on HI being played and on player I's equilibrium strategy is not mathematically

defined since it is conditioned on any event with zero probability. Thus,

inequality (i) is not defined. Nevertheless, let us try to interpret player

II's equilibrium strategy by working backward. Clearly it does not guarantee

him his conditional security level which is 1. If it were to maximize his

expected payoff conditional on HI being played, then this would imply that

the probabilities on Hand L would be 2/3 and 1/3 respectively. This, in turn,

would imply that player I would have chosen HI with a probability, say, k

if the chance move isH and wi th a probabil i ty k/2 is the chance move is L.

This seems to be a very definite statement to make since the only thing that

player II knows about player I's strategy is that he made a mistake. How he

made it is certainly a matter of opinion and not a mathematical fact (or would

there be anything like an "optimal" mistake?). Thus, it seems unjustified to

say that player II's equilibrium strategy maximizes his expected payoff

conditional on HI being played. The only rationale for player II's equili­

brium strategy appears to be that it makes move HI unattractive to player I

and thus should enforce him to play his equilibrium strategy. As such, it

may be interpreted as a good threat to deter player I from a deviating behavior.

However, once player I did deviate, this threat has no theoretical justification

any longer. (To carry out this threat may be worthwhile in a repeated situation

but this is a one shot game. )

Thus, the equilibrium principle, just as the minimax principle, appears

to be time dependent, though in a much weaker sense; that is, outside the

"equilibrium paths" of the game tree.
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