

A common nomenclature for assessing low-carbon transition pathways in Europe and other useful tools for energy modelling This presentation is available at pure.iiasa.ac.at/16417/

Dr. Daniel Huppmann and colleagues from IIASA and the openENTRANCE consortium

* * * * * * * * *

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 835896

This presentation is licensed under a <u>Creative Commons Attribution 4.0 International License</u>

Integrating models across scales for energy transition scenarios

• Three ongoing Horizon 2020 projects related to "modelling in support to the transition to a low-carbon energy system in Europe"

openENTRANCE.eu, sentinel.energy, spine-model.org

 The Open Energy Platform provides a framework for transparent exchange and documentation of energy data

openenergy-platform.org

• The key requirement for model integration:

A common nomenclature and understanding of the data

The (usual) dimensions of energy modelling data

- The obvious parts of the data dimensions
 - Model & scenario identifier
 - Region: countries, NUTS-x, grid nodes
 - Time dimension: either continuous-time or representative time slices like "summer-day"
- The part that requires more thought...

How to describe what the data (timeseries) actually is?

- Varying number of dimensions depending on the data
- Concatenate all relevant dimensions into one "variable" name (string) using a hierarchical tree, e.g, Primary Energy|Coal|w/CCS

Developing a common nomenclature as a community process

- Aim: develop a nomenclature in a structure that is both intuitive and versatile
- For a modeller asking "which descriptor should I use for ...?", she or he should find a decent (not perfect) answer within five minutes
- The repository should provide some additional features that are useful to researchers across domains
- For example, the repository includes a code snippet to turn the yaml dictionary files into ISO2-to-country mappings *including codes used by the European Commission*
- Check out <u>github.com/openENTRANCE/nomenclature</u> for more information!

pyam: An open-source package for streamlined workflows

Standardized processing, analysis & visualization of results from your model!

Features:

- Analysis and validation
- Categorization and indicators
- Visualization & plotting library
- Simple statistics package

More information:

Documentation: pyam-iamc.readthedocs.io

Scientific reference: M. Gidden and D. Huppmann (2019). Journal of Open Source Software 4(33):1095. doi: <u>10.21105/joss.01095</u>

pyam: analysis and visualization of integrated assessment scenarios

License Apache 2.0	passing	docs passing	coverage 85%
DOI 10.5281/zenodo	.1470400 JOSS	6 10.21105/jo	ss.01095
Repository hosted on	Community supported by		Documentation hosted by
💭 GitHub	Groups.io	<mark>‡</mark> slack	Read the Docs
			pyam-iamc.readthedocs.io

🍯 #pyam_iamc

A shared repository for common unit conversions

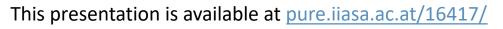
Converting units is a common source of confusion (or worse) when preparing input data and analysing model results

- The python package **pint** "makes units easy" (see <u>pint.readthedocs.io</u>) but it does not cover all units frequently used in energy systems analysis and related fields (climate impact, currency conversion, etc.)
- Paul Kishimoto started an iam-units repo (see <u>github.com/IAMconsortium/units</u>) collecting additional units and making it available via a pip-installable package

```
>>> from iam_units import registry
>>> qty = registry('1.2 tce')
>>> qty
1.2 <Unit('tonne_of_coal_equivalent')>
>>> qty.to('GJ')
29.308 <Unit('gigajoule')>
```


A one-slide guide for better open & FAIR research

Five best-practice steps to make your research open & FAIR v1.0


You may think that putting your work^{*} on a website already makes it free & open. But that's not quite true – follow these steps to implement best practice of *#openscience*! * data sets, text, tables, figures & illustrations, source code, scientific software, ... even #Horizon2020 deliverables

1. Open	If you want your <i>work to be read, used & shared by others</i> , be explicit about it For text, data, figures, – use the <u>CC-BY license</u> For code, visit <u>choosealicense.com</u>	
2. F indable	To make it easy for others to find and cite your work, get a <u>digital object identifier (DOI)</u> and add a <i>recommended citation</i>	
3. Accessible	Depositing your work in an institutional repository or a service like <u>zenodo</u> ensures that your work is still <i>available even after the end of the project</i>	
4. Interopera	Using established community standards, data formats and software packages lets others <i>quickly understand and use your work</i>	
To make it easy for others to <i>build on your work,</i> make assign a version number and relevant (machine-readable) me		
**** This project has receive	ed funding from the European Union's Horizon 2020 This page is licensed under a Creative Commons	

licensed under a Creative Commons Attribution 4.0 International License

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 835896

Thank you for your attention!

Dr. Daniel Huppmann Research Scholar – Energy Program International Institute for Applied Systems Analysis (IIASA) Laxenburg, Austria huppmann@iiasa.ac.at www.iiasa.ac.at/staff/huppmann

This presentation is licensed under a <u>Creative Commons Attribution 4.0 International License</u>

