Supplementary Information

Drought and climate change impacts on cooling water shortages and electricity prices in Great Britain

Byers et al.

Hydrological calibration at each gauge. Graphs showing the spread of precipitation for the W@H2 climate simulations for the Baseline period compared to the Observed record (black). N.B. wider blue bands do not represent error of the model but the internal (natural) variability of the climate.

The effect of the population weighted temperature inputs. Two example timeseries for one year showing the anomaly between the population-weighted average and unweighted average temperatures taken across the 13 MIDAS weather stations. Left shows 'tasmax', daily maximum air temperature, and right shows 'tasmin', daily minimum air temperature. This anomaly indicates the benefit of applying the population-weighting to the meteorological variables so as to improve the model calibration and reduce under- or over-estimation of the demand.

Scatter plot of the Predicted vs. Actual demand from the calibrated meteorological-demand model. The model was set up and calibrated using the Python package scikit-learn. We used machine-learning gradient boosting regression trees algorithm $^{1, 2}$ with initial hyperparameters (estimators n=3000, max depth=3, min samples split = 2, learning rate 0.01, Huber loss function).

Seasonal profiles of demand. For the median, 0.1 and 0.9 quantiles, to compare demands for the Observed period (2012-17) and as Simulated (30 years, Baseline climate) – from Supplementary Table 3.

Map of power plants. Map of thermal power plants and types in Great Britain used in this study. Label numbers correspond to the plants in Supplementary Table 4.

Monthly values for the combined renewables under 3 production scenarios. Low (10th percentile), Median (50th) and High (90th).

Monthly supply curves. The monthly supply curves (summer/winter in red//blue) for the three renewables production scenarios, compared to the unadjusted full capacity supply curve in black. In the low scenario, there is little difference between monthly production, compared to the larger differences between summer and winter in the high production scenario.

Supply curves under fuel costs scenarios. Sensitivity to fuel prices was also tested by adjusting the fuel prices +/- 25% within the ELSI model as shown in Supplementary Table 5. Black lines are the monthly supply curves for the central scenario, Brown for the +25% (High) and Green for the -25% (Low).

Supplementary Table 1

Soft-landing approach to environmental flow requirements and reductions. In this study we incorporate the "soft landing" approach whereby water users gradually reduce withdrawals depending on the flow, as determined by the percentiles of the historical flow duration curve.

Q	99.9	99	98	97	96	95	94	93	92	91	90
Permitted withdrawal %	0	10	20	30	40	50	60	70	80	90	100
Actual plant output %	0	0*	0*	30	40	50	60	70	80	90	100

* Reduced to 0 as uneconomic to operate plants as such low load.

Supplementary Table 2

MIDAS stations and related population weighting Urban areas, population and MIDAS weather station numbers used in study for Great Britain. To calibrate the meteorological demand model, the population-weighted average of observed weather variables was used, corresponding to the urban area pulations³ and MIDAS weather stations below⁴.

	Urban area	Population	MIDAS Station
1	Greater London Built-up Area	9,787,426	726
2	Greater Manchester Built-up Area	2,553,379	30690
3	West Midlands Built-up Area	2,440,986	19187
4	West Yorkshire Built-up Area	1,777,934	513
5	Greater Glasgow Built-up Area	1,209,143	24125
6	Liverpool Built-up Area	864,122	17309
7	South Hampshire Built-up Area	855,569	847
8	Tyneside Built-up Area	774,891	30523
9	Nottingham Built-up Area	729,977	556
10	Sheffield Built-up Area	685,368	56958
11	Bristol Built-up Area	617,280	692
12	Leicester Built-up Area	508,916	892
13	Edinburgh Built-up Area	482,005	19260

Supplementary Table 3 Percentage deviation values for each month and at different quantiles for the Baseline climate.

		quantile								
Month	Mean	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
1	-1.0	1.6	0.1	0.0	-1.9	-1.4	-1.9	-1.6	-1.2	-2.0
2	-3.2	-2.9	-1.2	-2.1	-2.0	-2.3	-2.9	-3.5	-4.6	-4.9
3	-2.1	-1.1	-0.6	-0.4	-2.0	-2.2	-2.1	-2.4	-2.8	-4.1
4	-0.3	0.6	0.0	2.6	2.3	2.0	1.2	-1.2	-2.7	-3.8
5	-0.8	2.0	0.3	3.1	2.4	1.3	-0.8	-3.1	-4.3	-4.6
6	-0.4	-2.4	-1.9	3.9	2.3	1.4	0.4	-2.2	-3.6	-3.9
7	-0.9	3.3	-3.5	-1.6	2.3	2.6	-0.9	-3.2	-3.9	-2.9
8	0.4	1.1	-0.5	3.4	4.2	2.9	0.9	-2.2	-3.3	-2.2
9	0.0	2.0	0.5	3.7	2.7	1.5	0.0	-2.4	-2.9	-3.3
10	0.1	0.5	0.9	0.9	-1.0	-0.8	-0.4	-0.2	-0.2	-1.0
11	-1.2	-2.7	-1.6	-1.0	-0.9	-2.1	-1.7	-1.5	-1.5	-1.5
12	1.1	5.0	1.9	2.3	2.2	0.3	0.0	-0.6	-0.1	-1.4

Supplementary Table 4

Power plants and corresponding gauges. List of power plants considered in the study. CCGT is Combined Cycle Gas Turbine, MIW is Municipal and Industrial Waste Incineration, CHP is Combined Heat and Power. Subset of dataset ^{5, 6, 7} joined with gauge station information from ⁸.

	Cooling							
#	Site	Technology	MW _e system	Region	Country	Gauge #	River	Station
				Yorkshire &				
1	Hatfield Park 2	Coal	450 Evaporative	Humber	England	28050	Torne	Auckley
				Yorkshire &				
2	Hatfield Park 1	CCGT	450 Evaporative	Humber	England	28050	Torne	Auckley
				Yorkshire &				
3	Eggborough	Coal	1960 Evaporative	Humber	England	27003	Aire	Beal Weir
							Bedford	
4	Rookery South	MIW	65 -	East	England	33002	Ouse	Bedford
5	Ironbridge	Biomass	900 Evaporative	West Midlands	England	54095	Severn	Buildwas
6	Fellside CHP	CCGT CHP	180 Hybrid	North West	England	74006	Calder	Calder Hall St Mary's
7	Willington C	CCGT	2400 Evaporative	East Midlands	England	28085	Derwent	Bridge Drakelow
8	Drakelow	CCGT	1220 Evaporative	East Midlands	England	28019	Trent	Park
9	Wilton	Coal-Biomass	150 Evaporative	North East	England	25019	Leven	Easby
10	Teeside	CCGT	45 Evaporative	North East	England	25019	Leven	Easby
11	Blackburn Mill	CCGT	60 Hybrid	North West Yorkshire &	England	71013	Darwen	Ewood
12	Ferrybridge MFC	Biomass	68 Evaporative	Humber	England	27003	Aire	Beal Weir
	i en jonage ini e	Diomass	Once	Yorkshire &	Lingiania	27000		bear wen
13	Castleford	CCGT	56 through	Humber	England	27003	Aire	Beal Weir
	Ducalau	Caal	1000 Evenerative		E a al a a d	20002		Hamstall
14	Rugeley	Coal	1006 Evaporative		England	28002	Bilthe	Ridware
15	Ratcliffe	Coal	1960 Evaporative	East Midlands	England	28074	Soar	Kegworth
16	Stallingborough	Biomass	65 Evaporative	East Midlands	England	29001	Beck	Brigsley
				Yorkshire &				
17	Pollington	Biomass	53 Evaporative	Humber Yorkshire &	England	27028	Aire	Armley Bishopbridg
18	Glanford Brigg CCGT		260 Evaporative	Humber	England	29005 Ra	Rase	e
								North
19	Staythorpe C	CCGT	1724 Evaporative Once	East Midlands Yorkshire &	England	28022	Trent	Muskham
20	Thornhill	CCGT	50 through	Humber	England	27074	Spen Beck	Northorne
20	Bridestones		So through	Humber	Lingiania	2/0/1	Sinderland	Northorpe
21	Carrington	CCGT	860 Evaporative	West Midlands	England	69013	Brook	Partington
							Sinderland	
22	Carrington	CCGT	380 Evaporative	West Midlands	England	69013	Brook Sinderland	Partington
23	SAICA Paper Mill	Biomass	42 Evaporative	North West	England	69013	Brook	Partington
24	Rocksavage	CCGT	810 Evaporative	North West	England	68003	Dane	Rudheath
25	Burghfield	CCGT	47 Open loop	South East	England	39130	Thames Bedford	Reading
26	Little Barford	CCGT	714 Evaporative	Fast	Fngland	33039	Ouse	Roxton
27	Lostock	MIW	60 Evaporative	North West	England	68003	Dane	Rudheath
28	Sandhach	CCGT	50 Evaporative	North West	England	68003	Dane	Rudheath
20	Sanabach				Lingiania	00000	Dune	Sutton
29	Didcot B	CCGT	1430 Hybrid	South East	England	39046	Thames	Courtenay
							Horner	West
30	Western Wood	Biomass	35 Evaporative	Wales	Wales	51002	Water	Luccombe Royal
							_	Windsor
31	Slough	Biomass	61 Evaporative	South East	England	39072	Thames	Park
								Royal
								Windsor
32	Fibrepower	MIW	50 Evaporative	South East	England	39072	Thames	Park

Supplementary Table 5 Short-run marginal costs for the powerplants in the model.

	SRMC £/MWh	SRMC-LOW £/MWh	SRMC-HIGH £/MWh	Relation to ELSI SRMC costs
Hydro	0	0	0	
Hydro 5-16MW	0	0	0	Hydro
Solar (<10kW)	0	0	0	
Solar (250-1000kW)	0	0	0	
Solar (large)	0	0	0	
Solar (small)	0	0	0	
Wind	0	0	0	
Wind (<50kW)	0	0	0	
Wind (100-1500kW)	0	0	0	
Wind (offshore) R2	0	0	0	
Wind (offshore) R3	0	0	0	
Nuclear	6.5	6.5	6.5	
Biomass	25	25	25	
Straw	25	25	25	Oil
Biomass (dedicated,				
<50 MW)	27.71	22.22	33.21	CHP
Biomass CHP	27.71	22.22	33.21	CHP
Meat & bone meal	27.71	22.22	33.21	Oil
Waste	27.71	22.22	33.21	Oil
Waste CHP	27.71	22.22	33.21	CHP
coal / biomass				
(conversion)	40.81	36.53	44.525	Average of Coal & Oil
Gas	43.01	34.47	51.54	Gas - Other
CCGT	45.35	34.47	54.35	
coal	56.61	48.06	64.05	
Hydro / pumped				
storage	56.61	56.61	56.61	Pumped Storage Gen
Pumped storage	56.61	56.61	56.61	Pumped Storage Gen
				Average of Coal &
Coal / oil	93.34	75.17	111.02	Biomass
Diesel	130.14	102.28	157.99	Oil
Gas / oil	130.14	102.28	157.99	Oil
Gas oil	130.14	102.28	157.99	Oil
Gas oil / kerosene	130.14	102.28	157.99	Oil
Light oil	130.14	102.28	157.99	Oil
OCGT 100MW	171.17	133.84	208.51	OCGT
OCGT 200MW	171.17	133.84	208.51	OCGT
OCGT 400MW	171.17	133.84	208.51	OCGT
OCGT 600MW	171.17	133.84	208.51	OCGT

Supplementary Note 1

Daily generation data from 2015-2016 of electricity production ⁹ from hydro, pumped storage, wind and solar was used to develop monthly values of combined renewables electricity generation. Using daily sum of sources, the 10th, 50th and 90th percentile values for each month are used to represent the low, median and high renewables generation values. This method, similarly used by Pöyry, UK for the Department for Business, Energy and Industrial Strategy (BEIS) in the Dynamic Demand Model (DDM) and National Grid in the Electricity Scenario Illustrator provides a statistical method to sample wind production uncertainty without running a full ensemble of wind simulation and production runs. Short-run marginal costs (SRMC) are derived from the National Grid ELSI model ^{10, 11} which is a power market economic dispatch model that assesses optimal dispatch through unconstrained and constrained dispatches. ELSI costs for 2017 were used to match the powerplants dataset.

To represent wider range of short-run generation costs between power plants of the same technology, variance was added according to the age of the units, such that newer (and more efficient) units would have marginally lower operational costs than older plants.

For all thermal plants in the UK $(n=134)^5$, for which many of the sites have been operation for decades, we searched the internet for information on major powerplant upgrades, for example replacement turbine units, in which case the upgrade year was noted.

For each technology, parameter, *s*, defines the spread of short run generation $cost^{12}$, as a fraction, around the central estimate short run generation cost, *c*, that occurs halfway through the lifetime of the plant, *y*_l. Therefore the maximum (minimum) short run cost and end (start) of a plant's life is:

$$c_{max} = c + \frac{c \cdot s}{2}$$
$$c_{min} = c - \frac{c \cdot s}{2}$$

Thus the generation cost c_n , which increases linearly, in the current year y_n is found by:

$$c_n = (c_{max} - c_{min}) \cdot \frac{y_n}{y_l} + c_{min} + i$$

Spread parameter *s* was chosen based on analysis of Ofgem spark (gas) and dark (coal) spreads cost data ¹³ between the low and high efficiency spark costs. *i* is a randomly chosen residual value in the range of 0-1 for cases to differentiate where two plants have exactly the same costs so that they do not overlap in the supply curve. Note that once the short-run costs were defined, there were not updated through time during the 30-year timeseries simulations, so as not to change the cost distributions within a time period.

Supplementary References

- 1. Pedregosa F, et al. Scikit-learn: Machine learning in Python. Journal of machine learning research **12**, 2825-2830 (2011).
- 2. Friedman JH. Greedy function approximation: a gradient boosting machine. *Annals of statistics*, 1189-1232 (2001).
- 3. UK Office for National Statistics. UNITED KINGDOM: Countries and Major Urban Areas. (ed ONS) (2011).
- 4. Met Office. *Met Office Integrated Data Archive System (MIDAS) Land and Marine Surface Stations Data (1853-current)* (2012).
- 5. BEIS. Power stations in the United Kingdom as at May 2017. In: *Digest of UK Energy Statistics* (*DUKES*)) (2017).
- 6. Byers EA, Hall JW, Amezaga JM. Electricity generation and cooling water use: UK pathways to 2050. *Global Environmental Change* **25**, 16-30 (2014).
- 7. Byers EA, et al. Cooling water for Britain's future electricity supply. *Proceedings of the Institution of Civil Engineers Energy* **168**, 188-204 (2015).
- 8. Centre for Ecology & Hydrology. National River Flow Archive.) (2018).
- 9. Gridwatch. *G.B. National Grid Status* (2018).
- 10. National Grid. *ELSI User Guide* (2018).
- 11. National Grid. Electricity Scenario Illustrator Excel workbook. (ed National Grid) (2018).
- 12. BEIS. *Electricity Generation Costs*. Department for Business, Energy and Industrial Strategy (2016).
- 13. Ofgem. Spark and dark spreads (GB). Ofgem (2018).