NOT FOR QUOTATION
WITHOUT PERMISSICN
OF THZ AUTEOR

ISPLAY PROTOCOL
ZFERENCEZ FOR THE PROTCCOL

Zigurd R. Mednieks

Part of a series on the Display Protocol
graphics system and FEZ front end
processor systen.

Working Pavers are interim reports on work of the Inter-
national Institute for Applied Systems Aralysis and have re-
ceived only limited review. Views or ovinions expressed
herein do not necessarily represent those of the Institute
or of its National Member Organizations.

INTERITATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS
£-2361 Laxenburg, Austria

PREFACE

The Display Protocol is a unified graphics system for
use at IIASA. It 1is Dbased on existing systems to some
extent. It consists of a device independent protocol inter-
preter and a small set of device dependent routines. Adapt-
ing it to a wide range of output devices requires 1little
programmer effort. It is different from most existing sys-
tems in that it also handles devices with no graphics capa-
bility. It can convey both textual and graphic data in the
same character stream. For a more detailed discussion of
the design decisions that lead to the current Display Proto-
col see PP-79-1, "A NETWORK COMPATIBLE DISPLAY PROTOCQOL", by

B. Schweeger.

This is version 1.3 of this document, last modified 8/11/81

1A

Other design goals include having a clean wuser input
side interface, meshing with UNIX[1] design philosophy, con-
taining ASCII as a subset, and being compact for efficient

transmission over networks.

This document describes +the Display Protocol as it
stands, not as it might be, and so may be out of date on
some subjects. However, most revisions of the protocol are
expected to be backward compatible. While this document may
not represent what is latest with the Display Protocol, it

should serve the applications writer adequately.

[T]UNIX Is a Trade/Service Mark of Bell Laboratories

1. TFUNDAMENTALS

The Display Protocol 1is an eightbit protocol. The
eighth bit of an eight bit byte distinguishes Display Proto-

col codes from their arguments and other ASCII characters.

1.1. The Format of Display Protocol Codes

Display Protocol control codes are distinguished from
other characters in a stream by the high bit of an eight bit
byte being "on" for these codes. Any arguments these codes
may have and any other characters in the stream do not have
this bit on. A request to the Display Protocol interpreter
consists of a control code followed by arguments if needed.
Codes may have varying numbers of arguments. They may have
no arguments, they may have numeric arguments, and they may
have string arguments. Upon receiving a code that requires
arguments the interpreter consumes bytes as arguments until
no more arguments can be consumed or until another Display
Protocol command is encountered. Sending fewer arguments

than minimally required by a command causes an error.

1.2. Default Values and the Top Level Window

Codes are interpreted in the context of the current
environment. Environments are called windows. Windows are
organized hierarchically. Physically, a child window 1lies
inside its parent. Parents do not overwrite their childeren.
Siblings and other, more distant, relatives are not known

about and are overwritten.

The environment of the +top 1level window 1is where

interpretation begins. By convention, the default limits of

-3

this window are bounded below by the resolution of the dev-
ice and above by the addressing resolution of 16384. The
origin (0, 0) is initially at the lower left corner of the
device. There is no formula for picking these limits. They
should, though, make sense for the device. Any pixel on a
device of any resolution and size may be addressed by mani-
pulating the 1limits of the windows. There is no provision

for fourth quadrant addressing or negative addresses.

1.2. The Cursor

There is only one cursor. This cursor can be positioned
explicitly, without side effects. It can be moved as a side
effect of some action. Drawing a character moves the cursor
to +the position where the next character would be drawn.
Drawing a vector moves the cursor from where it was to the
end of the vector. Note that there are no separate graphics

and character cursors.

1.4. The Format of Arguments to Display Protocol Codes

There are three basic types of arguments: string, abso-

lute, and relative.

1.4.1. Characteristics of string arguments

String arguments usually contain +the name of some
object in the environment the interpreter maintains. Some-
times string arguments consist of a maximum of one charac-
ter. Some, however, can vary in length. It is a good idea
to terminate variable length strings with a Display Protocol

no-op.

-4-

1.4.2. Characteristics of zbsolute arguments

Absolute arguments convey unsigned numeric values.
Absolute arguments, like string arguments, consist of bytes
that do not have the high bit on. Fach number is carried by
two consecutive Dbytes. The first byte is taken to contain
the lower seven bits of an integer, and the following byte,
the upper seven bits. That is, the least significant bits
are sent first, and the most significant bits second. This
constrains the interpreter to a maximum 16384 by 16384 reso-
lution per window. There may be many windows per physical

device.

The following is a C program fragment that stuffs two
bytes with an absolute argument. Note that a bit shift must
be performed to right justify the upper seven bits before

they are stored in a byte.

#define LOWSEVEN 0177

int outvalue;
char *output;

output[n] = outvalue & LOWSEVEN;
output(n + 1] = (outvalue >> 7) & LOWSEVEN;

1.4.3. Characteristics of relative arguments

Relative arguments convey signed integer quantities.

One Dbyte holds each relative argument. The high bit must be

-5-

zero, the seventh bit contains the sign, and the six 1low
bits contain the magnitude of the argument. Negative magni-
tudes are in twos complement. ©Note that relative arguments

fall between -64 and +63.

The following C program fragment stuffs a byte with a
relative argument. It works for both positive and negative

quantities.

#define SIGNBIT 0100
#define LOWSIX 077

int outvalue, temp;
char *output;

temp = outvalue & LOWSIX;
output[n] = outvalue >= 0 ? temp : temp & SIGNBIT;

2. THE CONTRCL CODES

The following section describes the Display Protocol
control codes. Given are the full name of the op code, the
symbolic name for the eight bit value of the opcode as 1in
the C header file display.h, the type of arguments, and the
number of arguments. A brief description of the effects of

each control code follow the syntax summaries.

Name: no-op

Symbol name: DPNOP
Octal value: 0200
Arguments: none

The no-op does nothing. It is used to terminate vari-

able length argument lists.

Name: limit

Symbol name: DPLIMIT

Octal value: 0203

Arguments: Type: numeric Min: 2 Max: 4

Changes the origin and the limits of +the coordinates
for the current window. If two arguments are given, they
are taken to be the upper bounds of of the coordinates, and
the lower ©bounds are assumed to be (0, 0). If four argu-
nents are given, the first two are taken +to be the lower
bounds, and the upper two, the upper bounds. Note that, by
manipulating the limits of a window, the scaling, resolu-

tion, and <clipping properties of that window are manipu-

lated.

Name: clear

Symbol name: DPCLEAR
Octal value: 0206
Arguments: none

-7~

Clears the window. The physical effect of this code
might be a formfeed for hardcopy devices.
Name: plot absolute
Symbol name: DPPLOTA

Octal value: 0207
Arguments: Type: numeric Min: 2

Draws a vector from the current cursor position to the
coordinates specified. Note that any even number of argu-
ments may be given. All seven bit quantities following this
code will be taken as arguments. A no-op can be used to
terminate a series of argument pairs.

Name: plot relative

Symbol name: DPPLOTR
Octal value: 0210

Arguments: Type: relative Min: 2

Draws a vector from the current cursor position to the
specified coordinates. Note that any even number of argu-
ments may be given. All seven bit quantities following this
code will Dbe taken as arguments. A no-op can be used to
terminate a series of argument pairs.

Name:move absolute
Symbol name: DPMOVEA

Octal value: 0211
Arguments: Type: absolute Min: 2 Max: 2

Moves the cursor to the specified coordinates.

Name: move relative

Symbol name: DPMOVER

Octal value: 0212

Arguments: Type: Min: 2 Max: 2

-8-

Moves the cursor to the specified coordinates relative
to the current position.
Name: set font absolute
Symbol name: DPSFONTA

Octal value: 0216
Arguments: Type: numeric and string Min: n.a. Max: n.a.

Binds a font to a font number. The first argument 1is
the font number. The remaining arguments are the name of
the font. Be sure this argument list is terminated.

Name: change font
Symbol name: DPCHFONT

Octal value: 0217
Arguments: Type: numeric Min: 1 Max: 1

Changes the current font to the font associated with

the specified font number.

Name: new window

Symbol name: DPNEWWIN

Octal value: 0225

Arguments: Type: string and numeric Min: 5 Max: 5

Creates a window. The first and second arguments are
the name of the window. The last four arguments are the
coordinates of the lower left and upper right corners of the
new window. To <create a window with a one character name,
the first two bytes carry the name and a null byte. This
window is heirarchically below the current window.

Name: enter window
Symbol name: DPENTWIN

Octal value: 0226
Arguments: Type: string Min: 2 Max: 2

-9-

Enters the specified window. The interpreter will now
evaluate codes 1in the environment of the specified window.
To enter a window with a one character name, the two argu-
ment bytes carry the name and a null byte.

Name: exit window
Symbol name: DPEXWIN

Octal value: 0227
Arguments: none

Exits the current window hierarchically wupward. The
exited window continues to exist.
Name: kill window
Symbol name: DPKILWIN

Octal value: 0230
Arguments: Type: string Min: 1 Max: 2

Removes the specified window from the current window's

environmens. Only children. of the current window can be

killed.

Name: delete character right
Symbol name: DPDCHAR
Octal value: 0234

Arguments: Type: string Min: 1 Max: 1

Deletes the character to the right of the cursor. For
variable width fonts, the character must be specified. TFor
fizxed width fonts, any character can be successfully used as
an argumnent and the action is identical to that of a typical

delete-char function. Note that character size 1is deduced

from the current font.

Name: erase character right

Symbol name: DPECHAR

Octal value: 0235

Arguments: Type: string Min: 1 Max: 1

-10-

Clears a region the size of the specified character to

the right of the cursor.

Name: insert character right
Symbol name: DPICHAR
Octal value: 0236

Arguments: Type: string Min: 1 Max: 1

Inserts the specified character to the right of the

cursor.

Name: move over character right
Symbol name: DPMRCHR
Octal value: 0237

Arguments: Type: string Min: 1 Max: 1

Moves right the width of the specified character.

Name: move over character left
Symbol name: DPMLCHR

Octal value: 0240

Arguments: Type: string Min: 1 Wax: 1

Moves left the width of the specified character.

Name: delete to beginning of line
Symbol name: DPDBOL

Octal value: 0241

Arguments: none

Deletes to the beginning of the line.

Name: delete to end of line
Symbol name: DPDEOL

Octal value: 0242
Arguments: none

Deletes $o the end of the line.

Name: delete line from up
Symbol name: DPDLINU

-11-

Octal value: 0243
Arguments: none

Deletes the current line and scrolls 1lines down fronm

above.

Name: delete line from down
Symbol name: DPDLIND

Octal value: 0244
Arguments: none

Deletes the current line and scrolls 1lines up from

below. This behaves like a typical delete-line function.

Name: insert line up
Symbol name: DPILINU
Octal value: 0245
Arguments: none

Insert a blank line and scroll lines above up.

Name: insert line down
Symbol name: DPLIND
Octal value: 0246
Arguments: none

Insert a blank line and scroll lines below down.

