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PROOF FOR A CASE WHERE DISCOUNTING

ADVANCES THE DOOMSDAY

by Tjalling C. Koopmans*

In a previous paper (Koopmans [1973J), I considered some

problems of "optimal" consumption ~t over time of an exhaustible

resource of known finite total availability R. In one of the

cases studied, consumption of a minimum amount of the resource

is assumed to be essential to human life, in such a way that all

life ceases upon its exhaustion at time T. Assuming a constant

population until that time, and denoting by r the positive

minimum consumption level needed for survival of that population,

the survival period T is constrained by

(1) o < T < R/r _ T

Here equality (T=T) can be attained only by consuming at the

minimum level (rt=~) at all times, 0 ~ t < T.

However, optimality is defined in terms of maximization of

the integral over time of discounted future utility levels,

(2)
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where p is a discount rate, p ~ 0, applied in continuous time to

the utility flow v(rt ) arising at any time t from a consumption

flow r t of the resource. The utility flow function v(r) is

defined for r ~ !, is twice continuously differentiable and

satisfies

(3a,b,c,d) v'(r) > 0, v"(r) < ° for r > !' v(!) = 0,

lim v'(r) = 00

r~r

That is, v(r) is (a) strictly increasing and (b) strictly

concave. The stipulation (c) anchors the utility scale. Some

such anchoring, though not neces~arilythe given one, is needed

whenever population size is a decision variable. The last require-

ment (d) simplifies a step in the proof, and can be secured if

needed by a distortion of v(r) in a neighborhood of r that does

not affect the solution.

The paper referred to gives an intuitive argument for the

following

Theorem: For each p ~ ° there exists a unique optimal path
~

r t = rt , ° < t ~ Tp ' maximizin~ (2) subject to

I
(4a)

(4)

(4b)

r t is a continuous function on [O,TJ ,
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For p = 0, the optimal path (;'t io '$ t < TO) is defined by

,.. ,.. ,..
(Sa) r t = r, a constant, for 0 < t < TO ,

(S) (Sb) vCr) = rv' (r) ,
(Sc)

,..",
rTO = R

For p > 0 it is defined by

,..

(6a)
-pt ,.. -pT ,..e v' (r ) = e Pv'(r) ,t

(6)

(6b) J~p
,..
rtdt = R •

o < t < Tp ,
,..
r as in (Sb) ,

The diagram illustrates the solution. For p = 0, (6)

implies (5), and consumption of the resource is constant during

s urvi val.
,..

Its optimal level r is obtained in (5b,c) by

balancing the number of years of survival against the constant

level of utility flow that the total resource stock makes

possible during survival. Since ;. ~ £' the optimum survival

period TO is shorter than the maximum T defined by (1).

For p >0, the optimal path r t follows a declining curve

,..
Tp , the

steeperSince the decline islevel rT = r is just reached.
p

when P is larger, the survival period is shorter, the larger

,..
given by (6a), which starts from a level r o such that, when

resource exhaustion brings life to a stop at time t =

is p - which explains the title of this note.
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The intuitive argument already referred to gives insight

into tne theorem; the following proof establishes its validity.

Proof: We first consider paths optimal under the added constraint

of some arbitrarily fixed value T = T* of T satisfying 0 < T* < T.

Assume that such a " T* - optimal" path r t exists and that

(7) r t > r + 0 for 0 ~ t ~ T* and some 0 > 0

Then, if St is a continuous function defined for 0 < t < T*

such that

(8 )

the path

,

(9) o < t < T*

is T*-feasible for 1£1 < 1 and satisfies

V(p,T*,(rt )) - V(p,T*,(rt ) =I(lOa) T*
(10) = Joe- pt (v (rt ) - v(r*))dt =

\

t

(lab) T*
= EJ e-ptv' (rt)stdt + R(£) ,

a
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where the remainder R(£) is of second order in £. It is

therefore a necessary condition for the T*-optimality of r t

that

(11) , say,

because, if we had p t' # p t'" 0 ~ t', t" ~ T*, we could by

choosing St of one sign in a neighborhood in [O,T*] of t', St

of the opposite sign in one of til and zero elsewhere while

preserving (8) make the last member of (10) positive for

some £ with 1£1 ~ 1.

In the light of (3a,b), (11) justifies our assumption

that r t is a continuous function of t. We now find that

r t is constant for p = 0, strictly decreasin~ for p > O. Given

r T*, say, the solution r t of (11) is uniquely determined, and,

for each t, r t is a strictly increasing differentiable function

f . *o the glven r T*. Also, by (3d),

lim IoT rtdt = ITo rdt = T*r < ~r = R
r T*-+.!:

Whereas, for sUfficiently large r T* ,

Therefore there is a unique number a* > r such that the unique

solution r t of (11) with r T* = a* satisfies
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f
T*

(12) rtdt = R
o

From here on r t will denote that path for the chosen T*. Note

that this path also satisfies (7).

To prove the unique T*-optimality of r t , let r t be any

T*-feasible path such that'r
to

t r
to

for some tOE[O,TJ. Then,

by the continuity of r t , r t , r t # r t for all t in some neighborhood

or 0 f to in [0, T*] . By (3b), for all t E[0 , T*] ,

v(r ) - v(r*) [<] (r - r*) v' (r*)t t ~ t t t for tc[:.]

where T* = [O,T*] - T. Therefore, we have from (lOa), (11),

(4b) with T = T*, and (12) that

V(p,T*,(rt » - V(p,T*,(rt » =

<

=

f

T*
(r - r*)e-ptv' (r*)dt =

ott t

-pT* fT*e v'(rT**) (r - r*)dt < 0
ott

Hence r t is uniquely T*-optimal.
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We now make T* a variable, writing T instead of T* and

r~ instead of r t . Note that, for each t, 0 ~ t < T, r~ is a

differentiable function of T for t < T < T. Therefore

= r
o

-pt T
e v(~'t )dt

is a differentiable function of T for 0 < T < T, and

by (1). But, by (12),

T

dR T + loT dr t
o = dT = r T dT dt

Therefore,

But then, from (Sb), since d~ (v(r) - rv' (r)) = -rv"(r) > 0 for r > 0,

by (3b),
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T' T'Finally, since 0 < T < T' < T implies r T, ~ r T

for

Thus,

which

V
T

reaches its unique maximum for that value Tp of T for

T "r T = r.

This establishes the second part of the theorem. The first

part follows by specialization when p = o.
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