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PREFACE 

Results on controllability, observability and realization 
of input/output data for linear systems are well-known and 
extensively covered in a variety of books and papers. What 
is not so well-known is that substantial progress has been 
made in recent years on providing similarly detailed results 
for nonlinear processes. This paper represents a survey of 
the most interesting work on nonlinear systems, together with 
a discussion of the major obstacles standing in the way of a 
comprehensive theory of nonlinear systems. 



1. Basic Problems and Results in Linear System Theory 

The theoryof lineardynamicalprocesses and controlhas by now 

been developedtosuch anextent that it is only aslight exagger- 

ation to term it a branch of applied mathematics, sharing equal 

rank with more familiar areas such as hydrodynamics, classical 

and quantum mechanics and electromagnetism, to name but a few. 

For those who doubt this assessment of linear system theory, 

a perusal of some of the more advanced recent literature [13,20,25, 

44,451 should prove to be an enlightening activity, showing how deeply 

imbedded system-theoretic concepts are in areas such as algebraic 

geometry, differential topology and Lie algebras. Conversely, 

the "purer" parts of mathematics have proven to be fruitful 

sources of inspiration for system theorists seeking more power- 

ful tools with which to analyze and classify broad classes of 

problems. 

Encouraged by the tremendous success in the study of linear 

processes, system theorists have been increasingly turning their 

attention and methods to the analysis of the same circle of 

questions for nonlinear systems. As one would suspect, 

the jungleland of nonlinearity is not easily tamed and so far 

no comprehensive theory has emerged capable of treating general 

nonlinear processes with the detail available in the linear case. 

Nonetheless, substantial progress has been made on several fronts 

and part of our story will be to survey some of the more inter- 

esting developments. 

An equally important part of the picture we wish to present 

is to outline some of the reasons why a complete theory of non- 

linear systems seems remote, at least at our current level of 



mathematical sophistication. All current indications point 

toward the conclusion that seeking a completely general theory 

of nonlinear systems is somewhat akin to the search for the Holy 

Grail: a relatively harmless activity full of many pleasant sur- 

prises and mild disappointments, but ultimately unrewarding. A 

far more profitable path to follow is to concentrate upon special 

classes of nonlinear problems, usually motivated by applica- 

tions, and to use the structure inherent in these classes as 

a guide to useful (i.e., applicable) results. As we go along 

in this survey, we shall try to emphasize this approach by 

example, as well as by precept. 

Before entering into the mainstream of nonlinear system 

theory and the problems inherent therein, let us briefly review 

some ofthe principalquestions andresults ofthe lineartheory. We 

are concerned with a process described by the system of 

differential equations 

where x, u and y are n, m and p-dimensional vector functions, 

taking values in R", Rm and RP, respectively. For ease 

of exposition, we assume that the matrices F, G and H 

are constant, although the theory extends easily to the time- 

varying case at the expense of more delicate notation and 

definitions. 

The principal questions of mathematical system theory may 

be conveniently separated into three categories: 



A .  Reachability/Controllability - g i v e n  an admissible set 

o f  i n p u t  functions Q ,  determine the region 9 2  of  t h e  sys tem s t a t e  

s p a c e  Xwhich c a n b e  r e a c h e d f r o m t h e i n i t i a l s t a t e ~ ~  i n s o m e  pre-  

s c r i b e d  f i n i t e  t i m e  T by a p p l i c a t i o n  o f  i n p u t s  U E  Q .  I f  x o # O  and 

9 = 0 ,  t h e n  w e  have a  problem of  ( n u l l - )  c o n t r o l l a b i l i t y ;  o t h e r -  

w i s e  i t i s  aquestionofreachability. I n  t h e  c a s e  o f  c o n s t a n t  

F and G ( t h e  o u t p u t  m a t r i x  H p l a y s  no r o l e  i n  c a t e g o r y  A 

p r o b l e m s ) ,  w i t h  Q = piecewise -con t inuous  f u n c t i o n s  on [O,T] ,  

t h e  two n o t i o n s  c o i n c i d e  and t h e  b a s i c  r e s u l t  i s  

Theorem 1 [6 ,14 ,351.  A s t a t e  x  i s  r e a c h a b l e  (and c o n t r o l l a b l e )  

i f  and o n l y  i f  x  i s  c o n t a i n e d  i n  t h e  subspace  o f  X g e n e r a t e d  by 

t h e  v e c t o r s  

The sys tem C i s  s a i d  t o  b e  comple te ly  r e a c h a b l e  i f  and o n l y  i f  

a= X ,  i . e . ,  x  1s r e a c h a b l e  f o r  e v e r y  x E X .  An immediate conse-  

quence o f  Theorem 1 i s  

C o r o l l a r y  1 .  C i s  comple te ly  r e a c h a b l e  i f  and o n l y  i f  t h e  

n  xnm m a t r i x  

h a s  rank n .  

Many v a r i a t i o n s  on t h e  above theme a r e  p o s s i b l e  by changing 

R , 9 ,  T and/or  a d m i t t i n g  t ime-varying F and G (see [14] f o r  de- 

t a i l s ) .  However, t h e  a l g e b r a i c  r e s u l t  g i v e n  by Theorem 1 and 

i t s  c o r o l l a r y  forms t h e  c o r n e r s t o n e  f o r  t h e  s t u d y  o f  a lmos t  a l l  

q u e s t i o n s  r e l a t i n g  t o  r e a c h a b i l i t y  and c o n t r o l l a b i l i t y  of  l i n e a r  



systems. As we shall see below, analogous algebraic 

results can be obtained for large classes of nonlinear 

systems at the expense of a more elaborate mathematical 

machinery, further emphasizing the underlying algebraic nature 

of dynamical systems. 

B. Observability/Constructibility- switching attention 

from inputs to outputs, we consider the class of questions 

centering upon what information can be deduced about the 

system state from the measured output. As in category A, 

the basic question comes in two forms, depending upon whether 

we wish to determine the initial state xo from knowledge of 

future inputs and outputs (observability) or if we wish to 

determine the current state x(T) from knowledge of past 

inputs and outputs (constructibility). The linearity of the 

situation enables us to consider the case of no input (u=O) 

and, as in the controllability/reachability situation, the 

two basic concepts of observability and constructibility 

coincide if F and H are constant matrices. The main result 

for category B questions is 

Theorem 2 [6,14,351. A state x E x is unobservable (uncon- 

structible) if and only if x is of the form x =  x l +  ker0, for some 

21 E X with 



Note that the basic test implicit in Theorem 2 is given in 

terms of unobservable states. Thus, any initial state xo f 0 

may be uniquely determined from the measured output y(t), 

0 - < t < T ,  - T > 0 ,  if and only if x f x + ker0, for some 0 1 

x1 EX. An important corollary to Theoren 2, characterizing 

complete observability/constructibility is 

Corollary 2. The system C is completely observable 

(constructible) if and only if the matrix 8 has rank n. 

The striking similarity in form between Theorems 1 and 2 

suggests a duality between the concepts of reachability and 

observability. This idea can be made mathematically precise 

through the identifications 

showing that any result concerning reachability may be tran- 

scribed into a dual result about observability, and conversely. 

C. Realizations/Identif ication - the basic questions subsumed 

under categoriesA andB assume fortheir statement that the system 

is givenin the so-called state-variable form C .  This leadstothe 

basic system-theoretic problem of determining "goodu state- 

variable models given only input/output (experimental) data. 

Let W(s) and 3(s) denote the Laplace transforms of the 

input and output functions, respectively. It is then easy to 

see thatwand 9 a r e  linearly related as 

where 



is called the system transfer matrix. If C is reachable and 

observable, W(s) is a strictly proper rational matrix (i.e., 

the elements of W are ratios of relatively prime polynomials 

with the degree of.the numerator less than that of the denom- 

inator), so we may expand W(*) in a Laurent series about 03 

obtaining 

The matrix W(s) or, equivalently, the infinite sequence 

{AIIA2,A 3 , . . . )  will be called the input/output data (or 

external description) of the system E .  We can now state 

one of the central problems of mathematical systemtheory: 

The Realization Problem: given the input/output data 

of a linear system C, determine a state-variable model C 

such that 

i) the input/output behavior of the model agrees 

exactly with the given data and 

ii) the model is completely reachable and completely 

observable, i.e., the model is canonical. 

Remark: Condition (ii), that the model be canonical, 

is mathematically equivalent to requiring that the dimension 

of the state space X of the model be minimal. However, for 

purposes of extension to the nonlinear case, where X may not 

evenbeavectorspace, it is preferable to state the requirement 

as given above. Reachability and observability is a natural 

requirement to impose on a model since unreachable and/or 

unobservable components of C are not implied by the data; 

they are pieces of the system which have been arbitrarily 



imposed by the modeler. Consequently, they have no claim to 

be part of a canonical, i.e., minimal model. 

Perhaps surprisingly, the Realization Problem for linear 

systems has the following definitive solution. 

Theorem 3 [35 1 .  For each input/output description of a 

system having a finite-dimensional realization there exists a 

canonical model C, which is unique up to a choice of coordinate 

system in the state space X. 

A weak form of the Realization Problem occurs when the 

dimension of C is fixed in advance, perhaps by a priori 

engineering or physical considerations, and only some of the 

components of F, G and H need to be determined from the input/ 

output data. This is the so-called parameter identification 

(or structural realization) problem and is tantamount to not 

only forcing the system upon the data (by fixing the dimension 

of X), but also partially fixing the coordinate system in X 

(by demanding that certain elements of F, G and H remain fixed). 

Nevertheless, much work has been done on parameter estimation, 

especially in the case where there are uncertainties in the 

data. See, for example [2, 4 6 1 .  

It will be noted that the Realization Problem demands all 

of the system input/output data before the internal model C 

can be chosen. In principle, this involves an infinite data 

string. Of somewhat more practical concern is the case in 

which only a finite behavior sequence 

is available. The construction of a canonical model C from 
N 



the sequence BN constitutes the partial realization problem, 

which has only recently been definitively resolved. While a 

precise statement of the main result would take us too far 

afield, the basic conclusion is that each behavior sequence 

B has a canonical realization C which may be unique (modulo N N' 

a coordinate change in X), or which may contain a certain 

number of undetermined parameters. Furthermore, it can be 

shown that as N increases (more data becomes available), the 

sequence of canonical realizations C C  1 is nested, i.e., the N .  

matrices FN, GN, H of the realization C can be made to N N' 

appear as submatrices in the realization C k > l ,  if a N+kl - 

suitable basis in X is chosen. A complete discussion of 

these matters is given in [32,341. 

In addition to the problems of categories A, B and C, two 

other broad areas are also usually considered to form part of 

the general field of mathematical system theory: stability 

theory and optimization. Generations of work on optimal control 

theory and stability is by now so well covered in the literature 

that we shall refrain from a discussion of these areas here. 

For the interested reader, the sources [1,12,49] can be recommended. 

2. Linearization 

Given a nonlinear internal model 

the first temptation in analyzing questions of Type A or B is to 

linearize the process (N) by choosing some nominal input u(t) 



and generating the corresponding reference trajectory x(t). 

Such a procedure yields the linearized dynamics 

~ = F ( ~ ) z + G ( ~ ) v  , Z(O) = x o 

w(t) = H(t) z , 

where 

- 
z(t) =x(t) - a t ) ,  v(t)=u(t) -G(t), w(t)=y(t)-y(t), 

with 

- 
with F(*), G(*) and H(*) being evaluated at the pair (x(t), u(t)). 

The approach to studying reachability/observability issues is to 

now employ the time-varying analogues [14] of Theorems 1 and 2 

for the analysis of the system XL. We would clearly like to 

be able to conclude something about the controllability prop- 
- - 

erties of (N) in a neighborhood of (x,u) by studying the 

corresponding properties of 1 L' A typical result in this 

direction is 

1 
Theorem 4 [38] . Let the dynamics f (x,u) be C in a 

- - 
neighborhood U of (x,u). Then the system (N) is locally 

controllable if the pair (F(t) ,G(t)) is controllable in U. 

Here "local controllability" means that for each x* in some 

neighborhood of x, there exists a piecewise-continuous control 
u* (t) , in some neighborhood of u(t) , 0 5 t IT, such that x ( T )  = 0. 

The problem with the above type of linearized results is that 

they usually provide only sufficient conditions and are inherently 



local in character. As illustration of this point, consider 

the example & = xu or the 2nd-order nonlinear problem 

with lu(t) I 2 I .  Let x(t) = O r  u(t) = 0, so that the linearized 

system is 

with 

The pair (FIG) is not controllable since 

Nevertheless, it can be shown [ 3 8 ]  that each initial state 

0 (xl ,x2') near (0,O) can be transferred to the origin in finite 

time by a control of the above type. Thus, the system is 

locally controllable although the linearized approximation is 

not controllable. 

Another obvious defect of linearization is the smoothness 

requirement on the dynamics f(x,u) and/or the output function 

h(x). In order for the linearization to make sense, these 

functions must be at least continuously differentiable in each 

argument. While many practical processes obey this restriction, 



systems with switching points in the dynamics or other types 

of discontinuities frequently occur and would be outside the 

realm of straightforward linearization techniques. 

3. Nonlinear Processes 

The inadequacies of linearization as outlined in the 

preceding section are far from the only reasons why we would 

like to develop a system theory for truly nonlinear processes. 

Some of the reasons are associated with intrinsic features of 

nonlinear dynamical processes, while others are more closely 

connected with the methods employed in the study of such pro- 

cesses. Let us consider the first of these aspects as it is 

somewhat more relevant to the issues raised in this survey. 

Among the inherent difficulties associated with nonlinear 

processes which are not present in linear phenomena, we may 

cite nonuniqueness, singularities and critical dependence on 

parameters as features worthy of special attention. 

Nonuniqueness -the simple scalar process 

illustrates the fact that a nonlinear process may have multiple 

equilibria, even in the presence of no control input (u=O). 

In the event a feedback law 

is employed, the closed-loop dynamics 



may have an infinite (or even uncountable) number of equilibria, 

depending upon the form of $ .  Clearly, this situation is in 

stark contrast to the linear case where only the equilibrium 

x =  0  can generically occur. Furthermore, no linearized version 

of (1) can possibly capture the global structure of the system 

equilibria manifold as a function of a and b. 

Singularities - the solutions of many nonlinear systems 
may develop singularities, even though the systems themselves 

have smooth coefficients. The simple two-point boundary value 

problem 

possesses no solutions without singularities for any T > 0 .  

In a more system-theoretic direction, it can be shown [ 8  ] 

that the system 

with 1 u (t) I 5 E < <  1, has a reachable set from xo which is 

homeomorphic to a disk for T small, but encircles the origin 

for T large (see Fig. 1 ) . 



T s m a l l  T l a r g e  

F i g u r e  1 .  The Reachable S e t  f o r  t h e  System ( 2 )  

The s i t u a t i o n  can  b e  even worse t h a n  t h i s  a s  some n o n l i n e a r  

sys tems have  a  r e a c h a b l e  set which i s  n o t  even path-connected  

[ 8 1 .  I n  t h e  l i n e a r  c a s e ,  o f  c o u r s e ,  Theorem 1 shows t h a t  t h e  

r e a c h a b l e  se t  i s  a  subspace  o f  R ~ ,  hence ,  n o t  on.ly s imply-  

connected  b u t  even convex.  Again, no l i n e a r i z e d  v e r s i o n  o f  t h e  

sys tem ( 2 )  can  hope t o  c a p t u r e  t h e  g l o b a l  s t r u c t u r e  of  t h e  

r e a c h a b l e  set .  

The s i m p l e  b i l i n e a r  sys tem 

a l s o  shows t h a t  a  s t a t e  may n o t  b e  r e a c h a b l e  from t h e  o r i g i n  

w i t h  bounded c o n t r o l .  T h u s f a  more a p p r o p r i a t e  s t a t e  s p a c e  f o r  

n  t h i s  problem i s  t h e  "punc tu red"  r e g i o n  R - EO), r a t h e r  t h a n  

R" i t s e l f .  I n  g e n e r a l ,  t h e  " n a t u r a l "  s t a t e  s p a c e  f o r  a  non- 

l i n e a r  p r o c e s s  i s  no l o n g e r  t h e  f a m i l i a r  v e c t o r  space  ( o r  k [ z l  - 

module) of  t h e  l i n e a r  t h e o r y ,  b u t  a  much more compl ica ted  

mathemat ica l  o b j e c t ,  u s u a l l y  some t y p e  o f  man i fo ld  i n  a  



Euclidean space of high dimension. Such facts account for 

the need to employ much more sophisticated machinery than 

simple linear algebra to study the structure of nonlinear 

processes. 

Critical Dependence on Parameters - for the linear dynamical 
system 

there are no parametric changes in the elements of F which can 

cause the system to have more than a single solution curve x(t). 

However, this is far from the case for nonlinear processes. For 

example, consider the system 

For X > @ (a certain positive number), the system has no smooth 

solution. For X = B there is exactly one smooth solution, 

while for 0 < X < B there are two solutions. Thus, B is a bifur- 

cation point in the parameter space at which the character of 

the solution set changes radically. 

To illustrate another point, consider the system 

For each p ,  -1 - < pz0, all solutions tend asymptotically to zero 



as t-tm. As p crosses 0, the system has a unique periodic 

solution p(p) and the origin becomes a source. For all p ,  

0 < p 2 1 ,  every nontrivial solution tends to p (p) as t + m. 

Thus, p = O  is a bifurcation point at which the equilibrium 

at the origin changes suddenly from a sink to a source and 

a limit cycle p(p) is created. This so-called "Hopf bifur- 

cation" is a consequence of the system nonlinearity and has 

no counterpart in linear problems. 

Finally, consider the equilibria of the nonlinear system 

where a is an m-dimensional vector of parameters. The equi- 

libria x* for which f (x* , a) = 0 depend upon a and we can define 

a multivalued map 

X:A-+ X I 

a - x* (a) 
where A C Rm, X C Rn. Under appropriate hypotheses on the function 

f, properties of the map X can be characterized using Thom's 

theory of catastrophes. In particular, it is of interest to 

categorize those submanifolds of A for which the map X is dis- 

continuous, the so-called "catastrophe" manifold. Again, if 

f is linear the map X is continuous and there is no interesting 

structure to analyze. Thus, no linearized version of the problem 

will suffice to study the geometry of the equilibrium manifold. 

The above examples provide convincing evidence of the need 

to develop a nonlinear system theory capable of handling the 

same broad array of questions so successfully dealt with by the 



linear theory. In succeeding sections, we present some steps 

in this direction. As will become evident, almost everything 

remains to be done to complete such a program despite the 

impressive advances of recent years. 

4. Reachability and Controllability 

Smooth Systems 

Certainly the area in which most progress has been made in 

understanding the system-theoretic behavior of nonlinear processes 

is in the effective characterization of reachable sets and in the 

determination of algebraic criteria for complete reachability. 

Since the mathematical apparatus involved goes somewhat beyond 

the elementary linear algebra which suffices for the study of 

linear systems, we make the following fairly standard definitions 

as given, for example, in [ 2 6 ]  . 
Consider the nonlinear system 

where u E W C R ~ ,  x E MI a coo-connected manifold of dimension n 

and f and h are cm functions of their arguments. To 

simplify notation, it is assumed that M admits globally 

defined coordinates x =  (x,, ...,x,)', allowing us to identify 

the points of M with their coordinate representations and to 

describe the control system (N) in the usual engineering form 

above. We also assume that (N) is complete, i.e., for every 

bounded measurable control u(t) and every x EM, there exists 
0 



a solution of ;( = f (x,u) satisfying x(0) = x x (t) E M for all 0 ' 
real t. 

Definition 1. Given a point X*E M, we say that x* is 

reachable from xo at T if there exists a bounded measurable 

control u(t), satisfying u(t)~U, such that the system trajec- 

tory satisfiesx(O)=x x(T)=x*, x(t)~M, O(t(T. 0 ' 

The set of states reachable from xo is denoted as 

W(xo) = U Ix : x reachable from x at time TI . 
O<T<co 0 
- 

We say (N) is reachable - at xo if R(xO) = M  and reachable if 
9(x) = M for all x E M. 

Since it may be necessary to either travel a long distance' 

or a great time to reach points near x the property of reach- 
0 ' 

ability from xo is not always of practical use. This fact leads 

to a local version of reachability. 

Definition 2. (N) is locally reachable at so if for every - 

neighborhood U of xo, R(x )nuis also a neighborhood of xo with 0 

the trajectory from xo to d(x )nu lying entirely within U. The 0 

system (N) is locally reachable if it is locally reachable for 

every x E M. 

The reachability concept detailed in Definition 1 is not 

symmetric: x* may be reachable from xo but not conversely (in 

contrast to the situation for autonomous linear systems). To 

remedy this situation, we need a weaker notion of reachability. 

This is provided by 



Definition 3. Two states x* and 2 are weakly reachable 
0 1 from each other if and only if there exist states x ,x ,..., x k 

i 
O * xk = x and either x is reachable from x i- 1 such that x = x  , 

i- 1 i or x is reachable from x , i=1,2, ..., k. The system (N) is 

said to be weakly reachable if it is weakly reachable from every 

x EM. Since weak reachability is a global concept like reach- 

ability, we can define a local version of it in correspondence 

to Definition 2. 

Among the various reachability concepts, we have the 

following chain of implications 

locally reachable reachable 

locally weakly reachable >=> weakly reachable 

For autonomous linear systems it can be shown that all four of 

the above notions coincide. 

The advantage of local weak reachability over the other 

concepts defined above is that it lends itself to a simple 

algebraic test. For this, however, we need a few additional 

notions. 

Definition 4. Let p (x) , q (x) be two cm vector fields on 

M. Then the Jacobi bracket of p and q, denoted [p,q] is given 

by 

The set of all cm vector fields on M is an infinite-dimensional 

vector space denoted by X(M) and becomes a Lie algebra under the 

the multiplication defined by the Jacobi bracket. 



Each constant control u E R defines a vector field 

f (x,u) E X(M) . We let So denote the subset of all such vector 
fields, i.e., % is the set of all vector fields generated 
from f(xIW) through use of constant controls. Fdenotes the 

smallest subalgebra of X ( M )  containing So. The elements of 

%are linear combinations of elements of the form 

i where fi(x) = f(x,ui) for some constant u E Q. We let P(x) be 

the space of tangent vectors spanned by the vector fields of 

F a t  x. 

Definition 5. (N) is said to satisfy the reachability 

rank condition at x if the dimension of F(xo) is n. If this - -0 

is true for every x EM, then (N) satisfies the reachability 

rank condition. 

The following theorems illustrate the importance of the 

reachability rank condition. The proofs may be found, for 

instance, in [ 2 6  1 . 

Theorem 5. If (N) satisfies the reachability rank 

condition at x then (N) is weakly locally reachable at x . 
0 ' 

For ~ ~ - s ~ s t e n s ,  the converse is not quite true, but we do have 

Theorem 6 .  If (N) is locally weakly reachable then 

the reachability rank condition is satisfied on an open dense 

subset of M (i.e., the rank condition is satisfied aenericallv). 

In the event we strengthen the smoothness requirement on (N) 

from cW to analytic, we can strengthen Theorems 5 and 6  to 



Theorem 7 [261. If (N) is analytic then (N) is weakly 

reachable if and only if it is locally weakly reachable if 

and onlv if the reachabilitv rank condition is satisfied. 

The simplest illustration of the use of these results is 

to recapture the linear result of Theorem 1. In this case 

so the Lie algebra is generated by the vector fields 

{Fx,g1,g2,...,gm~, where gi denotes the ith column of G 

regarded as a constant vector field. computing brackets 

yields 

2 
[Fx, [Fxlgj1 1 = F gj I [gil [Fx,gj1l = 0 I etc. 

The Cayley-Hamilton Theorem implies that 9 i s  spanned by the 

vector fields Fx and the constant vector fields F~~ 
j1 

= 0 1  ,..,n-1, j =1,2,...,m. Thus, in this context the 

reachability rank condition reduces to the condition of 

Theorem 1, namely, ( N )  is locally reachable if and only if 

2 n- 1 rank [GIFGIF GI ... IF GI = n . 

However, for linear systems local reachability and reachability 

are equivalent, so the usual results are obtained. 

The practical problem with applying the preceding results 

is that we have no nonlinear version of the Cayley-Hamilton 

Theorem insuring that the test for complete reachability can 

be concluded in a finite number of steps. In principle, we 



could compute bracket after bracket in the Lie algebra gener- 

ated by the ifi} with no assurance that the next bracket might 

not yield a vector field linearly independent of those already 

computed. 

In order to rule out the above type of behavior, we intro- 

duce the following definition. 

Definition 6. A set of vector fields {fi}IZl is called 

involutive if there exist functions yijk(x) such that 

The property of being involutive is a necessary condition in 

1 order to be able to "integrate" the vector fields f ,..., f r 

to obtain a solution manifold. The following theorem of 

Frobenius shows that this property is (with mild regularity 

assumptions) also sufficient to assert the existence of 

maximal solutions. 

r 
Theorem 8 [ g ] .  Let {fi}i,l be an involutive collection 

of vector fields which are 

a) analytic on an analytic manifold M. Then given any 

point x E M I  there exists a maximal submanifold N containing 0 

x such that ifi} spans the tangent space of N at each point -0 

of N. 

b) C- on a C- manifold M with the dimension of the span 

of ifi) constant on M. Then given any point X ~ E  MI there 

exists a maximal submanifold N containing x such that ifi} 0 

spans the tangent space of N at each point of N. 



As an illustration of Frobenius' Theorem, consider the 

analytic vector fields in R 
3 

It is easily verified that this collection is involutive and 

if we look at any point x E R~ then we can integrate the distri- 

bution through that point. For instance, if x = + ( J z , f i , J T ) ,  

then we obtain the set 

as the corresponding integral manifold. In fact, in this 

3 
example the vectors fl, f 2 ,  f are tangent to the spherical 

shell N at each point. Additional details on this example 

are provided in [9] . 
In terms of the Frobenius Theorem, if we allow positive 

and negative time, the problem of complete reachability for an - 
involutive system of vector fields may be re-stated: does the 

maximal submanifold N = M? In order to answer this question, it 

is necessary to have a more explicit characterization of the 

submanifold N. This is provided by a theorem of Chow, which 

also provides the underpinning for our earlier results, Theorems 

5-7. But first a bit of additional notation. 

Given a vector field f on M, for each t exptf defines a 

map of M-fM, which is the mapping produced by the flow on M 

defined by the differential equation = f(x) . We denote by 

dif f (M) the group of diffeomorphisms of M and let {exp { f i l  lG 



be the smallest subgroup of diff (M) which contains exptf for 

i all f c i fil . Finally. if lLA denotes the Lie algebra of vector 

fields generated by i f l under the Jacobi bracket multiplication 

defined above. We are now in a position to state the following 

control-theoretic version of Chow's Theorem. 

Theorem 9 [ 9 ]  . Let {fi(x)}~=, be a collection of vector 

fields such that ifi (x) 1 is LA - 

a) analytic on an analytic manifold M. Then given any 

x E MI there exists a maximal submanifold NcM containing -0 Xo 
such that 

x = N  ; {exp i fi)} xo = {exp { filLA)G 
G 

b) cW on a cW manifold M with dim span ifi(x) lLA ) constant 
on M. Then given any point x E M ,  there exists a maximal sub- 0 

manifold N C M  containing x such that 0 

Linear-Analytic Systems 

The conclusions of Chow's Theorem enable us to effectively 

resolve the reachability problem for systems of the form 

However, in applications we are often confronted with systems 

of the form 



I n  t h i s . s i t u a t i o n ,  Chow's Theorem h a s  t h e  s e r i o u s  drawback 

t h a t  it does  n o t  d i s t i n g u i s h  between p o s i t i v e  and n e g a t i v e  

t i m e .  Thus, t h e  submanifo ld  N may i n c l u d e  p o i n t s  which can  

o n l y  be  reached  by p a s s i n g  backward a l o n g  t h e  v e c t o r  f i e l d  

p ( x ) .  T h i s  means t h a t  t h e  r e a c h a b l e  se t  w i l l ,  i n  g e n e r a l ,  

o n l y  b e  a  p r o p e r  s u b s e t  of  N .  

I f  w e  l e t  (exp  t p )  ( x 0 )  d e n o t e  t h e  s o l u t i o n  t o  ( 3 )  a t  

t i m e  t c o r r e s p o n d i n g  t o  a l l  u . ~  0 ,  w h i l e  d ( t . x o )  d e n o t e s  
1 

t h e  r e a c h a b l e  set  a t  t i m e  t ,  t h e n  t h e  problem o f  l o c a l  r each-  

a b i l i t y  i s  t o  f i n d  n e c e s s a r y  and s u f f i c i e n t  c o n d i t i o n s  t h a t  

( exp  t p )  ( x o )  E i n t e r i o r  d ( t , x o )  f o r  a l l  t > 0 .  Denoting 

k  
( a d  X I  Y )  = [ X , Y I ,  ( a d k c l x , y )  = [XI ( a d  X . Y )  1 ,  t h e  b a s i c  known 

r e s u l t s  on t h i s  problem a r e  c o n t a i n e d  i n  

Theorem 10 [271 [ 5 8 1 .  

a )  A n e c e s s a r y  and s u f f i c i e n t  c o n d i t i o n  t h a t  f o r  any 

i T  > 0, i n t  U ~ ( t , x o ) # ~  i s  t h a t  dim ( { p , g  lLA) ( x O ) = n  . 
O<t<T - - 

b )  A n e c e s s a r v  and s u f f i c i e n t  c o n d i t i o n  t h a t  

i n t e r i o r  d ( t f x o )  # fl f o r  a l l  t > 0  i s  t h a t  dim 

k ( {  (ad  p f g i )  : k = O f l f .  . . ;i=l, . . . , r lLA) ( x o ) = n  

c )  A s u f f i c i e n t  c o n d i t i o n  t h a t  ( exp  t p )  ( x 0 )  E i n t e r i o r  3 ? ( t f x o )  

f o r  a l l  t >  0  i s  t h a t  

c o n t a i n  n  l i n e a r l y  independen t  e l e m e n t s .  

Remark: The c o n d i t i o n  ( c ) o f  Theorem 10 i s  a l s o  n e c e s s a r y  

i n  t h e  c a s e  n = 2 .  I n  g e n e r a l ,  thought  more s t r i n g e n t  hypo theses  

a r e  r e q u i r e d  f o r  t h e  " r a n k  c o n d i t i o n "  t o  b e  n e c e s s a r y .  

To i l l u s t r a t e  t h e  a p p l i c a t i o n  o f  t h e  f o r e g o i n g  r e s u l t s ,  

c o n s i d e r  t h e  dynamical  sys tem 



X 2 

sin xl 
X 3 

0 

Computing the Lie brackets, we have 

= P(X) + ug (x) . 

sin x - 1 -  

so that p,g and [p,g] span R' unless xl = O  or n or x2=0. That 

is, the system satisfies the reachability rank condition for all 

non-zero x 0 ' 

Let us return now to the problem of local reachability. If 

we assume that the origin is an equilibrium point for the vector 

field p(x), i.e., p(0) = O r  and if we measure the system to be in 

some state q at a future time tl, then we can consider the local 

reachability problem to consist in determining the existence of 

a stabilizing control which would drive the trajectory of the 

system x(t) in the "direction" -q. 

To be more explicit, consider the system 

where 1 u (t) I 5 1 . Further, assume that 



k dim span {(ad p,g) : k=0,1, ... )(0) = n 

so that a stabilizing control law exists, at least locally (Theo- 

rem 10 (b)). The problem in the construction of such a law is 

that the directions that are "instantaneously" possible are 

p (q) + pg (q) , -1 - < u 5 1, and -q need not be among these direc- 

tions. Let us write q as 

j Then if we can generate the directions + (ad p,g) (0) via compo- 
sitions of solutions of (4) with controls I u I - < 1, it follows 

that we can generate the direction -q. 

A specific illustration of how to construct the locally 

stabilizing law is the following taken from [ 2 7 ] .  Let n = 3  

and define 

where 

and 



These flows are chosen so that if p (0) = 0 and I p (x) ( - c ( x  ( , 

then si(s) (x) I = i (adJpIg) (x) . 
s=o 

Hence, if x is near 0 and s is sufficiently small, q(s) x -  x =  

-sx + O(s) and the above formula shows how to choose a control 
3 

over the time interval [O, 1 ails] so as to move the state 
i= 1 

essentially in the direction -x, i.e., toward the origin. 

Summarizing,the steps in the process are: 

i) measure the state x; 

3 

ii) express x = 1 ai(adi-lpIg)(x) ; 
i= 1 

iii) use ( 5 )  to determine an "open-loop" control u (t,x) 

on the interval 0 5 t 5 1 1 ai 1 s ; 
i= 1. 

iv) remeasure the state and repeat the process. 

(Note: Even though the measured state x is used to compute the 

control, the law u is still open-loop since no state over the 



interval 0 - < t  - < Jails is measured). The formulae for the 
i= 1 

general case of the above result are given in [ 2 7 ]  along with 

a report on the convergence of the algorithm sketched in steps 

(i) - (iii) above. 
k 

The formulae given above for generating +(ad p,g)(x) are 

but one of many possible schemes. The question (as yet unan- 

swered) arises as to whether a different scheme can be derived 

in which the terms O(s) are actually insignificant when compared 

k to +s(ad p,g) for large k. (In the formulae given above the 

+ 
term 0 (s) in qk- (s) (x) is of the form (s 1 + Ik) w, for some vector 

i field w in {(ad p,g) :i=0,1, ... 4.A. Numerically, this is - not 

k insignificant when compared to +s(ad p,g) for k large). 

Before moving on to results for important special classes 

of nonlinear systems, it is of value to cite the works [ 24 ,28 ,581  

for additional reachability results. Of special note is [ 2 8 1  

in which global results are obtained for systems in which the 

i Lie algebra Cp,g }LA is not necessarily finite-dimensional. 

See also [ 4 0 ]  for an excellent survey of positive-time reachability 

and its connection with the topological structure of the state 

manifold M. 

Bilinear Systems 

By far the most detailed and explicit results for the 

reachability of nonlinear systems are those developed for 

bilinear processes. Bilinear systems are characterized by 

the equations 

where F and Ni are n xn real matrices and G is an n xm real 

matrix. 



There are a number of theoretical and practical motivations 

for the study of bilinear processes, which are well-detailed in 

[48]. For now we only note that the type of nonlinearity (multi- 

plicative) makes the system structure in some sense "closest" 

to the linear case. This fact enables us to employ many of the 

techniques and procedures already set up for linear systems. 

For studying the reachability properties of (6), we consider 

the case G =  0 (homogeneous-in-the-state systems) since the 

inhomogeneous case (Gf 0) is in a somewhat less settled state. 

However, it should be noted that by adding extra components to 

the state and/or to the control, and constraining them to be 

equal to 1, an inhomogeneous bilinear system may be formally 

studied as a homogeneous-in-the-state system. 

Given a homogeneous-in-the-state system 

we may write the solution as x(t) =X(t)xo, where X(t)r GL(n), the 

nonsingular n x n real matrices. Thus, the reachability properties 

of (7) are directly related to those of the system 

Here the system state space is taken to be M=GL(n). To study 

reachability properties of (8), we need the notion of a matrix 

Lie algebra. 



D e f i n i t i o n  7 .  Given two n x n  ma t r i ce s  A and B ,  t h e i r  - Lie  

product  i s  de f ined  a s  

A Lie  a l g e b r a  of n x n  ma t r i ce s  i s  a subspace of n xri ma t r i ce s  

c lo sed  under t h e  L ie  product  o p e r a t i o n .  

Let  Y d e n o t e  t h e  L ie  a l g e b r a  genera ted  by t h e  m a t r i c e s  

I F , N 1 , N 2 ,  ..., Nm} and l e t  W ( t , I )  denote  t h e  r eachab le  s e t  f o r  

( 8 )  a t  t ime t. Then t h e  main r e a c h a b i l i t y  r e s u l t  f o r  homoge- 

neous- in- the-s ta te  b i l i n e a r  systems i s  

Theorem 1 1  [571 . For t h e  system ( 8 )  , i f  

i s  compact then  

b)  t h e r e  e x i s t s  a 0 < T < m such t h a t  

I n  s h o r t ,  Theorem 1 1  s ays  t h a t  t h e  r eachab le  s e t  f o r  ( 8 )  from 

t h e  i d e n t i t y  i s  G L ( n ) ( 9 )  and t h a t  a l l  p o i n t s  t h a t  can be reached 

w i l l  be a t t a i n e d  a f t e r  some f i n i t e  t ime T .  

Remarks: (1) In  t h e  s t r i c t l y  b i l i n e a r  ca se  ( F  = O ) ,  t h e  

compactness can be dropped. 

( 2 )  I f  F =  0 t h e  system (8)  i s  complete ly  reach- 

a b l e  on R"-{ 0 }, i f  and on ly  i f  9' has  rank n [54] . 

For t h e  inhomogeneous system (6), a convenient  s u f f i c i e n t  

cond i t i on  f o r  c o n t r o l l a b i l i t y  i s  given by t h e  fo l lowing  r e s u l t .  



Theorem 12 [291. The inhomogeneous system (6) is control- 

lable from the state xo if the sequence of vectors 

1 m 1 1 m iso , S o  S1 ,...,sn-lt...,sn-l ) contains n linearly 

independent elements, where 

k k- 1 adF Ni = [F, adF Nil t 

P~ = ith column of G. 

An alternate approach to the study of controllability of 

bilinear processes is to study the equilibrium points of (6). 

Let u be a constant control in the unit hypercube H. Then the 

* - equilibrium point x (u) is the solution of the equation 

m 
(Note: Here we adopt the more compact notation Nixui-~xu . )  

i= 1 

Let us assume that whenever F +N'G is singular, GG is not in its 

range. Then the expression 

* - - -1 - 
x (u) = -(F + N'u) Gu (9) 

is the form of all possible equilibrium points, and as u ranges 
over H, (9) describes the equilibrium set. 

A sufficient condition for the controllability of (6) is 

now given by 



Theorem 13 [38]. The bilinear system (6) is completely 

controllable using piecewise-continuous inputs if 

+ 
a) there exist constant controls u and u- in H such that 

Re[hi(F+Nfu+)] '0 and Re[hi(F+N1u-)I <O, with x*(uf) and x*(u-) 

contained in a connected subset of the equilibrium set and 

* - 
b) for each x (u) , there exists a v E: R~ such that the pair 

* - IF+N'~,[NX (u) +Glv) is controllable. 

A more thorough investigation of the above criterion, together 

with many auxiliary results and examples is given in the book 1481. 

Important properties of the reachable set for a compact control 

set are that it be convex and closed, regardless of the initial 

state. These properties are important for understanding the time- 

optimal control problem and for generating computational algorithms 

for determining optimal controls. For bilinear systems the reach- 

able set is usually not convex (or even closed unless the control 

set is both compact and convex). 

Since the general case is not yet settled, we consider the 

special case of (7) when the matrices N have rank 1, i.e., we 
i 

can write Ni=b c ' , where bi and c are n-dimensional vectors. i i i 

The first convexity result involves the case of small t. 

Theorem 14 [ 5 ] .  Let xo be given and assume that c.'x $ 0  1 - 0 '  

i = 1,2,...,m. Then there exists a T > 0 such that for each t, 

0 - < t < T ,  - the reachable set for (7) is convex for bounded controls 

u. (t) . 
-1- 

In order to "globalize" this result to the case T additional 

conditions on F, bi and ci are needed. 



Theorem 15 [8]. Suppose each component of ci is non- 

m 
negative and that for all t > 0 the matrix F + 1 ui(t) bici' 

i=l 

has non-negative off-diagonal entries. Then the reachable 

set at time t is convex for t >  0 for bounded controls u.(tl. 
* 

Another very important class of nonlinear systems of which 

fairly explicit reachability results have been obtained is 

systems governed by the polynomial dynamics 

where f and g are vector fields having components which are 

polynomials in the entires of x. It will be useful for us to 

assume that x(t) &knl where k = R or (Z!, with u( a )  being a 

k-valued piecewise smooth function. The extension to the 

case of vector controls is straightforward, at the expense 

of a more elaborate notation. 

Since f and g are polynomial maps, it should come as no 

surprise that concepts from elementary algebraic geometry play 

a fundamental role in studying reachability. Let us recall a 

few basic definitions. We let k[sl, ... s ] be the ring of poly- n 

nomials in the indeterminates sl, ..., s with coefficients in 
n 

kt abbreviated k[s]. An algebraic set in kn is the zero set 

for some collection of polynomials in k[s]. Thus, if 

Q c k[sl, then we have the natural algebraic set 

V(Q) = {x&kn : £(XI = o for all ~ E Q )  . 

We let (7 = smallest ideal in k[s] containing Q. Dually, if Q 
S c - k", then we define the ideal 



Y(S) = Cfck[sl : f(x) = 0 for all X C S }  . 

Obviously, S c - V( Y (S) ) . Also if 'Y if any ideal in k [s] , 

we have Y- c - Y(V ( 'Y) ) . The ideal Y(V ( Y) ) is called the 

radical of 'Y and is the largest ideal defining V(T). 

If f c k[s], x c kn, the differential of f at x is the linear 

function dxf :kn + k given by 

If F (s) is a column vector with entries in k [s] , the - Lie 

derivative of f with respect to F, L (f(s)) is given by F 

Finally, given a set Q c - k[s] and a set P whose elements are 

column vector of polynomials, we define 

I(Q;P) = smallest polynomial ideal in k[s] contain- 

ing Q and closed under Lie differentiation 

with respect to elements of P. 

The ideal I(Q;P) provides the key ingredient for the follow- 

ing important result. 

Theorem 16 [ 4 , 5 ] .  Let V be an algebraic set in kn. 

If W(xo) c V for each x o ~ V ,  then I('Y(V) ;Cf,g}) =Y(V). - - 
~f for any ideal 'Y defining V we have I ( Y ;  C f , g}) = Y, then 

9(x0) c - V for each x~EV. 

The above theorem gives a basis for testing whether or 

not a given algebraic set V contains points reachable from 

Xo ' More importantly, it also provides a procedure for 



c o n s t r u c t i n g  r eachab l e  p o i n t s  from x namely f i n d  any i d e a l  0 ' 
y such t h a t  ~ ( ' ~ ; { f , g ) )  = Y .  Then t h e  a s s o c i a t e d  a l g e b r a i c  

se t  V = {xekn:9 (x )  = 0 f o r  a l l  9 E Y') i s  c e r t a i n l y  con t a ined  i n  

9 ( x O )  . Note, however, t h a t  t h e  s t a t emen t  " 9 ( x 0 )  c - V f o r  each  

xOcV i m p l i e s  ~ ( Y ; { f . g ) )  = T "  i s  n o t  - t r u e  f o r  a r b i t r a r y  Y 

d e f i n i n g  V ,  e.g., l e t  [r = i d e a l  i n  k [ s l , s21  gene ra t ed  by 

2 
$ 1 ( ~ 1 1 ~ 2 )  = sl, $ 2 ( ~ l r ~ 2 )  = -s2 wi th  f ( s  11S2)  = 0 

(s.,) 
0 0 I 

g ( s l I s 2 )  = ( 0 ) .  Then V ( Y )  = { ( 0 )  1 and R ( x o )  c - V f o r  each  

x O ~ V  However, I ( Y ; { f . g } )  = Y ( v ) ~ Y .  

A s  a  v e r y  u s e f u l  consequence of  t h e  fo r ego ing  theorem, 

w e  can p rov ide  a computable a l g e b r a i c  c r i t e r i o n  f o r  t h e  i n t e r i o r  

o f  9?(x ) t o  be non-empty f o r  t h e  s p e c i a l  polynomial  system 
0 

where x [PI deno t e s  t h e  ( n+P+l)-tuple of  weighted p-forms 
P 

i n  t h e  components o f  x ,  i .e . ,  

w i t h  t h e  e n t r i e s  o rde red  l e x i c o g r a p h i c a l l y  and t h e  weigh ts  

chosen s o  t h a t  1 ~ x [ P ]  I I = I 1x1 I P I  I I .  I I = e u c l i d e a n  norm. 

I f  , w e  w r i t e  f  (x )  = t hen  t h e  pth d i f f e r e n t i a l  dPf 

n d e f i n e s  a symmetric p - l i n e a r  mapping kn x kn x . . .x  k + k.  

Consider  now a set o f  v e c t o r s  gene ra t ed  a s  fo l l ows :  

ii) i f  vl. .  . . , v  EB, then  l e t  t h e  v e c t o r  dPf (v l , .  . . .v  ) 
P P 

be added t o  a. 

Define  t h e  o r d e r  of  an e lement  V ~ + ~ E B  a s  



- 
order v 

p+l 
= 1 + C order v . 

i=l i 

By definition, order b = 1. The connection between the set 53 

and the set 9(x ) is the following result. 0 

Theorem 17 [5]. The system =  AX[^] + bu, x(0) = xo, 

has int d(xo) P fl if and only if the elements of 233 of order - 
n-1 

< 1 + p +...+p - generate kn. 

Theorem 17 improves upon the result of Theorem 10(a) in 

that the number of elements needed to check the dimensionality 

condition is finite and computable in advance. Thus, Theorem 17 

is a generalization of the standard result for constant- 

coefficient linear systems (Theorem 1). Proofs of Theorems 

16 and 17, together with many additional results for observ- 

ability and optimal control may be found in the papers [3,5] 

Other reachability/controllability results for nonlinear 

systems have been reported, but space precludes their inclusion. 

Specifically, we refer to [41] for global controllability results 

for perturbed linear systems and in a highly algebraic treatment, 

the case of systems governed by discrete-time polynomial dynamics 

is covered in detail in [54] . 

5. Observability and Constructability 

The general notion of observability can be stated in the 

following terms: given the model (N) of an input/output 

map f, and an input function U E  R applied after t =  to, determine 

the state xo of (N) at t = t O  from knowledge of the output func- 

tion y (t) , to 5 t 2T. Another way of looking at the question is 

to ask if every possible pair of initial states xO,xO' can be 



distinguished by every admissible input U E  Q .  

There are several delicate issues which arise in the theory 

of nonlinear observability which are masked in the linear case 

discussed earlier. Let us consider two of the technical 

considerations. 

i) choice of inputs - in the linear case, it is easy to 
show that if any input distinguishes points then every input 

does. So, it suffices to consider the case u! 0. However, for 

nonlinear systems this is not the case. There may be certain 

inputs which do not separate points. Thus, we must be criti- 

cally aware of the observability definition employed. A 

thorough treatment of these issues is given in [ 5 3 ]  and [ 5 6 ] .  

ii) length of observation- for continuous-time linear 

systems, observing the output y(t) over any interval to c t < t O  + E ,  

E arbitrary, suffices to separate points for a completely observ- 

able system. However, it may be necessary to observe y(t) over 

a long, even infinite, interval in order to determine xo for a 

nonlinear process. Thus, it is desirable to modify the global 

concept of observability by introducing a local version involving 

only the separation of points "near" xo in either a spatial or 

temporal sense. 

In what follows, we shall adopt definitions to deal with 

the foregoing difficulties, motivated by a desire to obtain a 

simple algebraic test for observability analogous to that given 

earlier for controllability. 



We consider the system 

as given in Section 4. 

0 1 Definition 8. Two initial states x , x E M are termed indis- 

tinguishable if the systems (N,x') and (N,x' ) realize the same 

input/output map, i.e., under the same input U E  a, the system 

(N) produces the same output y(t) for the initial states xo and 

1 x . The system (N) is termed observable if for all x E M ,  the 

only state indistinguishable from x is x itself. 

Remark. Observability of (N) does not imply that every 

input in distinguishes all points of M. This is true, how- 

ever, if the output y is a sum of a function of the initial 

state and a function of the input, as in the linear case. 

Since observability is a global concept, we localize the 

concept with the following definitions. 

0 Definition 9. (N) is locally observable at x E M if for 

0 every open neighborhood U of x , the set of points indistin- 

guishable from xo by trajectories in U consists of xo itself. 

(N) is locally observable if it is locally observable for 

every x E M. 

Practical considerations suggest that it may be sufficient 

0 
only to distinguish points which are near to x , leaving open 

the possibility of xo being equivalent to states x1 which are 

far removed. This heuristic idea motivates 

Definition 10. (N) is weakly observable at xo if there 

exists an open neighborhood U of xo such that the only point 



in U which is indistinguishable from xo is xo itself. The 

system (N) is weakly observable if it-is weakly observable 

at every x EM. 

Again, weak observability may require that we travel far 

from U in order to distinguish the points of U. The following 

definition deals with this problem. 

Definition 1 1 .  ( N )  is locally weaklv observable at xo if 

there exists an open neighborhood U of xo such that for every 

open neighborhood V of xo contained in U, we have that the set 

of points indistinguishable from xo in V is xo itself. The 

system (N) is locally weakly observable if it is locally weakly 

observable for all x EM. 

As for controllability, the following diagram of implica- 

tions exists: 

(N) locally observable w (N) observable 

k 
(N) locally weakly observable ----7 (N) weakly observable 

For linear systems, all four concepts coincide. 

As noted in Section 1, reachability and observability are 

dual concepts for linear systems in the precise meaning of 

vector space duality. In order to partially generalize this 

result to the manifold setting, additional machinery is 

required. In essence, we shall employ the duality between 

the space X(M) of vector fields on a manifold M and the 

space X*(M) of the one-forms on M. This duality, coupled 

with the role X(M) played in the controllability situation, 

strongly suggests that the space of one-forms X* (M) will be the 

appropriate vehicle for the study of nonlinear observability. 



Definition 12. Let $(x) be a cm function on M with q an 

element of X(M) . Then the Lie derivative of $ (in the direction 

q), Lq($), is defined as 

a 4 (Note that the gradient d$ == is an n-dimensional row vector.) 
Now let go denote the subset of cm(M) consisting of the 

functions hl (x) , h2 (x) , . . . , hp(x) , i. e., the components of the 
observation vector function h ( x )  . Further, we let $3 denote 

the smallest vector space generated by 9 and elements obtained 
0 

from 3 by Lie differentiation in the direction of elements of 0 

% (recall: % is the set of all vector fields generated from 
f(xfm) using constant controls). A typical element of g is a 

finite linear combination of elements of the form 

i where fi(x) = f (x,u ) for some constant uir Q. It is easily 

verified that $9 is closed under Lie differentiation by elements 

of S also. 

Define X* (M) as the real vector space of one-forms on M, 

i.e., all finite cm (MI linear combinations of gradients of 

elements of c-(M). Further, let d'Sg={d$:$rg01, d%={d+:$r31. 

From the well-known identity 

it follows that d 9  is the smallest linear space of one-forms 

containing dgO and which is closed with respect to Lie differ- 

entiation by elements of 9. The elements of dgare finite 

linear combinations of elements of the form 



where f (x) = f (x, ui) for some constant uir Q. Let d$(x) denote 

the space of vectors obtained by evaluating the elements of d 3  

Definition 13. (N) is said to satisfy the observability 

0 rank condition -- at x" if the dimension of d$(x ) equals n. If 

dim dg(x) = n  for all x E M ,  then (N) is said to satisfy the 

observability rank condition. 

The observability rank condition provides an algebraic test 

for local weak observability as the next result demonstrates. 

Theorem 18 [26]. If (N) satisfies the observability rank 

0 
condition at xo then (N) is locally weakly observable at x . 
The observability rank condition is "almost" a necessary condition 

for local weak controllability, as well, as is seen from 

Theorem 19 [26]. If (N) is locally weakly observable then 

the observability rank condition is satisfied generically. 

We refer to [26] for the precise meaning of "generic" in 

Theorem19. Intuitively, the set of states for which the 

observability rank condition fails is a "thin" set in the 

state space M. 

For analytic systems (N), we have the stronger result 

Theorem 20 [26 1 . If (N) is an analytic system then the 

following conditions are equivalent: 

i) (N) satisfies the observability rank condition; 

ii) (N) is weakly observable; 

iii) (N) is locally weakly observable. 



Example. To show that the observability rank condition 

generalizes Theorem 2, consider the linear system 

In this case, the space of vector fields F i s  generated by 

the elements 

If we let h denote the jth row of HI then the relevant Lie 
j 

derivatives are 

Thus, by the Cayley-Hamilton Theorem 9 i s  generated by the set 

and d$(x) is generated by 

Since d$(x) is independent of x, it is of constant dimension 

and the observability rank condition reduces to the requirement 

that the set O consists of n linearly independent elements. 

Other important observability results for general systems 

are given in [21,36,371. NOW we consider some specific classes of 

nonlinear processes. 



Bilinear Svstems 

As in the case of controllability, considerably more de- 

tailed results are available on the observability question when 

we impose a bilinear structure upon the system dynamics f. For 

instance, consider the homogeneous system 

We have the following result for testing whether or not indis- 

tinguishable initial states exist. 

Theorem 2 1  [ 7 ]  . The homogeneous bilinear system (1 0) has 

indistinauishable initial states if and onlv if there exists a 

state coordinate transformation T such that 

An alternate characterization of the same result is given 

Theorem 2 2  [31]. The set of all unobservable (i.e., indis- 

tinguishable) states of the system (10) is the largest subspace O 

of R" invariant under FIN1 , .. . ,Nm, which contains the kernel of H. 

Theorem 2 2  suggests the following computational algorithm for 



calculating the subspace O: 

i) Let U1 = range (HI) ; 

ii) Calculate the subspace Ui+l = Ui+ NiUi+ . . . +  N'U m i' 

iii) there exists an integer k* such that U * =Uk*-l. k 

Continue step (ii) until k* is determined and 

set Z = range U * . k 

I iv) 0 = Z  , the orthogonal complement of Z. 

Additional results on observability for bilinear. systems may 

be found in the papers already cited in the previous section. 

Factorable Svstems 

An interesting class of nonlinear systems is that composed 

of linear systems connected in parallel with outputs multiplied. 

Such "factorable" systems are surprisingly general since a 

broad class of systems with separable Volterra kernels may be 
~. - 

expressed as finite sums of factorable systems. Thus, the fac- 

torable systems might be thought of as comprising the basic 

building blocks for the representation of constant parameter 

nonlinear systems. In fact, over a finite time interval, any 

continuous-time systems can be arbitrarily closely approximated 

by a factorable system. 

The mathematical form of a factorable system is 

where we adopt the notation 



with xi being an ni-dimensional vector, and the elements hi, gir 

Fi being of corresponding sizes. Thus, the overall state vector 

x (t) is of dimension n = nl +. . .+ nK . 

Since the nonlinearity occurs only in the system output, 

the usual reachability test from the linear theory shows that 

the factorable system (11) is completely reachable if and only 

if Wi ( A )  and W . ( A) have no poles in common for i # j , where 
7 

Wk(X) is the transfer matrix associated with the kth component 

subsystem. Thus, we turn attention to study of the observability 

properties of the system (1 1 ) . 

It turns out to be convenient to investigate observability 

for the system (11) by using the Kronecker product of the com- 

ponent subsystems comprising (11). Letting 

where 8 denotes the usual Kronecker product, it can be seen 

8 that x (t) serves as a state vector for a linear system (with 

u E 0). We have 

8 8 = h x (t) 

with 



F8 = F, B I B . .  .B  In + I B F2 B In B . . . B  In 
"2 K 1 3 K 

8 Knowledge of the initial state x (0) enables us to compute (up 

to certain ambiguities in sign) the state ~ ( 0 ) .  So, we say that 

the system (11) is completely observable if its associated linear 

system (1 2) is observable in the usual sense. 

A convenient characterization of the observability of (12) 

is possible if we define the vector Ai of distinct characteristic 

roots of the matrix Fi, i.e., 

< n where i=1,2, ..., K, pi- i ' The Kronecker sum of two such vectors 

is given by 



In terms of the Kronecker sum of the {Ai), we characterize 

observability of (12) by the following result. 

Theorem 23 [231. The factorable system (11) is completely 

observable if and only if the vector A, @ A:,$ ... @ A, has distinct 

entries and at most one of the subsystems has multiple character- 

istic values. 

Polynomial Systems 

Very few results exist on the observability question for 

general continuous-time polynomial systems, i.e., systems of 

the form 

where P(=,*) and h(*) are polynomial functions of their arguments. 

However, in the discrete-time case a considerable body of knowl- 

edge has been reported in [34]. For brevity, let us consider a 

representative case, the so-called (polynomial) state-affine 

sys tem 

where F ( a )  and G(*) are polynomial functions of u and H is a 

constant matrix. A particular case is that of internally- 

bilinear systems, when F and G are themselves linear functions 

of u. The observability of the state-affine system (13) is 

settled by the following test, which is a restatement of a 

result taken from [53] . 



Theorem 24 153 1 . The input sequence w = u l s 2  , . . . ' un- 1 
distinguishes all pairs of initial states for the state-affine 

system (1 3) if and only if the matrix 

has rank n. 

Thus, Theorem 24 shows that any input sequence w such that the 

observability matrix O(w) is of full rank suffices to distinguish 

initial states for the system (1 3) . 

For a more complete discussion of various observability 

concepts for discrete-time polynomial systems and their inter- 

relations, the work [53] should be consulted. Also, for continu- 

ous-time polynomial and analytic systems, the paper [56] shows 

that universal inputs w* exist, i.e. the single universal input 

w* distinguishes all initial states which are distinguishable by 

any input. 

6. Realization Theory 

The specification of the realization problem for linear 

systems is simplified by the fact that it is easy to parametrize 

the input, output and state spaces via a globally defined coordi- 

nate system. This fact enables us to reduce the problem of 

construction of a canonical model from input/output data to a 

problem of linear algebra involving matrices. In the nonlinear 

case no such global coordinate system exists, in general, and 



it is necessary to take considerable care in defining what we 

mean by the problem "data." We can no longer regard the input/ 

output data as being represented by an object as simple as an 

infinite sequence of matrices or, equivalently, a matrix trans- 

fer function. So, the first step in the construction of an 

effective nonlinear realization procedure is to develop a 

generalization of the transfer matrix suitable for describing 

the input/output behavior of a reasonably broad class of non- 

linear processes. 

If we consider the nonlinear system (N) 

then it is natural to attempt to represent the output of ( N )  in 

terms of the input as a series expansion 

Formally, the above Volterra series expansion is a generalization 

of the linear variation of constant formula 

Arguing by analogy with the linear case, the realization problem 

for nonlinear systems may be expressed as: given the sequence 

of Volterra kernels W= ( ~ ~ , w ~ , w ~ , . . . ~ .  find a canonical model 

N =  (f,h) whose input/output behavior generates S?K 



Without further hypotheses on the analytic behavior of 

f, h, together with a suitable definition of "canonical model," 

the realization problem as stated is much too ambitious and, 

in general, unsolvable. So, let us initially consider conditions 

under which the Volterra series exists and is unique. Further, 

we restrict attention to the class of linear-analytic systems, i.e., 

f (x,u) = f(x) + u(t) g(x), where f(-) , g(=) and h(=) are analytic 

vector fields. The basic result for Volterra series expansions 

Theorem 25 [391. If f, g and h are analytic vector fields 

and if ;=f (x) has a solution on [O,T] with x(0) =x0, then the 

input/output behavior of (N) has a unique Volterra series repre- 

sentation on [O,T] . 

In the case of a bilinear system where f(x) =Fx, g(x) =Gx, 

h(x) = x, u ( 0 )  = scalar control, the Volterra kernels can be 

explicitly computed as 

It can be shown [ I 6 1  that for bilinear systems the Volterra 

series converges globally for all locally bounded u. 

The global convergence of the Volterra series for bilinear 

processes suggests an approach to the construction of a Volterra 

expansion in the general case. First, expand.al1 functions in 

their Taylor series, forming a sequence of bilinear approximations 

of increasing accuracy. We then compute the Volterra series for 

each bilinear approximation. However, the simple system 



shows that, in general, no Volterra expansion exists which is 

valid for all u such that \lull is sufficiently small. Further 

details on the above bilinear approximation technique can be 

found in [9]. 

By taking the Laplace transform of the Volterra kernels 

{wilt it is possible to develop a nonlinear analogue of the 

standard matrix transfer function of the linear theory. Such 

an approach as carried out,for example, in [47] provides an 

alternate "frequency-domain" approach to the realization prob- 

lem. See also the work of Fliess [18] in this regard. We shall 

forego the details of such a procedure here due to space con- 

siderations, and focus our attention solely upon nonlinear sys- 

tems whose input/output data is given in tems of the infinite 

sequence of Volterra kernels {wile 

Now let us turn to the definition of a canonical model for 

a nonlinear process. As noted earlier, in the linear case we 

say a model is canonical if it is both reachable (controllable) 

and observable (constructible). Such a model is also minimal 

in the sense that the state space has smallest possible dimen- 

sion (as a vector space) over all such realizations. In order 

to preserve this minimality property, we make the following 

Definition 14. A system N is called locally weakly 

minimal if it is locally weakly controllable and locally weakly 

observable. 

The relevance of Definition 14 to the realization problem 

is seen from the following result. 



Theorem 26 [26]. Let NI N be two nonlinear systems with 

input sets Q = h ,  and state manifolds M and M of dimensions m,G, 

respectively. Suppose (N ,xo) and (N .Go) realize the same input/ 

output map. Then if is locally weakly minimal, m - <m. 

Thus, we see that two locally weakly minimal realizations of the 

same input/output map must be of the same state dimension which 

is minimal over all possible realizations. 

Remark. Two locally weakly minimal realizations need not 

be diffeomorphic, in contrast to the linear case. This is seen 

from the two systems 

N : x = u  , y1 = cosx , y2 = sinx , 

N: O = U  , y1 = cos o , y2 = sin o , 

2 with Q = 6 = R, M = RI fi = S1 , the unit circle, y E R . xo = 0, O = 0. 
0 

Here N and N realize the same input/output map. Furthermore, 

both systems are locally weakly controllable and observable. 

The above result leaves open the question if two canonical 

realizations are isomorphic, i.e., given two nonlinear systems 

N and fi, with state manifolds M and MI 



when does  t h e r e  e x i s t  a  d i f feomorphism $I : M + M  such  t h a t  x =  $ I ( z ) ,  

- 1 
z = $  ( x )  o r  

The answer t o  t h i s  q u e s t i o n  i s  p rov ided  by t h e  f o l l o w i n g  re- 

s t a t e m e n t  o f  a  r e s u l t  of  Sussman. 

Theorem 27  [ 5 5 ] .  L e t  t h e r e  be  g i v e n  a  mapping G x o I U  

which t o  each  i n p u t  u  ( t )  , 0 2 t - < T I  a s s i g n s  a  c u r v e  y ( t )  and 

assume t h a t  t h e r e  e x i s t s  a  f i n i t e - d i m e n s i o n a l  a n a l y t i c  comple te  

sys tem 

y = h ( x )  , X E M  , 

which r e a l i z e s  t h e  map G . Then Gx can  a l s o  b e  r e a l i z e d  
X O t U  o t U  

by a  sys tem which i s  weakly c o n t r o l l a b l e  and o b s e r v a b l e .  F u r t h e r -  

more, any two such r e a l i z a t i o n s  a r e  i somorph ic .  

Remark : 

I n  a l l  t h e  r e s u l t s  above,  a s  w e l l  a s  t h o s e  t o  f o l l o w ,  t h e  

c o n d i t i o n s  of  a n a l y t i c i t y  and comple teness  o f  t h e  d e f i n i n g  v e c t o r  

f i e l d s  i s  c r u c i a l .  The r e a s o n  i s  c l e a r :  a n a l y t i c i t y  f o r c e s  a  

c e r t a i n  t y p e  of  " r i g i d i t y "  upon t h e  sys tem,  i . e ,  t h e  g l o b a l  

b e h a v i o r  o f  t h e  sys tem i s  de te rmined  by i t s  b e h a v i o r  i n  an 

a r b i t r a r i l y  s m a l l  open set .  Completeness i s  a l s o  a  n a t u r a l  

c o n d i t i o n  s i n c e  w i t h o u t  t h i s  p r o p e r t y  t h e  sys tem i s  n o t  t o t a l l y  

s p e c i f i e d ,  a s  it i s  t h e n  n e c e s s a r y  t o  speak a b o u t  t h e  t y p e  of  



behavior exhibited in the neighborhood of the vector field 

singularity. Fortunately, analyticity and completeness are 

properties possessed by any class of systems defined by sets 

of algebraic equations, having a reasonable amount of homo- 

geneity. For instance, linear systems and bilinear systems 

are included in this class, together with any other type 

of system which is both finite-dimensional, "algebraic," 

and bounded. 

Now let us turn to some realization results for specific 

classes of nonlinear systems. For ease of notation, we consider 

only single-input, single-output systems citing the refer- 

ences for the more general case. 

Bilinear Svstems 

Given a sequence of Volterra kernels { w ~ I ~ = ~ ,  the first 

question is to determine conditions under which the sequence 

may be realized by a bilinear system. For this we need the 

concept of a factorizable sequence of kernels. 

00 

Definition 15. A sequence of kernels { ~ ~ l ~ = ~  is said to 

be factorizable if there exist three matrix functions F ( * ) ,  

G(*), H(t,*) of sizes n x n ,  n x l ,  1 xm, resp. such that 

S, IS2 I... - < Si . 

The set {F,G,H) is called the factorization of {wi) and the 

number n is its dimension. A factorization ~FO.GO.Ho~ of min- 

imal dimension is called a minimal factorization. 



We can now characterize those Volterra kernels which can 

be realized by a bilinear system. 

Theorem 28 [ 1 6 ] .  The sequence of Volterra kernels 

is realizable by a bilinear system if and only if w, has a proper 

rational Laplace transform and is factorizable by func- 

tions F, G, H with proper rational Laplace transforms. 

Let us assume that a given sequence of kernels {wil is 

bilinearly realizable. We then face the question of the con- 

struction of a minimal realization and its properties. The main 

result in this regard is 

Theorem 29 [ 1 6 1 .  For a sequence of bilinearly realizable 

kernels {w.). the minimal realizations are such that 

i) the state space dimension no is given by the dimension 

of the linear system whose impulse response matrix is 

ii) any two minimal realizations 



are related by a linear transformation of their state spaces, 

i.e., there exists an n x n matrix T such that 0-0 

A = TAT-' I ~ = T B  , r i  = TNT-" I = CT-l 

Theorem 29 provides the basic information needed in order to 

actually construct the matrices A, B, C, N of a minimal realiza- 

tion. Since W(s) is the impulse response of a linear system of 

dimension n there must exist three matrices PI Q,R of sizes 0 ' 
no x no , no x ("+I) , ("+I) x n such that 0 

By partitioning Q and R as 

where R1 is 1 x no and Q1 is no x 1, we obtain 

We now define the matrices of our minimal realization as 

Thus, the surprising conclusion is that the realization proce- 

dure for bilinear systems can be carried out using essentially 



the same techniques as those employed in the linear case once 

the minimal factorization {F G ,H 1 has been found. 0' 0 0 

Other approaches to the construction of bilinear realiza- 

tions are discussed in [30], while results for the discrete- 

time case are given in [14]. The case of multilinear systems 

is similar to the bilinear situation and is discussed in detail 

in [43]. 

Linear-Analytic Systems 

The general question of when a given Volterra series { ~ ~ } i = ~  

admits realization by a finite-dimensional linear-analytic system 

{f,g,h) of the form 

has no easily computable answer, although some difficult to test 

conditions are given in [lo]. On the other hand, if the Volterra 

series is finite then the results are quite easy to check and 

reasonably complete. For their statement, we make 

Definition 16. A Volterra kernel w(t,sl, ..., sr) is called 
separable if it can be expressed as a finite sum 

It is called differentiably separable if each yi is differentiable 

and is stationary 



The main theorem characterizing the realization of finite 

Volterra series by a linear-analytic system is 

Theorem 30 A finite Volterra series is realizable 

by a (stationary) linear-analytic system if and only if each 

term in the series is individually realizable by a (stationary) 

linear-analytic system. Furthermore, this will be the case if 

and only if the kernels are (stationary and differentiably) 

separable. 

The above result leaves open the question of actual com- 

putation of the vector fields {f,g,h) defining the linear- 

analytic realization of a finite Volterra series. However, 

this problem is formally bypassed by the following result. 

Theorem 31 [ l o ] .  A finite Volterra series has a (stationary) 

linear-analytic realization if and only if it has a (stationary) 

bilinear realization. 

From Theorem 31 it is tempting to conclude that there is 

no necessity to study linear-analytic systems when given a finite 

Volterra series, since we can always realize the data with a 

bilinear model. Unfortunately, the situation is not quite so 

simple since the dimension of the canonical bilinear realization 

will usually be somewhat greater than that of the corresponding 

linear-analytic model. To illustrate this point, consider the 

finite Volterra series 



w o w  = 0 I wl (t,s,) = exp (t-sl) . w2 (t,sl Is2) = 0 I 

This series is realized by the three-dimensional bilinear model 

x = Fx + Gu + Nxu , where 

y(t) = x(t) I 

However, the same set of kernels is also realized by the one- 

dimensional linear-analytic system 

;( = sinx + u(t) , x(0) = O  , 

n Another interesting example is = u, y = x , which requires an 
nth order bilinear realization. 

Polynomial Systems 

If the system input/output map is of polynomial type, i.e., 

each term in the Volterra series is a polynomial function of its 

arguments, then an elegant realization theory for such maps has 

been developed by Sontag [ 5 4 ]  in the discrete-time case. Since 

presentation of the details would entail too large an excursion 

into algebraic geometry, we loosely summarize the main results 

referring to the references for a more complete account. 



For simplicity, we restrict our account to bounded poly- 

nomial input/output maps f, which means that there exists an 

integer a such that the degree of each term in the Volterra 

series for f is uniformly bounded by a. The main realization 

result for bounded polynomial input/output maps is 

Theorem 32 [ 5 4 ] .  If a bounded input/output map is at all 

realizable by a polynomial system, then it is realizable by an 

observable state-affine system of the form 

where F ( 0 )  and G (  ) are polynomial matrices, H is a linear map 

and the system state space is Rn. 

An observable state-affine realization is termed span- 

canonical if the subspace of reachable states is all of Rn. 

Then it can be shown that a span-canonical realization of a 

given bounded finitely realizable f always exists and any two 

such realizations are related by a state coordinate change. 

Furthermore, a realization is span-canonical if and only if 

its dimension n is minimal among all state-affine realizations 

of the same input/output map. 

Somewhat less complete results are also reported in [541  

for unbounded polynomial input/output maps. The relationship 

between the foregoing discrete-time results and the continuous- 

time case is still far from clear, due mainly to the nonrevers- 

ibility of difference (as opposed to differential) equations 

and to the different algebraic properties of difference and 



differential operations. To bridge this gap may turn out to 

be a nontrivial task, as is seen by the recent result [I51 

that a "finite" continuous-time map has its canonical state 

space unconstrained, which is far from true in the discrete- 

time setting. 

Some additional work on polynomial systems taking a func- 

tional-analytic, rather than algebraic, approach is reported 

in [51]. 

"Almost"-Linear Systems 

By imposing special types of nonlinearities upon a standard 

linear system, it is possible to employ techniques similar to 

the usual linear methods for realization of input/output maps. 

In this regard we note the "factorable" Volterra systems consid- 

ered earlier, having the internal form 

Here the nonlinearities enter only through the system output. 

Utilizing tensor products, it can be shown [ 2 3 1  that the input/ 

output behavior of such a process can be described by a so- 

called Volterra transfer function H(sl, ..., sK). Since a 

factorable Volterra system consists of K linear subsystems 

connected in parallel, with the outputs multiplied, the 

realization problem reduces to determining the transfer func- 

tions Hl (s) , . . . ,HK(s) of each subsystem from H(sl,. . . ,sK). 



If the Hi(s) are known, then standard linear theory provides the 

overall system realization. Techniques for solving this problem 

are reported in [ 2 3 ]  . 

In another direction, we could consider cascade combinations 

of linear subsystems and static power nonlinearities as in [ 5 2 ] .  

For inputs of the form 

the output of such a system is 

where m > O  is an integer defining the degree of the static non- 

linearity, i.e., the block diagram of the system is 

9 
where P = m and H.(s) is a strictly proper rational func- 

j = 1  j I 

tion of degree - < n, j = 0 . . . q .  In the work [ 5 2 ]  an algorithm 

is given for solution of the minimal realization problem for such 

a system. 



7. Conclusions and Future Research 

The foregoing results leave little doubt that substantial 

progress has been made in nonlinear system theory over the past 

decade. As noted in the introduction, we have focused only 

upon problems of reachability, observability and realization, 

omitting the more well-known areas of stability and optimal 

control. Advances in these areas have also been impressive as 

can be seen from the works [11,22]. Thus, the inescapable 

conclusion is that nonlinear system theory is alive and well 

and it is to be expected that progress on outstanding issues 

will be rapid in the years to come. 

By way of closing remarks, let us now engage in a bit of 

crystal ball-gazing and sketch some problem areas which seem 

to be most important for future research in nonlinear systems. 

1) Computational Methods -the effective employment of 

any of the results given here relies upon efficient computational 

algorithms. For those procedures which mimic the linear case 

(e.g., bilinear realization), good methods already exist for 

computing the necessary quantities. However, much remains to 

be done to develop comparable methods for, say, computing the 

reachable set for a nonlinear process or determining the Volterra 

series of a given input/output map from measured data; 

2) Stochastic Effects -a cornerstone of linear system 

theory is the Kalman filter and its associated apparatus for 

determining the "best" estimate of system parameters in the 

presence of noise. This is a special case of the more general 

stochastic realization problem, in which the input/output data 



itself is corrupted by noise and "best" estimates of the system 

model must be made. Again in the linear case results are avail- 

able [50]. However, almost nothing has been accomplished along 

these lines for nonlinear processes. It seems likely, though, 

that with the increased understanding now available good progress 

can be made. We should note the works [42,50,59] as pronising 

initial forays in this area; 

3) Non-Analytic Systems -almost all interesting results 

for nonlinear systems are for processes whose defining vector 

fields are analytic. As pointed out earlier, there is good 

reason for this since the local behavior of analytic systems 

entirely determines the global behavior. However, there are 

interesting and important processes which do not fall into 

this category (e-g., systems with threshold effects, processes 

with phase transitions, and so on). A concerted attempt at 

relaxation of the analyticity assumptions can be expected to 

yield substantial dividends in furthering our ability to tackle 

a variety of problems in the social and biological sciences; 

4) Infinite-Dimensional Processes -in general, systems 

whose underlying dynamics are governed by partial differential 

equations or processes involving time-lag effects cannot be 

modeled by a finite set of ordinary differential or difference 

equations. Even in the linear case such processes lead to 

thorny analytical questions which are, as yet, far from being 

well under control. So, it is perhaps wildly optimistic to 

think that substantial advances can be made in this direction 

for nonlinear processes. Nonetheless, we have seen that many 



of the results and techniques of the linear theory can be 

extended to classes of nonlinear systems with modest additional 

effort. So, it seems reasonable to attempt an investigation 

of those nonlinear problems which are the counterparts of the 

corresponding infinite-dimensional linear processes. 
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