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ABSTRACT 

This paper reports on work aimed at extending stable popu- 

lation theory to include immigration. Its central finding is 

that, as long as fertility is below replacement, a constant 

number and age distribution of immigrants (with fixed fertility 

and mortality schedules) lead to a stationary population. 

Neither the level of the net reproduction rate nor the size of 

the annual immigration affects this conclusion; a stationary 

population eventually emerges. How this stationary population 

is created is studied, as is the generational distribution of 

the constant annual stream of births and of the total population. 

It is also shown that immigrants and their early descen- 

dants may have fertility well above replacement (as long as later 

generations adopt and maintain fertility below replacement), 

and the outcome will still be a long-run stationary population. 



IMMIGRATION AND THE STABLE POPULATION MODEL 

Thomas J. Espenshade 
Leon F. Bouvier 
W. Brian Arthur 

Since the beginning of the 20th century, the population of 

the United States has roughly tripled--from approximately 75 

million in 1900 to about 225 million in 1980. Both natural in- 

crease (births minus deaths) and net immigration (immigrants 

minus emigrants) have contributed to this growth. During the 

decade 1901-1910 the average annual number of immigrants to the 

U.S. was nearly 880,000, and net immigration accounted for 40 

percent of intercensal population growth. ' But following 191 0 
the importance of net immigration relative to natural increase 

declined, reaching a minimum during the Depression decade, 1931- 

1940, when emigrants outnumbered immigrants. The 1965 amendments 

to the 1952 Immigration and Naturalization Law replaced the 

previous annual ceiling of 154,000 immigrants with a preference 

system permitting 290,000 immigrants plus about 100,000 relatives 

of citizens to enter the country each year. The effect of these 

regulations was to increase substantially the volume of immigra- 

tion, and for the next decade the annual number of legal immi- 

grants was close to 400,000. Recent statistics indicate a further 

increase to perhaps 600,000 per year, including refugees. With 

this growth in numbers, the relative contribution of net immigra- 

tion to overall U.S. population growth has once again risen; for 

the period 1971-1978, it was estimated at 22 percent. 



Falling birth rates have accentuated the rising comparative 

importance of net immigration. The U.S. total fertility rate 

crossed below the replacement level in 1972, for the first time 

since the Depression, and it has fluctuated around 1.8 or 1.9 ever 

since. Annual births still exceed annual deaths, but that is 

due to a temporary phenomenon of large proportions of females 

in the childbearing ages. 

We may ask what the U.S. population would look like if 

current conditions were to persist into the indefinite future. 

Specifically, suppose fertility and mortality schedules were 

held constant so that fertility was permanently below replace- 

ment, and suppose that a constant number of persons (with a fixed 

age distribution) migrate to the United States each year. Would 

the population continue to grow because of the influx of migrants 

and the children they would bear? Would the population eventu- 

ally level off and then experience a long-term decline owing to 

sub-replacement fertility? Or, would net immigration counter- 

balance the low fertility rates, causing a stationary population 

to evolve? This problem takes on added significance since im- 

migration has been and is likely to continue to be an important 

source of U.S. population growth, and because immigration will 

be a major policy consideration throughout the 1980s. Moreover, 

the circumstance of below-replacement fertility plus net immi- 

gration is one shared by numerous other industrial nations. 

There are two ways to answer the question. One is with a 

straightforward projection of the U.S. population. To illustrate 

this approach, we use the estimated U.S. population on July 1, 

1977 and project it forward on the assumption that 1977 age- 

specific fertility and mortality rates remain constant and that 

net immigration totals 400,000 each year. Given these postulates 

we arrive ultimately at a stationary population. As seen in 

Table 1, the eventual stationary population contains 107,903,100 

persons, with 1,209,800 annual births and 1,609,800 annual deaths 

to offset the 400,000 immigrants. 

A second approach is to analyze the problem in terms of stable 

population theory. Typically, by assuming a female population 
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closed to the influence of migration, the stable model has in- 

vestigated the shape of the long-run age distribution and even- 

tual levels for rates of birth, death, and natural increase when 

underlying age-specific fertility and mortality schedules are 

fixed. Here we add the assumption of a fixed annual number and 

age composition of immigrants. Focusing on females, we may 

extend the theory to include immigration in the following way. 

STABLE THEORY WITH BELOW-REPLACEMENT FERTILITY AND CONSTANT 
IMMIGRATION 3  

A. Annual Births 

If we represent the annual number of females immigrating 

at age a by I(a), the annual rate of bearing daughters for women 

at age a by m(a), and the probability of surviving from birth to 

exact age a in the female life table by p(a), then the annual 

number of births at time t, B(t), can be expressed as the sum 

across all ages of childbearing of the number of women at age a 

at times t multiplied by the annual rate of childbearing at age at 

or as 

where a and B denote the lower and upper limits of the child- 
bearing ages, respectively. Since we are interested in the long- 

run character of the population, we will restrict our attention 

to values of t > B, where t = 0 represents the time after which 

I (a) , m (a) , and p (a) are held constant. For t > B, women in the 

population at time t = 0 are no longer bearing children, and the 

youngest females in the first wave of immigrants after t = 0 

have reached the end of their childbearing years. 

The number of women at age a at time t depends first on the 

number of women who were born in the population a years earlier 

and have survived to age a, and second on the number of women 

who immigrated at all ages less than a and are now age a. The 

first component can be written as B(t-a) p(a). To understand 

the second component, consider a particular age, say age 2 3 .  



Then the number of foreign-born women who are now age 23 equals 

the number of females who migrated at age 0 times the probabil- 

ity of surviving from age 0 to age 23, plus the number of females 

who migrated at age 1 times the probability of surviving from 

age 1 to age 23, and so on. Expressing this algebraically, the 

number of foreign-born women who have attained age a at time t 

equals I(0) + 1(1) + ... + ~(a-1) P (0) 
+ I(a). 

p (a-1 ) 

The continuous-form analog of this number is 

Therefore, 

In words, equation (2) says that the number of women in the pop- 

ulation who are age a at time t is the number of native-born 

women who have attained age a plus the number of foreign-born 

women who have attained age a. 

Since the second term on the right-hand side of (2) depends 

only on a and not on t, it is simpler to write it as HI(a). Now 

we can substitute for N (a, t) in ( 1 ) to obtain 

This equation tells us that the total number of births at time t 

is the sum of births to native-born women and births to foreign- 

born women. Since the second term on the right-hand side of 

equation (3) does not involve the variable time t, the number 

of births to foreign-born women is some constant value that is 

repeated year after year. We can represent it by B1 so that 

We may now ask what the long-run behavior of B(t) will be. 



Taking Laplace t ransforms  a c r o s s  ( 4 )  i n  t h e  u sua l  way w e  have 

where F ( s )  i s  given by 

From (4a )  w e  o b t a i n  

W e  now invoke t h e  t a u b e r i a n  theorem t h a t ,  p rov id ing  s6(s )  has 

no s i n g u l a r  p o i n t s  f o r  s > 0 ,  t hen  l i r n  B ( t )  = l i r n  sB(s) .  This  
t+=J s+o 

means i n  our  c a s e  t h a t  a s  long a s  1 - ? ( s )  does  n o t  e a u a l  ze ro  

f o r  any p o s i t i v e  S ,  which from (4b) i s  guaran teed  on ly  i f  

o w p ( a ) m ( a ) d a  i s  less than  1 , t hen  t h e  b i r t h  t r a j e c t o r y  must 

reach  an asymptot ic  l i m i t  g iven  by 

l i m  B ( t )  = l i m  B1 - - 1 . (6a )  
t + w  S-FO ( l - ? ( s ) )  i  - [:p(a)m(a)da 

W e  r ecognize  p ( a ) m ( a ) d a  a s  t h e  n e t  r a t e  of  r ep roduc t ion  NRR. 
Jo 

The theorem t h u s  t e l l s  u s  t h a t  p rov id ing  t h e  NRR i s  less than  1 ,  

b i r t h s  must u l t i m a t e l y  l e v e l  o f f  t o  a  c o n s t a n t  B g iven  by 

The r e a d e r  may check t h a t  a  s t a t i o n a r y  l e v e l  B does  indeed 

s a t i s f y  ( 4 )  i f  

t h a t  i s ,  i f  



To summarize, we have shown t h a t  t h e  annual  number of b i r t h s  

e v e n t u a l l y  becomes s t a t i o n a r y ,  a t  a  l e v e l  equa l  t o  t h e  annual  

number of b i r t h s  t o  immigrant women d i c i d e d  by 1-NRR. 

B. To ta l  Populat ion 

To c a l c u l a t e  t o t a l  popula t ion  s i z e  w e  r e t u r n  t o  equa t ion  ( 2 )  

and recognize  t h a t  t h e  t o t a l  number of  females i s  ob ta ined  by 

adding up t h e  number a t  each age,  o r  t h a t  

where N ( t )  i s  t h e  t o t a l  number of females a t  t ime t ,  and w i s  

t h e  o l d e s t  age a t t a i n e d  by anyone i n  t h e  popula t ion .  Subs t i t u -  

t i n g  from ( 2 )  i n t o  (7 )  w e  have 

S ince  t h e  r ight-hand s i d e  of equa t ion  (8 )  does  n o t  involve  t h e  

v a r i a b l e  t ,  t o t a l  popu la t ion  s i z e  does  n o t  change w i t h  t ime.  

W e  can t h e r e f o r e  drop t from t h e  le f t -hand  s i d e ,  knowing t h a t  

w e  have a  formula f o r  t h e  s i z e  of t h e  even tua l  s t a t i o n a r y  pop- 

u l a t i o n  ( N )  . 
I t  i s  p o s s i b l e  t o  w r i t e  equa t ion  (8 )  more simply by r e a l i z -  

p ( a ) d a  i s  another  way of  exp res s ing  l i f e  expectancy 

a t  b i r t h  (BO) and by l e t t i n g  HI r e p r e s e n t  t h e  t o t a l  s i z e  of t h e  
r W 

foreign-born popula t ion ,  lo HI ( a )  da. Thus, 

N = B 1  ) + H I  . 
1 - NRR 



Equation (9) shows that the total eventual stationary pop- 

ulation is actually composed of two smaller stationary popula- 

tions. One of these arises from a constant annual number of 

births and has an exact parallel in the ordinary life table 

stationary population. There, the crude birth rate (RO/~O) 

equals the reciprocal of life expectancy at birth (TO/.tO), SO 

that the total population that would ultimately be generated 
0 by a constant yearly number of births (B) is Beeo. 

The second stationary population contains HI, the stock of 

foreign-born women. We can compute HI simply, by summing HI(a) 

-- the number of immigrants in the population who are age a -- 
across all ages. This yields: 

Substituting for B1 and HI in (10) we may write the total 

population size, in full, as 

= (1-::R) jhhIoa I (x) $$ m(a) dxda + %IOa1 iX) p (x) dxda . 

NUMERICAL RESULTS 

To see how well our analytic expressions predict the size 

and other characteristics of the long-run stationary population, 

we have applied them to U.S. fertility and mortality schedules 

for 1977 and to the data in Table 1 on immigrants. 

The annual number of female births (B) in the stationary 

population is given by equation (6b) as 

B = 
1 

I 

1 - NRR 

where B1, the annual female births to immigrants, can be eval- 

uated using the second term on the right-hand side of equation 

(3). Doing so yields B1 = 77.29 thousand, and combining this 



with NRR = 0.869 we have B = 77.29 + .I31 = 590 thousand. In 

Table 1 annual male and female births combined total 1209.8 

thousand, but since these projections assume a sex ratio at 

birth equal to 105 males per 100 females, approximately 0.4878 

of all births are female. Therefore, the computer-based pro- 

jections imply that B = 1209.8 x.4878 or 590.1 thousand. 

Total female population size (N) is computed from equation 
0 (9) as N = Beo + HI, where HI, the size of the foreign-born 

r W  
female population, is equal to lo HI(a)da. Setting B = 590.1, 

0 eo = 77.09, and HI = 10,201.25, we have N = 55,692.1 thousand. 

This, except for rounding,is the same as the number in Table 1. 

For the female population the crude birth rate is 10.60, the 

crude death rate is 14.06, the immigration rate is 3.46, and 

the rate of natural increase equals -3.46. 

DISCUSSION FURTHER RESULTS 

If stable theory is expanded to include immigration, we 

have shown that as long as fertility is below replacement, a 

stationary population results by combining'fixed fertility and 

mortality schedules with a constant number and age distribution 

for higrants. Neither the level of the net reproduction rate 

nor the size of the annual immigration qualitatively affects 

this conclusion; a stationary population eventually emerges. 

We can both generalize the above result and see how this 

stationary population is constructed, using a simple heuristic 

argument. Imagine a country divided into halves in such a way 

that the population alive at time t = 0 and any of its descen- 

dants reside in the western portion, and immigrant arrivals 

after t = 0 together with their descendants reside in the eastern 

portion. Concentrating first on the population in the west, we 

can see that this population eventually dies away. Even though 

it may continue growing for a while after t = 0 due to the 

momentum that a youthful age composition imparts to population 

growth, its below-replacement fertility is sufficient to guarantee 

a negative stable growth rate and, therefore, long-run extinction. 



The eastern portion of the country develops demographically 

in a more complex way. Any population that exists there must 

either be direct immigrants or the descendants of immigrants. 

Hence this population (that is, the female part of it) will con- 

sist at any time of surviving immigrant women, native-born women 

whose mothers were immigrants , native-born women whose grand- 
mothers were immigrants, and so on. It will be useful to call 

women whose mother immigrated "first generation", whose grand- 

mother immigrated "second generation", whose great-grandmother 

immigrated "third generation", and so on, tagging each woman in 

the population by her immigration ancestry. We can assume, in 

general, that fertility behavior differs for women of different 

immigration "generations", so that women of "generation" i have 

fertility schedule mi(a), with associated net reproduction rate 

The eastern population then builds up as follows. In a 

relatively short time after time zero, two or three generations 

say, the stock of surviving direct immigrants becomes stationary 

and stays stationary, building up in exactly the same way as a 

standard life-table population, except that in this case people 

can enter the population at all ages. In time then there is a 

constant number of surviving immigrant women H (a) at age a, in I 
any year. In turn, each year thereafter B1 children are born 

whose mothers are immigrants, where 

and where mo(a) is the fertility schedule of immigrant women. Since 

immigrants are constant in number at any age, these annual "first 

generation" births are constant too. A generation or so after 

the appearance of "first-generation" births, "second-generation" 

births B2 start to appear. Since these are born to the constant 

flow of "first generation" births, they number 

and each year, they too are born in constant numbers. 



Given sufficient time, children of all "generations" up to 

"generation" N say, are born each year, and generalizing (14), 

we can show that each year produces a constant flow Bi of "gen- 

eration i" births, where 

As we move indefinitely into the future, all "generations" are 

represented in the eastern population, and the annual birth flow 

can be written as the infinite sum of "generational" births 

or, substituting from (15) 

This series will converge providing that NRRi is less than one 

for all "generations", after some finite number n. In other 

words, the birth flow in the eastern population eventually be- 

comes stationary, providing only that immigrant-descended women 

adopt below-replacement fertility a finite number of generations 

after "arrival". 

Now each of these births, whatever its "generational" status, 

faces the same survival schedule, and so each birth flow Bi gen- 
0 erates its own stationary population Bieo. Counting the annual 

stock of surviving immigrants, in with the "generational" 

population stocks, the eastern-half population levels off at the 

value 

We can conclude from this argument that stationarity can 

still come about even when immigrants and their close descendants 

have above-replacement fertility. All we require is that from 

some "generation" on immigrant descendants adopt, like the native 

population, below-replacement fertility. If so, stationarity is 

guaranteed. 



Returning to the special case of the previous sections, 

where all net reproduction rates are equal and below one, we 

see that (17) becomes 

B = ~ ~ ( 1  + NRR + N R R ~  + N R R ~  + ... ) 

B = B  
1 - NRR I 

which is the same as (6b) , so that (1 8) is a generalization of 
our previous result, (10). 5 

Equations (16) - (20) provide a basis for determining the "gen- 
erational" distribution of total births and of total population. 

In the example in Table 1 there are 590.1 thousand female births 

each year in the stationary population. Since NRR = 0.869, the 

fraction 1 - NRR or 13.1 percent are "first-generation" births; 

11.4 percent (= 13.1 x .869) will be "second-generation" births, 

and so on. The total stationary population includes 55,693.2 

thousand females, of which 10,201.3 thousand, or 18.3 percent, 

are immigrants. Since we have assumed that all females are 

subject to the same age-specific death rates, the size of the 

native-born population, BgO = (B1 + B2 + ...+ Bi+ ... I@,,,  is 

distributed by generation in the same proportions as total births. 

Thus, 10.7 percent of all females are "first-generation", 9.3 per- 

cent are "second generation", and so forth. The distribution of 

total population by "generational" status is important because the 

preservation of native language, tradition, and culture is likely 

to be influenced by whether one is an immigrant, the child of 

an immigrant, or the grandchild. Cultural heterogeneity will 

be more pronounced the lower is the value of NRR. 

This kind of analysis can also be of practical significance 

in helping to formulate immigration policy. The projection in 

Table 1 shows that 400,000 annual net immigrants lead eventually 

to a total population of 107.9 million, or 269.76 persons in the 

stationary population for every annual immigrant. Suppose the 

United States wanted to arrive at a stationary population as 



large as the 1980 census of approximately 226 million. Then, 

assuming 1977 fertility and mortality conditions and the age-sex 

composition of immigrants in Table 1, almost 840,000 annual 

immigrants would be needed--a number that may not be far from 

the 1980 figure. (Of course, the population would increase to 

almost 300 million before falling to 226 million). 

CONCLUSION 

In this paper we have shown that any fixed fertility and 

mortality schedules with an NRR below one, in combination with 

any constant annual number and age distribution of immigrants, 

will lead in the long run to a stationary population. The size 

and other characteristics of this eventual stationary population 

depend only upon our assumptions regarding fertility, mortality, 

and the age-sex composition of immigrants, and are not influenced 

in any way by the population we begin with. 

Moreover, we have shown that this long-run stationary pop- 

ulation is actually composed of many smaller stationary popula- 

tions --one of immigrants themselves, one of "first-generation" 

descendants, and so on. The composition of the total stationary 

population by its so-called "generational status" can be com- 

puted from a knowledge of the specific fertility, mortality, and 

immigration assumptions. 

These results, we have shown, can be obtained even when 

some "generations" have above-replacement fertility. All that is 

required to establish a stationary population in the long run 

is that, at some point in the generational chain of immigrant 

descendants, one generation and all those that succeed it adopt 

fertility below replacement. 



NOTES 

1. These and subsequent statistics on the part played by 
immigration in U.S. population growth are contained in 
Leon F. Bouvier, "The Impact of Immigration on the Size 
of the U.S. Population," Washington, D.C.: Population 
Reference Bureau, Inc. 

2. Since immigration is controlled in most countries, as- 
suming that the number of immigrants is constant is 
preferable to assuming constant rates of immigration. 

3. This development parallels earlier work by Ansley J. Coale 
(1972). Coale approached the problem by starting with a 
stationary population closed to migration and then inquired 
how much of a reduction in fertility would be required when 
immigration is added to maintain a stationary population with 
the same number of births. We begin at the other end, by 
assuming below-replacement fertility and show that, with 
immigration constant both in volume and in age composition, 
a stationary population evolves. Moreover, any below- 
replacement fertility schedule, if held constant, leads to 
a stationary population when constant immigration is included 

4. Where quotation marks are used, "generation" signifies a 
label on each woman marking her immigration ancestry. 
Without inverted commas, generation signifies as usual 
either time elapsed or a particular population as measured 
reproductively from some initial event or population. 



5. Equation ( 1 9 )  gives us an important clue as to how fast con- 
vergence to stationarity takes place. If NRR = .75 for 
example, then the first eight terms of the infinite series 
( 1 9 )  account for 8 4 %  of the series total. In other words, 
most births in the population would be attributable to 
immigrants and the first six or seven "generations" of 
descendants of immigrants. In turn, this implies that the 
birth flow, in this case, would settle down six or seven 
generations after the stock of immigrants stabilizes: in 
total, about eight to ten generations after time zero. 
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