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FOREWORD

The public provision of urban facilities and services often takes the
form of a few central supply points serving a large number of spatially
dispersed demand points: for example, hospitals, schools, libraries, and
emergency services such as fire and police. A fundamental characteristic of
such systems is the spatial separation between suppliers and consumers. No
market signals exist to identify efficient and inefficient geographical
arrangements, thus the location problem is one that arises in both East and
West, in planned and in market economies. '

This problem is being studied at IIASA by the Public Facility Location
Task, which started in 1979. The expected results of this Task are a com-
prehensive state-of-the~art survey of current theories and applications, an
established network of international contacts among scholars and institutions
in different countries, a framework for comparison, unification, and gener-
alization of existing approaches, as well as the formulation of new problems
and approaches in the field of optimal location theory.

This paper develops a spatial interaction model of facility location
that adopts a gravity model specification of customer travel patterns. A
model that can be solved by a nonlinear branch-and-bound algorithm is set out
and several computational results arising out of applications of the model to
shopping center location in Leeds, England, high school location in Turin,
Italy, and hospital location in London, England are reported.

Related publications in the Public Facility Location Task are listed at
the end of this report.

Andrei Rogers
Chairman

Human Settlements
and Services Area
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ABSTRACT

This paper sets out a spatially interactive facility location model that
specifies client travel behavior according to a "gravity" formula. The well-
known uncapacitated facility location model is a limiting case of this model.
Analytical partial optimization yields a condensed formulation that can be
solved by a nonlinear branch-and-bound approach. Computational results are
presented for several problems having as many as 69 potential facility

locations.
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FACILITY LOCATION WITH SPATIALLY
INTERACTIVE TRAVEL BEHAVIOR

1. INTRODUCTION

Most of the literature on facility location models is concerned with
systems in which spatial flows are assigned entirely to the nearest, or
more generally minimum-cost, facility. This assignment rule clearly is
optimal for typical plant and warehouse location problems where goods are
delivered from the facility to the demand location and the costs for both
establishing the facilities and transporting the goods are paid by the
producer. The simplest such problem is the uncapacitated facility location
problem, for which solution méthods have progressed from the early branch-
and-bound approach of Efroymson and Ray (1966) to much more effective dual-
based approaches (Erlenkotter, 1978).

For many service facility location problems, clients are free to make
their own choice of facility, and empirical evidence demonstrates that not
all clients select the nearest faciliity. Actual travel from a given client
location tends to be distributed among a number of facilities, and the re-
lative location of facilities affects the distribution of travel. This form

of spatially interactive travel behavior, often described through a spatial
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"gravity'" model, has been discussed by Wilson (1971) and has led to locational
criteria interpreted variously as "consumers' surplus" (see Neuberger, 1971;
Coelho and Williams, 1978), "accessibility" (see Leonardi, 1978), and
"entropy" (see Wilson, 1970). A plausible modeling foundation for this be-
havior has been provided through random utility theory, as discussed recently

with reference specifically to location modeling by Leonardi (1981).

Spatially interactive travel behavior has been incorporated into
several location models, including those of Coelho and Wilson (l9f6),
Leonardi (1978), and Beaumont (1980). Recently Leonardi (1980) has pro-
posed spatially interactive location models in which establishment of
facilities is restricted to a subset of available locations either by a
policy constraint or by the presence of fixed charges for opening facilities.
These models are closely related to the uncapacitated facility location
problem (UFLP). In this paper we develop a solution algorithm for such a
model, and present the results of computational tests conducted to evaluate

its effectiveness.

2. A FACILITY LOCATION MODEL WITH SPATIALLY INTERACTIVE TRAVEL BEHAVIOR
We begin with the following budget-constrained spatially interactive

location problem:

Minimize z z s,, (aln s,, + c,.) (1)
s.., ieI jeJ H 1] 13
1]
yy € {0,1}
subject to I sij = P, iel (2)
jedJ
s .
17 £ Py vy iel, JeJ (3)

I a,y,+1I ij B . (8)

S
jeg 373 ey 3 qer M



where
I = set of residence zones for service clients,
vindexed 1=1,2,02,|1|;
J = sget of potential facility locations, indexed
b =lr2r""|J|;
Slj = number of service clients in zone icl
that utilize facility at location jeJ;
y. - 1l if a facility is established at location jeJ
j 0 if a facility is not established at location jeJ;
Pi(>0) = number of service clients in zone {ieIl;
cij(zp) = cost per client in zone iel for service at facility jeJ;

aj(zp) = fixed charge for opening a facility at jeJ;

bj(Zp) = variable capacity cost per unit of service at facility jeJ;
B(>0) = total budget for facilities;
a(>0) = Jinverse spatial discount (or distance decay) rate.

The objective function (1) is the negative of "consumers' surplus” benefits
to clients and, as we shall see, implies client travel behavior as in a
"gravity" model. Constraints (2) ensure that all clients are served, constraints
(3) prevént service at a closed facility, and constraint (4) enforces a budget
limit on facilities expenditures.

A more convenient formulation for solution is provided if we employ
a Lagrangian relaxation of the budget constraint (4). One can also show, as
in Erlenkotter (1980), that such a modified formulation can provide a solution
that is preferable to the clients even if they must pay for a possible budget

deficit through direct use fees. Employing the Lagrange multiplier X > O



for (4) and substituting x,, = sij/Pi , we have

ij
Minimize T I P, x,.(alnx,, +c,, +Ab,) + I xa, y.
%, tel jeg 1+ 13 3 jeg 473
g e {0,1}
+ a I Pi 1n Pi - AB (5)
iel
subject to
I x,, =1 , iel (6)
jeg 1
xij < yy o iel jeJ. N

The formulation (5) - (7) is now expressed in terms of the fraction

of clients at i served at j, x If we add the generally redundant

1j°
constraints xij > 0 and examine the limiting case for o = 0 (corresponding
to an infinite spatial discount rate), we obtain the classical UFLP of

Efroymson and Ray (1966) with total "shipping" costs from i to j of

Pi(cij + Abj) and facility fixed charges at j of Aaj.

3. CONDITIONAL OPTIMIZATION OF FLOW VARIABLES

The success of solution approaches for the UFLP suggests that we attempt
to solve (5) - (7) by relaxing the integrality constraints on the variables
yj. For that problem, such relaxed solutions often are naturally integer
as demonstrated in Erlenkotter (1978). Even when non-integer solutions result,
bounds on the objective value provided by the relaxed solution are useful in
determining a solution by means of a branch-~and-bound procedure.

Here, however, it is obvious that such a relaxed solution will never be

integral because all xij will be positive and no xij will equal one.



Therefore all yj will be fractional since each will equal the largest cor-

responding xij' Solution of (5) - (7) via such a relaxation would not seem

-

to offer much promise.

However, we can simplify (5) - (7) by optimizing the flow variables

x.j conditionally on the site opening variables yj. Making the substitutions

~(c + ib,)/a
d, . =e H i <1

and

f,
J

(A/a)aj

yields the equivalent problem

Miii?ize 121 jiJ Py xié 1n (xij/dij) + sz fj Yy (8)
yj e {0,1}
subject to
z Xg5 = 1, iel (9
jed
ij-i yj , ieI , | jeJ. (10)

Conditional optimization with respect to x.,, assuming some nonzero

13

yj, yields two cases:

y, =0 = x,, =0 , {iel

(v,/P)-1
=1 = =d,, e 1t iel
i T T M T % ’

where the Vi are Lagrange multipliers for constraints (9). Combining the

two cases gives

(v,/P)-1
= i1 11
X, Y dij e . 11)



Substituting (11) into (9) yields
e(vi/Pi)—l ) 1
L y. d

jed i 4

and hence in (11)

y, d,.
x = —a i (12)
ij T vy. di' -
jeg 1 H

which satisfies naturally the constraints (10). The form (12) is a "gravity"
expression for the flow variables xij since the coefficients dij are

spatially discounted distance measures. Substitution from (12) into the

objective function (8) yields

di.y.ln Y.
Minimize . I P, —=4<—J_ 7 P 1In(Ivy.d..) I =x,.4 I f.y. (13)
v € (0,1} deI jed * sz Yy 945 fer jeg 313 4oy 13 yeg T3
which, since yj 1n yj =0 for yj =0 or 1, becomes
Minimize : fy,- I P, 1In(ZI yd,.) . (14)
y; e (0,1} jeJ I g 17 g Y

The rather succinct form of (14), then, would seem to be more promising for

solution.

4, A BRANCH-AND-BOUND SOLUTION PROCEDURE

The simple objective form (14) has several useful characteristics.
First, it is easily shown that this function is convex in the variables yj.
Solution of the continuous relaxation of (14) with O R AT 1 therefore
may be carried out by standard convex optimization techniques, and this
solution will provide a iower bound for the optimal objective value. Second,
the negative of this function is submodular as defined by Nemhauser, Wolsey,

and Fisher (1978). The submodularity property can be exploited in branch-

and-bound search algorithms, and this approach has been explored in Leonardi




(1981). However, such an approach employs only function value calculations,
and Nemhauser and Wolsey (1978) have shown that such a "black box" algorithm
has significant theoretical limits on its efficiency, at least in worst-case
situations. Here, therefore, we shall develop an approach that uses the

continuous relaxation of (14):

Minimize T f.y ) . (15)

. - £ P, In(: y. d
0 <y, <1 3er i

] 1e1 © jed 3

The problem (15) is a simple convex programming problem constrained
only by bounds on variables, and many solution approaches could be applied.
We believe that the method of Frank and Wolfe (1956), also known as the
"method of convex combinations" (Wagner, 1975), has several advantages, at

least for initial solution steps:

(a) The Frank-Wolfe method always moves in the direction of extreme
points, which are integer solutions here. These are precisely the
solutions that interest us, and each extreme point encountered

provides an upper bound to the optimal solution value.

(b) Direction-finding problems for this approach can be solved by
inspection, since they involve only the simple bounds on variables
and a linearization of the objective function at the current

feasible point.

(c) The Frank-Wolfe method has a rapid initial rate of convergence

(Wolfe, 1970).

(d) Lower bounds on the optimal relaxed objective value are easily

calculated from any trial feasible point.



The hope is that, if the relaxed solution is naturally integer, the

Frank-Wolfe method will move quickly to that point and terminate. If this

solution is not integer, we then must face the major drawback of the Frank-
Wolfe method: its extremely poor asymptoti; convergence behavior (Wolfe, 1970).
The method can be modified to improve its asymptotic performance (Wolfe, 1970;
Holloway, 1974), but instead we have chosen to switch over to a variant of the
cyclic coordinate descent method (Luenberger, 1973) to complete calculation of
the optimal relaxed solution.

The linearization of the objective function (15) at a current solution

y0 is obtained from the gradient components

26 = g - ¢ A (16)
J b e g Yy 4y
keJ *

The linearized problem for the Frank-Wolfe approach is then

0
Minimize I oy, 2z, (y). (17
0 5-yj <1 jed 3

The solution to (17) is given by

% 1 if z (yo) < 0
y., = i (18)
J 0 otherwise.

x *
A new solution point is then provided by y0 +t (y - yo), where t

is the solution to the step-finding problem

*
Minimize T £, [ty, + (1-t) y?]
Oitil’jeJJ J

*
- I Py ln T4 loy) + (10 y?] : (19)
el jed J

The step size is easily optimized in (19) via Newton's method.




A convenient initial starting point is derived by assuming that all y?

are equal; setting I z.(yo) = 0 we then obtain from (16)

jed
0 izI Pi
y. = minimum 1, et .
] T £,
jed

If the relaxed continuous solution is non-integer, we proceed via a
branch-and-bound approach using the solutions to (15) as lower bounds. This
procedure is standard and rather elementary, and we provide just a brief

sketch of its details.

(a) As described by Geoffrion (1967), an elementary backtracking scheme
with last~-in, first-out processing of nodes is used to minimize

computer storage requirements and simplify updating of solutionms.

(b) For branching, we use a second-order Taylor series approximétion
of the objective function to estimate the degradation of the ob-
jective value from altering a fractional variable yg. Given the
current objective value Z(yo), first derivative zj(yo) =0 at a

continuous optimum, and second derivative zjj(yo), we have

) 2
2(y) - 2% * (1/2) zjj(yo)(yj - y§’> : (20)

The strategy is to select the variable and integer value providing the

maximum estimated degradation according to (20), and to branch initially

in the direction opposite this value.

(c) Optimization of the partially relaxed problem at each node is carried

out via the Frank-Wolfe method until the objective value improvement
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is less than 0.1%, and is completed by cyclic coordinate descent.
(d) Fathoming of nodes is either by bounding or by integer feasibility.

In some preliminary tests, an alternative branching strategy was
tried in (b) of branching on the variable and value from (20) providing the
minimum degradation. This strategy is intended to seek a good solution as
quickly as possible, while the one in (b) attempts to identify branches
that may be bounded off as soon as possible. The alternative strategy gave
very poor results, taking more than ten times the total computational effort
of that in (b) in some instances. This behavior is consistent with the
findings for integer linear programming problems reported in Geoffrion and

Marsten (1972).

5. COMPUTATIONAL RESULTS

The algorithm for the spatial interaction facility location model
has been developed into a FORTRAN IV computer code named INTLOC. Preliminary
computational testing was carried out on the PDP 11/70 computer at ITASA.
This testing was conducted in an extremely congested interactive environment,
and computational times were too unreliable to report here. However, the
résults obtained are sufficient to provide a tentative evaluation of the
approach,

The first problem investigated is the 8 x 8 shopping center location
problem developed by Coelho and Wilson (1976) for the city of Leeds, England.
Coelho and Wilson ignored fixed charges in the cost structure for shopping
centers but included sizes of existing centers. Here we try different levels

of fixed charges but assume no existing centers. Results from INTLOC for this

problem are given in Table 1. At the lowest value for the fixed charge,



Table 1. Computational results for Coelho-Wilson 8 x 8 location problem

Optimal Initial Optimal Relaxed Tree search Total iterations

Fixed number of fractional objective objective Maximum Total Frank- Cyclic

Charge facilities facilities value value depth nodes Wolfe descent
50 8 0 12106.2 12106.2 0 1 1 0
100 5 0 12448,8 12448.8 0 1 2 0
150 4 0 12682.2 12682.2 0 1 2 0
200 4 1 12882.2 12881.1 1 3 6 0
250 4 1 13082.2 13063.6 1 3 6 2
300 3 2 13244.,5 13224.7 2 5 10 2
350 3 2 13394.5 13363.5 2 5 10 3
400 2 2 13508.8 13486.6 2 5 9 3
450 2 1 13608.8 13599.3 1 3 5 0
500 2 1 13708.8 13706.3 1 3 5 0
550 2 1 13808.8 13808.8 1 3 5 0
600 2 0 13908.8 13908.8 0 1 2 0

=11~



centers are opened at all eight sites; at the higher values, just two sites
are utilized.

This problem was solved quite easily in all cases, probably because
never more than two facility opening variables were fractional in the
initial continuous solution. In several cases the initial continuous solution
was integer and optimal, indicated in Table 1 by a single node and maximum
tree depth of zero in the tree search. As a consequence of the small number
of fractiomal variables, virtually all the optimization of the relaxed problem
was accomplished with Frank-Wolfe iterations, and the cyclic coordinate
descent phase was used in just four cases.

The second problem is a 23 x 23 high school location problem for Turin,
Italy taken from Leonardi (1981). Results for this problem are given in
Table 2. For most cases of this problem, the number of fractional variables
in the initial continuous solution was quite large, and the solution process
was lengthy. The most difficult case was for a fixed charge of 3000, where
the maximum depth of the search tree was just one less than the maximum
possible depth of 23. The number of Frank-Wolfe iterations tends to be about
three times the total-number of nodes, and the number of cyclic descent iter-
ations is as high as three times the number of Frank-Wolfe iterations for
these problems.

The final problem is a 44 x 69 hospital location problem for the London
region as described in Mayhew and Taket (1980). Results for this problem are
given in Table 3. Even though much larger than the previous problem, solution
requirements here were rather modest. The‘number of fractional variables in
the initial continuous solution tends to remain small relative to the total

number of potential facilities, and the optimal objective value remains very

close to the initial lower bound provided by the initial relaxed objective

value. However, the solution effort increases with the value of the fixed




Fixed
Charge
500
1000
1500
2000
2500
3000
3500
4000
4500
5000

Table 2. Computational results for Leonardi 23 x 23 location problem

Optimal Initial Optimal
number of fractional objective
facilities facilities value

23 0 25899.2
23 37399.2
22 10 48685.0
20 14 59000.0
17 17 68096.8
15 21 76430.0
11 20 82725.5
10 20 87921.4
8 21 92730.7
21 96730.7

Relaxed Tree search Total iterations
objective Maximum Total Frank- Cyclic
value depth nodes Wolfe descent
25899,2 0 1 1
37257.1 3 4
47924 .9 9 29 76 66
56947.9 18 153 418 512
64389.7 18 881 2483 4118
70583.2 22 5169 13844 29100
75809.6 20 3193 9337 26154
80326.1 19 1963 6097 17561
84300.9 20 1887 6020 17841
87845,0 20 1481 4976 15020
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charge, and problems with higher fixed charges could be more difficult to

solve.

6. CONCLUSIONS

We have developed and tested an algorithm for solving a spatial inter-
action facility location model. Since the spatial flow variables may be
optimized analytically, the solution approach considers explicitly only the
facility opening variables. The algorithm seems to be quite successful for
some problems and rather tedious for others.

Since this class of problems is known to be a difficult one, it is
not surprising that some cases are hard to solve. An important character-
istic seems to be the number of fractional variables in the initial continuous
solution. It is easy to construct examples in which all variables initially
will be fractional: e.g., for equal client populations Pi = P for all i
and a sufficiently high uniform fixed charge let d,, =1 for all j and

i3
d.. =K< 1 for all 1 # j. Such problems would seem to be inherently

1]
difficult for this approach. Even though other nonlinear optimization
approaches or branch-and-bound strategies could be tried, it is not clear
that they could overcome this difficulty.
Perhaps more puzzling is the relatively greater success of dual-based
solution approaches for the uncapacitated facility location problem
(Erlenkotter, 1978), which is a limiting case of the problem explored here.

Naturally integer solutions to the continuous relaxation of that problem seem

to be much more prevalent than for the examples solved here. 1In the dual-based
approaches, dual variables are eliminated by preliminary optimization in
contrast to the elimination of primal variables here. But no natural ex-

tention of those approaches to the spatial interaction model seems evident.
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Given the difficulty of obtaining proven optimal solutions for some
instances of this problem, the need for good heuristics is apparent.
Nemhauser, Wolsey, and Fisher (1978) have provided some general results for
heuristics that could be applied to this problem, and Leonardi (1981) has
developed some heuristics and applied them to the Turin high school location
problem with very encouraging results. Further exploration of these
approaches seems desirable.

Beyond the problem considered here, there is need to extend the
approaches to include additional problem aspects such as existing facility
capacities and limits on the capacities of new facilities. Some of these

extensions have been explored recently by Coelho (1980).
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