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Optimizing a Decision Maker's Preferences

With a Minimum Amount of Information

David E. Bell

1. Outline

Consider the linear program

max cx
x£X

where X = {xlAx = b, x ~ O} and where the objective function

(1)

represents the preferences of a decision maker over the set of

alternatives. We assume that some information I has been obtained

about his preferences which is insufficient to define the object-

ive coefficients exactly. Hence, there is a set C(I) of possible

vectors each of which is consistent with the known information.

One element of C(I) is "correct", but we, the optimizers, do not

know which.

It is evident that if for some x£X, x is optimal in (1) for

all cEC(I), then it is unnecessary to know which element of C(I)

is correct since they all give the same answer. The aim here is

to obtain the minimum amount of information required from a

decision maker in order to find his best alternative in a given

problem.
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2. Obtaining Correct Information

,A criticism of modern decision analysis is that often a.

decision maker is required to give sophisticated answers in

matters he may not understand. Few people have a good feeling

for probability (how "likely" is one chance in fifty?), and

much of the income of analysts arises precisely because people

are not generally good at coming to precise conclusions.

Consider the following three questions dealing with a

four attribute problem:

a) Which state do you prefer, (0,2,9,3) or (5,1,6,1)1

b) If the value of (0,0,0,0) is considered to be zero

and that of (1,1,1,1) to be one, what would you

consider to be the value of (1,2,3,4)1

c) For what value of e does (2,3,4,5) become

indifferent to (8,0,0,6)?

Of these I would consider b) to require the most judgement on

the part of the decision maker and a) the least. Question c)

requires repeated applications of a) until 8 converges to some

answer. Note that the "answer space" for b) and c) is infinite

but for a) it is finite (of size two).

Of course the answer to question b) will do most to restrict

the size of the set C(I) and a) the least. If the decision maker

can make sophisticated judgements, all well and good. In what

follows he will only be required to give a preference ordering
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amongst two states, that is, answer question a). It will be

assumed that when given a choice between two states, he will

either

(i) prefer one to the other,

(ii) be indifferent,

(iii) not be sure,

but, for the time being, we will exclude (iii).

3. The Approach

We will start by assuming an initial qu~ntity of information

I is already known. For example, by making pairwise comparisons,

the decision maker could order a list of states from best to

worst. Preferences x > y, x - yare imposed as restrictions

on the coefficients of c by imposing the constraints cx > cy and

cx = cy as appropriate.

Lemma 1

Proof

C(l) is a cone.

Substitution for c by AC for any A > 0 does not affect

the validity of ordering relations.

It will be useful later to have C(l) as a bounded set,

which may be achieved by constraining

2Lc. = 1
1

but for the linear programming example with which most of this

II

paper deals, it is better to have a linear constraint. By pairwise



comparisons, it is possible to determine for each i whether

c. > 0 or c. < 0 (is an attribute good or bad?) and let O. = +1
1.- 1. 1.

if c. > 0, O. = -1 if c. < O. The constraints
1. - 1. 1.

4.

n
r

i=l
15.c. = 1

1. 1.
, O.c. > 0

1. 1.

are thus linear and make C(I) bounded. We will assume that

15. = +1 for all i since re-definition of the variables can
1.

make this so.

Now consider the space of solutions X. Let S be the set

of possible solutions to problem (1) for all possible CIS. In

this case we may take S to be the set of extreme points of X.

Now define the map

rb C(I) -+- S

where rb(c) is the optimal basic solution to

max cx
xe:X

assumed to be unique.

Lemma 2 The function z(c) = crb(c) is convex.



Proof

< ! max clx + ! max c 2x
xe:X xe:X

max (!c I + !c 2 )x
xe:X

II
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There is only a problem if

IQS(C(I))I > I ,

in which case, alternative optima exist. We seek a "minimal"

set of information J for which

IQS (C( IUJ ) ) I = I

The set J will be regarded as minimal if it requires the fewest

subsequent pairwise comparisons to be made by the decision maker.

4. Details

The line of attack taken here will be to find any two

elements of QS(C(I)), if two exist, and ask the decision maker to

compare them.

Lemma 3 If xl ,x2 e: QS(C(I)) and the decision maker subsequently

decides that xl > x2 , the constraint cxl > cx2 is added to I,

then x2 t QS(C(I)).



Proof If x2 £ 6(C(I)), then there exists some c£C(I) such that

6 .

in particular

- 2cx > cx

- 2 Icx > cx

for all x£X

This contradicts the new constraint. II

The point of lemma 3 is that the new cut removes all those

c£C(I) which gave x2 as the optimum. This cut may well remove

many other elements of C(I) as well as 6- I (x2 ). This paper will

not throw any light on the question of which two elements of

6(C(I)) it is "best" to present to the decision maker. Remember

that beforehand it is not known whether he will answer xl > x2 ,
2 I I 2x > x , or x - x. The problem that is addressed here is that

of finding any two different elements of 0(C(I)).

Finding one is simple: choose any c£C(I) (phase I L.P.

procedure perhaps), then solve

max cx
x£X

to find 6(c). The question now is, how to find another.

One sure method, which it seems will have to be used when

testing for optimality, is to take the nonbasic price coefficients
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which are non-positive on the set 0- l (0(c)) and test to see

if any may be made positive on C(I). That is, solve up to

n - m of the L.P. problems

If any of these have positive objective values, then that

solution c· t 6- l (0(C)) and the solution of

max c·x
XEX

(2)

will produce a second element of ~(C(I)). If none of (2) produce

positive solutions, then 6(c) is the required optimal solution.

Whilst solving (n - m) versions of (2) may not be impossible,

faster methods may be available, though not assured of success.

Consider the following two problems, where z(c) = C0(C)

z(c·) = max z(c)
cEC(I)

z(c.) = min z(c)
cEC(I)

The idea is that these two solutions have intuitively a good

chance of satisfying ~(c·) ¢ ~(c.).

(4)



Lemma 4 Two elements of ~(C(I)) may be found after solving
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three linear programs or it is shown that ~(c.) = ~(c·) after

solving only two linear programs.

Proof Assume, for the moment, that C(I) may be defined by

Dc > 0-
rc. = 1

1

C . > 0
1 -

The only subterfuge here is that some of the strict inequalities

have been replaced by non-strict inequalities. This point will

be revived later.

Now z(c) = max cx
xe:X

or taking the dual,

z (c) = min lTb

s.t. lTA > c

so that z(c.) = min z(c) = min lTb
ce:C(I)

s.t. lTA > c-
Dc > 0-

rc. = 1
1

C > 0-



Hence (4) may be solved by one linear program.

Now consider the solution, c*, of

max c rI>(c*)
ce:C(I)

If ~(c*) = rI>(c*), then this will be clear since

9.

(6)

will be non-positive. If (6) has some positive elements, then

max c*x
xe:X

will provide ~(c*).

Even if ~(c*) = rI>(c*) , there remains another chance.

II

Lemma 5 If C(A) = c* + A(C* - c*) is feasible for some

A > 1, then

Proof By definition of c*,

,



but
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and hence 0(C.) ~ 0(C(A))

To summarize, the only case which fails is if for some

c*x > C0(C) > c*x for all c€C(I)

II

and c* is extreme in C(I). Of course, there are other arbitrary

ways of findine a c£C(I) to generate a 0(C). Computational

experience may suggest a better approach.

5. Variations

This section just mentions the problems of convertinr,

constraints cx > cy into cx ~ cy and and answers such as "I'm

not sure".

By introducing a small coefficient £, cx > cy may be written

as cx > cy + £ and "I'm not sure" may be expressed as

cx + E > cy > cx - £

where in this case £ is large enough to be accurate. An

interesting choice of c£C(I) might be



max E

s.t. Dc > E 1-
LC. = 1

l

C > 0-

which maximizes the minimum "gap" between states.

6. Generalizations

This general approach of not tying down the objective

function is only suitable for finding exact solutions if the

solution space S is finite.

The general problem

11.

max u(x., ... ,x)
l n

g(x) < 0

is different in that respect. However, this technique is still

useful when the solution space is {Reject, Accept} for some

proposal. If the set of possible u's is U(I), then when

min u(Proposal) > 0
uEU(I)

the proposal may be accepted, or when

max u(Proposal) < 0
uEU(I)

it may be rejected.



7. Summary

This paper has considered a situation in which

1) The decision maker can make preference

orderings but not accurate value

jUdgements,

2) Computer time is less valuable than

the decision makers time.

Variations exist for all other combinations of circumstances;

the object here was merely to give an example.

12.


