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Abstract: A bottom-up emissions inventory is one of the most important data sets needed to
understand air quality (AQ) and climate change (CC). Several emission inventories have been
developed for Asia, including Transport and Chemical Evolution over the Pacific (TRACE-P),
Regional Emission Inventory in Asia (REAS), and Inter-Continental Chemical Transport Experiment
(INTEX) and, while these have been used successfully for many international studies, they have
limitations including restricted amounts of information on pollutant types and low levels of
transparency with respect to the polluting sectors or fuel types involved. To address these shortcomings,
we developed: (1) a base-year, bottom-up anthropogenic emissions inventory for Asia, using the
most current parameters and international frameworks (i.e., the Greenhouse gas—Air pollution
INteractions and Synergies (GAINS) model); and (2) a base-year, natural emissions inventory for
biogenic and biomass burning. For (1), we focused mainly on China, South Korea, and Japan;
however, we also covered emission inventories for other regions in Asia using data covering recent
energy/industry statistics, emission factors, and control technology penetration. The emissions
inventory (Comprehensive Regional Emissions inventory for Atmospheric Transport Experiment
(CREATE)) covers 54 fuel classes, 201 subsectors, and 13 pollutants, namely SO2, NOx, CO,
non-methane volatile organic compounds (NMVOC), NH3, OC, BC, PM10, PM2.5, CO2, CH4, N2O,
and Hg. For the base-year natural emissions inventory, the Model of Emissions of Gases and Aerosols
from Nature (MEGAN) and BlueSky-Asia frameworks were used to estimate biogenic and biomass
burning emissions, respectively. Since the CREATE emission inventory was designed/developed
using international climate change/air quality (CC/AQ) assessment frameworks, such as GAINS,
and has been fully connected with the most comprehensive emissions modeling systems—such
as the US Environmental Protection Agency (EPA) Chemical Manufacturing Area Source (CMAS)
system—it can be used to support various climate and AQ integrated modeling studies, both now
and in the future.

Keywords: Asia; emissions inventory; air pollutants; greenhouse gases; anthropogenic emissions;
biogenic emissions
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1. Introduction

In recent decades, Asia has become increasingly populous, and its economies have grown rapidly,
to the extent that East Asia has become the largest emission region in the world due to this large
population and the increased energy use caused by its economic growth. From the perspective of the
global atmospheric environment, Asia is a critical source of air pollution, and this has become a more
serious issue here than in other regions—and lately has begun to receive international attention [1–3].

This problem can be resolved through long-term joint efforts and adoption of best practices,
and this approach needs to be supported by objective and scientific data. Systematic tracking of air
pollution sources and emissions data organization forms the most effective basis for understanding
air pollution processes and deriving policy solutions. This includes collating pollutant emissions
by region, sector, and fuel-type, within a comprehensive anthropogenic emissions inventory.

Several emissions inventories have been developed covering Asia; these include TRACE-P
(Transport and Chemical Evolution over the Pacific) [4], INTEX-B (Intercontinental Chemical
Transport Experiment-Phase B) [5], REAS (Regional Emission inventory in Asia) [2], and EDGAR
(Emission Database for Global Atmospheric Research) [6]. Two methods have been used to develop
these emissions inventories; the first method uses fundamental data, such as energy use activities,
emission factors, and controlling policies, and the second method assembles a mosaic of emissions
inventories from different countries or regions. The first method is more structural and informative,
as it includes most of the information necessary to understand the socioeconomic, technological,
and policy background applicable over the domain—although it has the drawback that limited data
are available for some countries and regions. The second method is advantageous because it provides
better total emissions estimates for developed countries/regions; however, it can be limited by the
amount of fundamental information needed to estimate emissions.

As Asian countries are at various developmental stages, inventory methodologies must be
equipped to reflect their rapid socioeconomic changes and policy initiatives. If this can be achieved,
while it may not lead to the most accurate emissions estimates, it can represent a system that explains
the current situation, predict likely future emissions scenarios, and can be applied to air quality
(AQ) studies. Fundamentally, building an integrated emissions modeling inventory can improve both
air pollution predictability and climate change (CC) modeling accuracy.

Biogenic emissions play an important role in regional AQ and global atmospheric chemistry.
Open biomass burning emissions are a major source of air pollution and can influence global CC through
both greenhouse gases (GHGs) and aerosols emissions and vegetation cover losses. Information on
natural emission sources is generally quite poor because most emission inventory studies have primarily
targeted anthropogenic emissions.

In response to these issues, we developed the Comprehensive Regional Emissions Inventory
for Atmospheric Transport Experiment (CREATE) to cover Asian emissions and to support scientific
studies and policy development in the region. The CREATE inventory was developed using activities,
emission factors, and controls, as these were helpful in estimating not only base year emissions but
also present and future year emission scenarios. Our objective was to design and develop an inventory
scheme that provides better support for AQ modeling and which can be operated in concert with the
Sparse Matrix Operator Kernel Emissions for Asia (SMOKE-Asia) emissions processing system [7].
CREATE includes anthropogenic, biogenic, and biomass burning emissions.

2. Methodology and Key Parameters

2.1. Anthropogenic Emissions

2.1.1. GAINS Framework

Our emissions calculations were developed using the Greenhouse Gas and Air Pollution
Interactions and Synergies-Asia (GAINS-Asia) model (http://gains.iiasa.ac.at). GAINS was launched

http://gains.iiasa.ac.at
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in 2006 as an extension to the Regional Air Pollution and Simulation (RAINS) model, which had
been used to assess cost-effective response strategies for combating air pollution elements such as
fine particulates and ground-level ozone. GAINS provides an authoritative framework for assessing
strategies for reducing multiple air pollutant GHG emissions, with the objective of minimizing their
negative effects on human health, ecosystems, and climate change (CC), using a least-cost approach.

For each pollutant, GAINS can be applied to estimate emissions based on activity data, uncontrolled
emission factors, and emission control measure removal efficiencies, as well as the extent to which
such measures have been implemented. For a given country, i, and pollutant, p, considered in a study,
this is achieved using Equation (1) [8]:

Ei,p =
∑

k

∑
m

Ai,k·e fi,k,m,p·xi,k,m,p (1)

where, i, k, m, and p represent the region, activity type, abatement measure, and pollutant, respectively.
Ep stands for the emission of pollutant p, Ai,k represents activity data of type k in region i, efI,k,m,p stands
for the emission factor for pollutant p in region i for activity k, after application of control measure m
(where m includes the “no control” situation), and xI,k,m,p stands for penetration of region i by control
measure m for pollutant p from activity k.

This approach incorporates emissions reduction calculation by changing each input parameter
and/or making minor structural changes to ensure that the GAINS framework emissions data simplifies
evaluation of emission changes as a result of socioeconomic and/or environmental policies.

2.1.2. Activity Data

Input parameter formats and methodologies generally differ from country to country.
For our modeling, activity data were obtained mostly from World Energy Balance statistics produced by
the International Energy Agency (IEA) [9], while in some cases (China, S. Korea, N. Korea, and Japan),
official national data were used.

Activity data incorporated into the CREATE inventory, included IEA statistics for the whole of
the research domain, the 2010 Energy Statistical Yearbook for China (CESY 2010) [10], the Clean Air
Policy Support System (CAPSS) [11] for S. Korea, the Japan Statistical Yearbook (JSY) [12], and several
domestic documents released by S. Korea for N. Korea. United Nations (UN) Energy Statistics
Database (UN, 2011) [13] energy balance data were used for some countries not covered by IEA data,
and non-energy activity data were collected from various international, national, and regional statistics
sources, from previous studies, and from official UN Statistics Division documents.

2.1.3. Emission Factors and Control Technologies

We used GAINS-Asia emission factors and removal efficiencies as default data where local
information was absent, and updated CREATE by including recent regional/national control policies
that could be sourced from the literature. For S. Korea, we achieved these updates using activity,
emissions, and removal factors published in the CAPSS 2010 official emissions inventory. We viewed
the quality of N. Korean emission input-related data as being rather uncertain due to the difficulty
in accessing relevant information, and so derived N. Korea input parameters by extrapolating gross
domestic product (GDP), population, and industrial activity indexes from S. Korea into N. Korea.

China is the biggest regional energy consumer; however, it has aggressively applied various
environmental protection policies. To capture their effects, we reviewed relevant literature (B. Zhao et al.,
2013 [14]; Zhang et al., 2009 [5]; Hong et al., 2012 [15]; Y. Zhao et al., 2010 [16]; Lei et al., 2011 [17];
Y. Zhao et al., 2012 [18]) to update the characterization of input parameters, such as removal efficiencies
and control technology penetration rates, in the GAINS model [19]. As an example, the initial
input parameters in GAINS-Asia and updated flue gas desulfurization (FGD) technology penetration
information have been presented in Figure 1, where the revised information shows that most Chinese
provinces have achieved high improvement implementation rates.
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accounting for up to 50% of total BVOCs [23]. BVOCs affect the formation of secondary organic 
aerosols (SOAs) and tropospheric ozone, as well as radiative forcing, which can influence not only 
the air quality but also the climate [25–27]. This implies that accurately estimating BVOC atmospheric 
emissions is important if their role in chemical transport models and their climatic impacts are to be 
accurately represented. BVOC emissions are often not listed in emissions inventories or have been 
simply estimated when needed as inputs into AQ modeling studies. 

In this study, we used the Model of Emissions of Gases and Aerosols from Nature (MEGAN) 
v2.04 to estimate BVOC emissions and develop BVOC emissions inventories for Asia. MEGAN is a 
modeling framework for estimating temporal and spatial emission rates of chemical compounds 
from the vegetation in the terrestrial ecosystems to the atmosphere [28,29]. In general, the equation 
for calculating natural vegetation emission is as shown in Equation (2): 
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(LAI)), emission factors (EFs), and main metrological variables (TEMP., for temperature, and RAD., 
for solar radiation)) related to vegetation emissions as input data for calculating BVOC emissions 
with MEGAN. Meteorological data were estimated using the Weather Research and Forecasting 
(WRF) model, and EFs were derived using the database of the MEGAN development group released 
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industry sector. Initial information was sourced from the United Nations Environment Program (UNEP)
scenario in the Greenhouse Gas—Air Pollution Interactions and Synergies (GAINS) model.

2.2. Natural Emissions

2.2.1. Biogenic Emissions: The MEGAN Model

Biogenic volatile organic compounds (BVOCs) emitted by plants are important in emission and
air pollution research, as they are significant contributors of secondary air pollutants, including ozone
and secondary fine particles [20–22].

Previous studies on global BVOC emissions (e.g., Guenther et al., 1995; Intergovermental Panel on
Climate Change (IPCC), 2007 [23,24]) have reported that they exceed anthropogenic source emissions.
Among BVOCs, isoprene (C5H8) has been noted as the dominant chemical compound, accounting for
up to 50% of total BVOCs [23]. BVOCs affect the formation of secondary organic aerosols (SOAs) and
tropospheric ozone, as well as radiative forcing, which can influence not only the air quality but also
the climate [25–27]. This implies that accurately estimating BVOC atmospheric emissions is important
if their role in chemical transport models and their climatic impacts are to be accurately represented.
BVOC emissions are often not listed in emissions inventories or have been simply estimated when
needed as inputs into AQ modeling studies.

In this study, we used the Model of Emissions of Gases and Aerosols from Nature (MEGAN)
v2.04 to estimate BVOC emissions and develop BVOC emissions inventories for Asia. MEGAN is
a modeling framework for estimating temporal and spatial emission rates of chemical compounds
from the vegetation in the terrestrial ecosystems to the atmosphere [28,29]. In general, the equation for
calculating natural vegetation emission is as shown in Equation (2):

Fi = γi

∑
εi, jχ j (2)

where Fi represents emissions of chemical species i (as µg/m2h−1), γi denotes emission activity for
chemical species i, εi,j represents the standard emission factor for chemical species i from vegetation
type j, and χj indicates the percentage of vegetation type j occupying a grid square [28].

We prepared vegetation input variables (basically plant functional type (PFT), leaf area index (LAI)),
emission factors (EFs), and main metrological variables (TEMP., for temperature, and RAD.,
for solar radiation)) related to vegetation emissions as input data for calculating BVOC emissions
with MEGAN. Meteorological data were estimated using the Weather Research and Forecasting
(WRF) model, and EFs were derived using the database of the MEGAN development group released
through the community data portal (http://cdp.ucar.edu) maintained by the US National Center for

http://cdp.ucar.edu


Sustainability 2020, 12, 7930 5 of 26

Atmospheric Research (NCAR). PFT and LAI database used in this study were developed by using the
Moderate Resolution Imaging Spectroradiometer (MODIS) land cover (LC) and leaf area index (LAI)
product of the Terra and Aqua satellite sensors, which were recategorized and converted for inputting
into MEGAN. Details on the preparation of vegetation input variables (i.e., PFT and LAI) utilizing
MODIS LC and LAI products are documented in Kim et al. [30]. Through the implementation of
MEGAN using these input variables, we developed gridded BVOC emissions data, and then generated
a country-based, annual BVOCs emissions inventory for Asia.

We tried to maintain speciated emissions by two different types of chemical mechanisms
(i.e., CB05 and SAPRC99 [31,32]) in order to open a possibility to support multiple possible simulation
setups in Chemical Transport Models (CTMs) (Table 1).

Table 1. Modeling Parameters Information.

Parameters Source Description

MEGAN model 2.04 (US NCAR) Guenther et al. (2006) [28]
Chemical Mechanism CB05 (1) and SAPRC99 (2) Yarwood et al. (2005) [31], Carter, W.P.L. (2000) [32]

Temperature data WRF v3.2 (US NCAR) TEMP2(K) (3)

Solar radiation data WRF v3.2 (US NCAR) RGRND(W/m2) (4)

PFTF MODIS land cover 2009 https://wist.echo.nasa.gov/api/
LAI MODIS LAI 2009 https://wist.echo.nasa.gov/api/

Emission factor data source MEGAN EFv2.1 http://cdp.ucar.edu
(1) Carbon Bond (CB05) mechanism, (2) State Air Pollution Research Center 99, (3) Air temperature at 2 m above ground,
(4) Solar radiation absorbed at ground.

In this study, the simulation with the WRF version 3.2 was conducted on a domain using
60 km × 60 km horizontal resolution with 148 × 184 cells in the horizontal direction and 32 layers
in the vertical direction. The 6 hourly NCEP (National Centers for Environmental Prediction) data
with 1◦ × 1◦ grid resolution were used for the initial meteorological condition for the WRF simulation.
The simulation was conducted over one year. More detailed configuration of WRF is described
in Table 2.

Table 2. Configuration of the Weather Research and Forecasting (WRF) model simulation [33].

Item Description

WRF version WRFv3.2
Resolution 60 km × 60 km

Horizontal Number of Grids 148 × 184
Number of Vertical layers 32 layers

Initial Conditions
1◦ × 1◦ and every six hours data from the National

Centers for Environmental Prediction Final
(NCEP FNL) (http://dss.ucar.edu/datasets/ds083.2/)

Topography Data 30 s USGS
Microphysics WSM6 (1) (WRF Single-Moment 6-Class)

longwave radiation RRTM (Rapid Radiative Transfer Model) scheme
shortwave radiation Dudhia scheme
surface-layer options Monin-Obukhov scheme

PBL physics YSU (2) scheme
Cumulus physics Kain-Fritsch (new Eta) scheme
Surface physics Unified Noah land-surface model

(1) Weather Research and Forecasting Single Moment 6, (2) YonSei University.

2.2.2. Biomass Burning Emissions: The BlueSky-Asia Model

The biomass burning estimation method used in this study was based on the BlueSky model
developed by the US Department of Agriculture Forest Service and the US EPA. It was designed
to facilitate the production of predictive models for calculating cumulative impacts from smoke

https://wist.echo.nasa.gov/api/
https://wist.echo.nasa.gov/api/
http://cdp.ucar.edu
http://dss.ucar.edu/datasets/ds083.2/
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on AQ, and from forest, agricultural, and range fire emissions [34,35]. In this study, we decided to
use Fuel Characteristic Classification System (FCCS) data for three fuel loadings mapped in BlueSky,
as they provided a more detailed fuel classification structure compared with other database options.
Total fuel consumption was estimated using the CONSUME model (which outputs fuel consumption
and emissions by combustion phase), and emissions were calculated based on the BlueSky emissions
production model. The domain for our biomass emissions inventory covered not only Asia, but also
Siberia and parts of central Asia, as these regions have histories of large-scale fires that can affect our
target region.

To generate fire and fuel loading information, we used the MCD45A1 MODIS product [36],
which provides fire data (Burned-area Product (BAP)) for fuel-loading calculations, as well as land
cover information for biomass classification. BAP information is delivered with a relatively high (daily)
temporal resolution and medium-scale (500 m grid) spatial resolution; each fire event is represented
by one polygon, which contains the number of burned-area pixels detected (total area burned),
date of burning, and location. Such polygons were used as inputs for fire event plume-rise calculations
and for biomass-burning emission calculations.

We created a new fuel map (using the MODIS land cover data) for the fuel loading process [37,38],
and daily emission estimates from each fire were calculated using this process. Emissions from biomass
burning were then estimated for 2008 using the developed modeling framework. We linked this
output to the SMOKE processing system to generate input emission data for a three-dimensional,
chemical transport model. By combining these two tools, open biomass fires could be modeled, and fire
emission AQ impact simulations could be improved. The methodology and results associated with the
biomass burning part of the CREATE inventory were described in more detail in Choi et al. 2013 [35].

2.3. Research Framework and Domain Setting

The overall framework for biomass-burning, anthropogenic, and biogenic emissions estimation is
presented in Figure 2.
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Domain, species, and data source information is presented in Table 3. Emissions for 22 countries
(99 regions) were compiled in the CREATE inventory, covering the geographical domain shown
in Figure 3.
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Table 3. Contents and scope of CREATE inventory.

Item Description

Domain 22 countries and 99 regions

Countries and region

Bangladesh(two regions), Bhutan, Brunei Darussalam,
Cambodia, China (32 regions), India (23 regions),

Indonesia (four regions), Japan (six regions),
Democratic People’s Republic of Korea, Republic of
Korea (four regions), Laos, Malaysia (three regions),
Mongolia, Myanmar, Nepal, Pakistan (four regions),

Philippines (three regions), Singapore, Sri Lanka,
Taiwan, Thailand (five regions), Vietnam (two

regions)

Species CO, NOx, SO2, Primary PM10 and PM2.5, VOCs, NH3,
CO2, CH4, N2O

Sector Powerplant, Industry, Residential, Transportation,
Other (54 fuel classes, 201 Sub-sectors)

Source Anthropogenic, Biogenic, Biomass burning

Year
Data Access

2010
http://aisl.konkuk.ac.kr/#/emission_data/create_

emission_inventory
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The main pollutant sources and categories in the CREATE emissions inventory are explained
in Table 4. The methodologies and parameters explained in Section 2 were used to estimate
emissions for CREATE, and in Section 3, emission estimation results have been discussed as follows:
(1) anthropogenic emissions in 2010; (2) natural source emissions; (3) comparisons with other studies;
(4) analysis of uncertainty.
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Table 4. Classification of emissions by source.

Sector SO2 NOx CO * PM10 * PM2.5 NMVOC CO2 N2O NH3 CH4

Anthropogenic Combustion/Non-combustion/
Agriculture, etc. • • • • • • • • • •

Natural
Biomass Burning • • • •

Biogenic • • • • • •

* Primary PM10 and PM2.5.

3. Results and Discussion

3.1. Asian Anthropogenic Emissions in 2010

National and regional emissions summaries for each major species by sector in 2010 are presented
in Table 5. We estimated total Asian emissions for 2010 as follows: CH4 109.4 Tg, CO 280.5 Tg,
CO2 14.1 Pg, N2O 4.1 Tg, NH3 26.4 Tg, NOx 35.3 Tg, PM10 37.4 Tg, PM2.5 26.7 Tg, SO2 46.0 Tg,
and VOC 45.2 Tg—with the emission distribution in each Asian regional group shown in Figure 4.
E. Asia contributed between 53% and 77% of the total for all Asia, and China’s emissions were
predominant in not only E. Asia but also across the entire Asia region. S. Asia contributed
approximately 25%, on average, and its emissions were dominated by those from India, which made
the second-largest contribution to total Asian emissions, following China. S. E. Asia contributed >15%
to the total VOC and CO emissions and ~10% of the other pollutant totals. Apart from India,
the other S. Asian countries contributed <5% of the emissions of most pollutants, although these
other S. Asian countries contributed approximately 10% of the agriculture-related pollutants total
(NH3, CH4, and N2O).

Sectoral emission totals for 2010 for Asia and each region are shown in Figures 5 and 6 respectively.
For SO2, large contributions from coal-fired power plants and the manufacturing industry predominated,
with power (47%) and industry (42%) being the largest source sectors in Asia. The figures showed that
the power sector was the largest emitter (>50%) in China, India, and other South (OS) Asia, while the
industry sector was the largest contributor in S. Korea and Japan. For NOx, the inventory showed that
the power, transport, and industry sectors were important source sectors in all regions. Contrary to
SO2 emissions, other East (OE) Asia and S. E. Asia both accounted for >10%, through the contributions
made by their transportation sectors. China and India showed relatively low transportation sector
contributions compared with the other regions due to the overwhelming size of their power
sector contributions.

For PM2.5, domestic biofuel and coal consumption was high in India, OS Asia, and S. E. Asia,
which explained why the residential sector was the dominant PM2.5 emissions contributor, while in
S. Korea and Japan the industry and transportation sectors were dominant. For CO, the power sector
contributed less than it did to other combustion-related species; this reflected the concept that CO is
mainly emitted from incomplete combustion, and power plants generally have higher combustion
efficiencies than those of either smaller industrial facilities or residential cooking and heating equipment.
The data showed that residential sectors were the major CO emitters in most regions, except in S. Korea
and Japan. S. Asia, including India, made higher residential sector contributions than other regions,
while emissions from transportation were the largest contributor in Japan and S. Korea.

For VOCs, industry, including solvent sources, was the largest source sector in China, S. Korea,
and Japan, and was an important source for all VOC species. The residential sector was also a major
CO and VOC contributor, with the exceptions of S. Korea and Japan—mainly as biofuel use is very
limited in these countries, which focus mainly on gas fuels in the residential sector, in line with the
National Institute of Environmental Research (NIER) 2013 [39], and as reported in Ohara et al. [1].
Transportation is an important CO and VOC source sector, especially in S. E. Asia, due to the high
numbers of two- and three-wheeled transportation formats there, as reported in F. Posada et al. [40].
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NH3, NOx, SO2, and OC emission maps, for 2010, are presented in Figure 7, at a 0.1◦ × 0.1◦

grid resolution. These maps show quite clearly that the Indian Indo-Gangetic Plain and the Chinese
east coast were high emission areas for all pollutants in 2010. SO2 emissions from the Chinese east
coast and the central west coast of India were very high, while high NOx emission regions were widely
distributed across S. Korea, Japan, China, and India, and around the S. E. Asian megacities. In China,
high emission regions included the Northeast and the Yangtze and Pearl River deltas.

Table 5. Anthropogenic Emissions of Asia by region (Unit: Gg/year, CO2: Tg/year).

Region CO NOx SO2 PM2.5 VOC NH3 CO2 CH4 N2O

China (PRC) 168,698 21,211 29,855 14,969 21,913 13,492 8611 46,779 2001
Korea(south) 837 1094 402 111 850 269 585 1247 28

Japan 4188 1701 614 175 1414 308 1249 1337 98
Mongolia 64 58 73 19 20 94 8 316 31

Korea (North) 1462 319 318 281 272 80 103 618 16
Taiwan (ROC) 1414 440 139 49 402 121 261 568 18
E. Asia total 176,663 24,823 31,427 15,603 24,870 14,363 10,817 50,866 2192

Brunei 36 16 12 3 41 29 7 62 2
Indonesia 21,019 1578 1632 1539 4121 830 430 8534 238
Cambodia 799 60 28 75 125 74 5 528 10

Laos 357 27 21 32 99 56 4 241 5
Myanmar 2221 82 32 221 337 340 13 2078 49
Malaysia 3239 519 234 151 936 125 208 1010 35

Philippines 3526 316 609 206 883 249 90 1628 54
Singapore 171 129 130 8 77 23 68 53 38
Thailand 3432 859 552 354 907 259 277 2799 72
Vietnam 6240 398 373 604 1017 415 113 3005 82

S. E. Asia Total 41,041 3984 3623 3193 8544 2400 1213 19,937 585

Bangladesh 4770 183 154 486 745 599 44 3866 30
Bhutan 155 9 6 13 29 31 2 104 5
India 47,648 5548 9508 6163 9495 7162 1850 26,975 1002

Sri Lanka 1049 57 67 104 178 44 11 406 12
Nepal 1967 36 47 188 275 189 7 1015 32

Pakistan 7191 688 1132 925 1053 1568 191 6334 227
S. Asia Total 62,780 6521 10,914 7879 11,775 9593 2104 38,699 1308

Total 280,485 35,327 45,963 26,675 45,190 26,356 14,135 109,502 4085Sustainability 2020, 12, 7930 9 of 25 
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We analyzed pollutant-to-pollutant ratios to understand regional emissions characteristics.
Anthropogenic CO2 emission is a good indicator for energy use whereas air pollutants emissions
are good indicators for combustion efficiency (CO) and strength of environmental policy-technology
measures (NOx, SO2). Ratio analyses allow control levels to be deduced.

It was apparent from review of the data mapped in Figure 8 that the SO2/CO2, NOx/CO2, CO/CO2,
and PM2.5/CO2 emission ratios were lower in S. Korea and Japan than in other regions. This perhaps
reflected the improved emission control measures—such as FGD devices, for SO2 control, and selective
catalytic reduction (SCR) technologies for NOx control—operating there. The most significant regional
differences were observed for the CO/CO2 ratio. CO emissions result from low combustion efficiencies
in the residential sector. Since solid fuels, such as coal or biofuel, are rarely used for cooking and
heating in a residential sector, S. Korea and Japan have low CO emission levels from this sector, with the
industry and transportation sectors providing the major CO emission sources in these two countries.
In contrast, coal and biofuels provided a high total energy consumption share in the residential sector
in S. E. Asia, O.S Asia, and India.
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We evaluated the CREATE emission inventory by region, using per-capita and GDP metrics,
as population and GDP are major driving forces behind anthropogenic emissions, making these
parameters good indicators for emission intensity evaluation. GDP figures provided by the World
Bank (in USD), as constant purchasing power parity (PPP) [41], were used, and we compared the top
four CO2 emitters in Asia for the purposes of this analysis.Sustainability 2020, 12, 7930 11 of 25 
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Review of the estimates shown in Figure 9 indicated that China’s emission per GDP unit was the
highest for most pollutants, with the exception of NH3, with its NOx and SO2 emissions per GDP unit
being noticeably high, which might indicate higher combustion-related activities in various sectors
including power generation and industry. For NH3, India was the highest emitter per GDP unit,
which was probably reflected a higher level of agricultural and livestock activities. Japan exhibited the
lowest emissions per GDP unit for all pollutants, except NOx, followed by S. Korea.

The data showed quite clearly that S. Korea and Japan had low air pollutant emissions per GDP
unit—even with high economic activity—demonstrating that effective emissions control technologies
were more often applied in these two countries. This can also be seen in the fact that differences
in CO2 per GDP unit for each country were significantly less than the differences apparent for
other pollutant emissions, as CO2 emissions are mostly dependent on fuel use, rather than on
control measures.

Economic development status and industry roles within the global supply train is also a major
factor for the differences of ratio. The manufacturing industries with higher energy use and heavier
pollution generation tend to migrate from more developed countries to the developing countries to
avoid more stringent regulations.



Sustainability 2020, 12, 7930 12 of 26Sustainability 2020, 12, 7930 12 of 25 

 
Figure 8. SO2/CO2, NOx/CO2, CO/CO2, and PM2.5/CO2 emission ratios by region (S.KOR = South Korea; 
CHI = China; O.E.Asia = Other East Asia; S.E.Asia = Southeast Asia; IND = India; O.S.Asia = Other 
South Asia), (X-axis: country or region, Y-axis: emission ratio). 

 
Figure 9. 2010 emissions divided by GDP (as purchasing power parity (PPP)). 

Figure 8. SO2/CO2, NOx/CO2, CO/CO2, and PM2.5/CO2 emission ratios by region (S.KOR = South Korea;
CHI = China; O.E.Asia = Other East Asia; S.E.Asia = Southeast Asia; IND = India;
O.S.Asia = Other South Asia), (X-axis: country or region, Y-axis: emission ratio).

Regional per-capita emissions comparisons, prepared using population data obtained from the
World Bank (https://data.worldbank.org/indicator), have been illustrated in Figure 10. The legends
O.E.A (for other E. Asia), O.S.A (for other S. Asia), and S.E.A (for S. E. Asia) indicate where the average
values represent regional groups. Unlike the per-GDP emissions, S. Korea and Japan show high
per-capita NOx and VOC emissions, with the high S. Korea emissions (compared with other regions)
representing the outcome of higher per-capita energy use—in applications such as more cars and
industry—which reflects its more advanced economic development. For SO2 and PM2.5, China showed
the highest per-capita emissions, while for NOx and NMVOCs China showed levels similar to those of
S. Korea and Japan. India showed low per-capita emission levels for all pollutants.

Future per-GDP and per-capita emissions analyses would be expected to show noticeable value
changes due to both the ongoing rapid economic growth in India and S. E. Asia and the significant
emission reductions achieved by Chinese emissions control policies.

https://data.worldbank.org/indicator
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3.2. Natural Emissions

3.2.1. Biogenic Emissions

Monthly mean biogenic emission data for nine major species—isoprene (C5H8),
monoterpene (C10H16), acetaldehyde (CH3CHO), carbon monoxide (CO), ethylene (or ethene) (C2H4),
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ethane (C2H6), formaldehyde (CH2O), methanol (CH3OH), and toluene (C7H8)—were estimated
for Asia, for 2009, using MEGANv2.04, on a 0.1◦ × 0.1◦ grid. Annual totals for these species are listed
by country in Table 6.

Table 6. Biogenic emissions across the countries in Asia (unit: Tg/year).

Isoprene (C5H8) Monoterpene (C10H16)

S. Korea 0.20 0.07
N. Korea 0.18 0.06

Japan 0.57 0.31
Taiwan 0.15 0.05

Mongolia 0.28 0.09
China 9.99 3.74
Laos 1.91 0.50

Thailand 3.31 0.90
Vietnam 2.06 0.62

Myanmar 5.83 1.40
India 12.41 2.67

Philippines 3.25 0.47
Bangladesh 1.05 0.19

Bhutan 0.05 0.02
Brunei 0.23 0.03

Cambodia 2.15 0.51
Indonesia 33.15 5.86
Malaysia 7.63 1.20

Nepal 0.45 0.11
Pakistan 1.73 0.22

Singapore 0.01 0.00
Sri Lanka 0.56 0.12

Total 87.14 19.133

The biogenic emissions distribution for each Asian regional are shown in Figure 11,
which shows that, in contrast to anthropogenic emissions, S. E. Asia contributed the most, emitting from
41 to 68% of the Asian total, while E. Asia made the smallest contribution.

For isoprene (C5H8), which accounts for the largest share of vegetation VOCs, the top emitters
were Indonesia (33.1 Tg/yr), India (12.4 Tg/yr), China (10.0 Tg/yr), Myanmar (7.6 Tg/yr), and Malaysia
(5.8 Tg/yr), followed by the rest of Asia. These five countries accounted for 79% of the Asian biogenic
isoprene emissions total.

The top emitters for monoterpene (C10H16), which contributes significantly to secondary fine
particulates production through photochemical reactions with isoprene (C5H8), were Indonesia
(5.9 Tg/yr), China (3.7 Tg/yr), India (2.7 Tg/yr), Myanmar (1.4 Tg/yr), and Malaysia (1.2 Tg/yr),
with these five accounting for 77% of the Asian biogenic monoterpene emissions total (Figure 12).

As can be seen in Figure 13, biogenic emissions showed seasonal variations in response to
the differing environmental conditions, such as temperature, solar radiation, and precipitation.
Figure 14 indicates that isoprene emissions peaked in June, while monoterpenes peaked in July–August.
Emissions of both isoprene and monoterpenes were approximately 65% higher in the hot season
(April–September) than they were in the cold season (October–March), mainly because their causal
factors (such as temperature, solar radiation intensity, and plant distribution density) also peak
in summer.
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As can be seen in Figure 13, biogenic emissions showed seasonal variations in response to
the differing environmental conditions, such as temperature, solar radiation, and precipitation.
Figure 14 indicates that isoprene emissions peaked in June, while monoterpenes peaked in July–August.
Emissions of both isoprene and monoterpenes were approximately 65% higher in the hot season
(April–September) than they were in the cold season (October–March), mainly because their causal
factors (such as temperature, solar radiation intensity, and plant distribution density) also peak
in summer.
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3.2.2. Biomass Burning Emissions 

Location emissions estimated using MODIS burned-area data (MCD45A1), 
https://ladsweb.modaps.eosdis.nasa.gov/ [42]) are shown in Figure 14, where we have summarized 
January, April, July, and October data as representatives of the four seasons to help explain both the 
regional and seasonal nature of biomass burning event distribution.  

In winter (as represented by Jan. in Figure 15), fewer fire events or burned areas were seen than 
in spring (April), with those that did occur located south of 25° N, in S. Asia, S. E. Asia, and southern 
China, and none seen above 30° N. 
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burned areas were much larger in April than they were for July, while for fall (October), the burned 
area was again observed to be rather high for S. E. Asia. This burned area seasonality generally 
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Figure 15 shows that the area burned in spring accounted for 60% of the total. In Asia, the lowest 
total combustion area occurred in summer (June–August), most likely due to the influence of 
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peaking in May in E. Asia, and February in S. E. Asia. In S. Asia, significant areas of burning were 
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3.2.2. Biomass Burning Emissions

Location emissions estimated using MODIS burned-area data (MCD45A1), https://ladsweb.
modaps.eosdis.nasa.gov/ [42]) are shown in Figure 14, where we have summarized January, April, July,
and October data as representatives of the four seasons to help explain both the regional and seasonal
nature of biomass burning event distribution.

In winter (as represented by Jan. in Figure 15), fewer fire events or burned areas were seen than in
spring (April), with those that did occur located south of 25◦N, in S. Asia, S. E. Asia, and southern China,
and none seen above 30◦ N.

Compared with other seasons, in spring numerous fire events were apparent, not only in Asia but
also in southern Siberia, while in summer (July), the fewest biomass burning events and the smallest
biomass burning area occurred. Comparing spring with summer (April and July), the burned areas
were much larger in April than they were for July, while for fall (October), the burned area was again
observed to be rather high for S. E. Asia. This burned area seasonality generally aligned well with
previously published findings [43].

Figure 15 shows that the area burned in spring accounted for 60% of the total. In Asia, the lowest
total combustion area occurred in summer (June–August), most likely due to the influence of monsoon
cloud formation and significant rainfall. Overall, the largest burned area was seen in spring, peaking in
May in E. Asia, and February in S. E. Asia. In S. Asia, significant areas of burning were observed,
compared with the other two Asian regions, especially in May. Given that the most populous
areas are found in the mid-latitudes, direct human health impacts from biomass burning are likely
to be the highest there. In Siberia and Kazakhstan, burned areas regularly appear in summer,

https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
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contrary to more southern Asian locations, with large and intense burning detected over April and May,
concentrated mostly in the Siberian region.

1 
 

 
 
 
 

 

Figure 15. Monthly burned area variation, by region.

2009 CO, PM2.5, and nonmethane hydrocarbons (NMHC) emissions from biomass burning are
summarized in Table 6, by subregion, total annual Asian emissions, and by emissions totals for all
Asian regions.

Total 2009 Asian CO emissions from biomass burning were 37.6 Tg, with S. Asia contributing
61% (23 Tg), S. E. Asia 28% (10.4 Tg), and E. Asia 11% (4.1 Tg). Total Asia emissions accounted for
59% of the study area, with S. Asia being the largest contributor, not only in Asia but across the
whole domain. Siberia made the second highest contribution, followed by S. Asia, which accounted
for >30% of the whole domain. E. Asia made the smallest contribution at 5–7% of the whole
domain (Table 7). As illustrated in Figure 16, these results correlated strongly with the burned areas
and fire event numbers.

Monthly sub-regional CO emissions from biomass burning are shown in Figure 17, which shows
that in the target year these emissions were concentrated between February and May in Asia,
while becoming significantly reduced in June and August, due to weather conditions such as
rainfall and humidity. In the fall, from September to November, biomass burning emissions
increased again, although at a lower level than in spring. Overall, the highest emissions occurred in May,
presumably from S. Asian locations such as India, while Siberia and S. Asia contributed approximately
49% and 44%, respectively. In April, ~75% of the emissions appeared from the Siberian region,
and in Asia, as in May, the highest contribution came from S. Asia, at ~20%, which was lower than May.
From January–March, Siberian contributions were rare, with most emissions occurring in Asia. Overall,
these monthly emission variations showed patterns very similar to those seen for both the areas burned
and fire event numbers.

Table 7. Summary of emissions from biomass burning for the year 2009 (Tg/year).

East Asia Southeast Asia South Asia Siberia Kazakhstan Total

PM2.5 0.5 1.2 2.7 2.4 0.6 7.3
CO 4.1 10.4 23.0 22.8 4.7 65.0

NMHC 0.1 0.3 0.8 0.7 0.2 2.2
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Figure 16. Sub-regional fire event numbers (blue bars) and total burned areas (red line).Sustainability 2020, 12, 7930 18 of 25 
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3.3. Comparisons between This Study and Other Emissions Datasets

To better understand differences among anthropogenic emission estimates, we reviewed total
emissions estimate differences for Asia, calculated for the same base year as this study. To do this,
we compared the CREATE inventory outcomes with those produced by the REAS v3.1 (Regional
Emissions Inventory in ASia v3.1) [44], MICS (the Model Inter-Comparison Study for Asia) [45],
ECLIPSE v5a [46], and EDGAR v4.3.2 [47] inventories (Figure 18). We found that the all-Asia CO, SO2,
and NH3 emissions estimates from CREATE showed a range similar to those of the other inventories,
although NOx and VOC estimates averaged 26% and 21% lower, respectively, and the CREATE PM2.5

estimates were 17% higher. The largest difference in the emissions ranges, of 80–139% across the
various pollutants, was found between the CREATE and MICS inventories. We found that the ECLIPSE
model produced values that were the closest to CREATE; this was not unexpected, as both inventories
were based on the GAINS model, had the same source categories and used the same emissions factors,
with the exceptions of China, N. Korea, and S. Korea.
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In Figure 19, we can see a comparison between CREATE inventory emissions for China with those
from previous studies, with CREATE represented by the black bar with a check pattern and other
inventories indicated by variously marked dots. The figure shows that for CO, the CREATE results
were 1–14% lower than those from the other inventories, apart from EDGAR, whose CO emission
estimate were much lower (37–45%) than those from the other studies. For SO2, the CREATE estimate
was high, at 29.85 Tg, which was 4–17% above estimates from the other inventories, apart from that
from Lu et al. [48], which was 3% lower.
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Figure 19. Comparing Chinese 2010 anthropogenic emission estimates using various emission
inventories (unit: Tg/yr; * indicates that CO values have been divided by 10). (source: MICS [45],
REAS [44], EDGAR [47], Wang et al. [51], ECLIPSE [46], Y.Zhao et al. [52], Y.Xia et al. [53], B.Zhao et al. [14],
Globemiss [54], Y.Kang et al. [49], R.Wu et al. [55], P.Xu et al. [50], Z.Lu et al. [48])).

We found that CREATE NOx emission estimates were 11–37% lower than those from the
other inventories, exhibiting the lowest values. There were greater differences between the various
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inventories for NOx, VOC, and NH3 than there were for the other emission species, while the MICS
CO and SO2 emissions estimates showed good agreement (within 3%) with those from CREATE,
although large differences were apparent between the two inventories with respect to their NOx and
VOC emissions estimates. These latter differences may be showing how local NOx and VOC studies
captured Chinese domestic information that was more accurate and were thus better able to reflect
increases in car use, industrial source emissions, and solvent usage there.

We found that the ECLIPSE VOC emission estimate was in very good agreement with that
of CREATE (within 0.3%), with all other emissions estimates also in good agreement (within 5%).
Compared with inventories other than ECLIPSE, the CREATE PM2.5 emission estimate was much higher.
While for NH3, two distinct groups were apparent, with REAS, ECLIPSE, and EDGAR showing relatively
good agreement with CREATE (all <8% difference), and MICS, Kang et al. [49], and Xu et al. [50],
showing much larger differences (all >21% difference). There were also differences of >30% between
these two groups.

A comparison between the biogenic emission estimates calculated in this study with previously
published estimates is presented in Table 7. The annual Asia isoprene estimate from CREATE was
87.1 Tg, which was between −4% and 39% of the other studies. The CREATE isoprene emission
estimate was closest to those published in Stavrakou et al. (2014), and the differences for China were
smaller (within 8%) than they were for the rest of Asia. The main reason for the larger differences might
be either the use of different model frameworks or different MEGAN versions for emission calculations.
Vegetation information (such as vegetation cover and leaf area), meteorological data, and EFs make
up the input parameters for biogenic emission modeling, and the specific algorithms for BVOC
compound species relate their emissions to surrounding weather conditions. This suggests that there
might be differences in EFs and estimation algorithms between each model. We also noted that
different target years were used, suggesting that input weather conditions and vegetation information
may have differed, which could give rise to emissions discrepancies. Wang et al. [56] reported that
meteorological conditions, particularly temperature and solar radiation, could affect isoprene estimates
by up to 27% and 51%, respectively.

For monoterpenes, our emission estimates were approximately 18% and 23% higher for Asia
and China, respectively, compared with the other inventories, although the China monoterpene
emission estimate in Klinger et al. (2002) was in very good agreement (within 0.1%) with that achieved
using CREATE (Table 8).

Table 8. Inter-comparison of biogenic emissions for China and Asia with other studies [unit: Tg/yr].

Isoprene [Tg/yr] Asia China Monoterpene [Tg/yr] Asia China

Guenther et al. (2012) [29] 62.7 9.3 Guenther et al. (2012) [29] 16.2 2.8
Guenther et al. (2006) [28] 81.7 10.9 Y. Fu et al. (2012) [57] 3.0

T. Stavrakou et al. (2014) [58] 90.4 9.3 Klinger et al (2002) [59] 3.7
Y. Fu et al. (2012) [57] 10.9 This study (CREATE) 19.1 3.7
This study (CREATE) 87.1 10.0

An inter-comparison between biomass burning emission estimates from this study with those
from the Global Fire Emissions Database, Version 4 (GFEDv4) inventory [60,61] and Kaiser et al. [62]
was used. The GFEDv4 estimates consist of an average for 2000–2009, while those from Kaiser et al.
cover the period 2003–2008. The estimates from this study were higher than those from GFEDv4 and
lower than those in Kaiser et al., with the CO emission estimates being 5% higher than those in GFEDv4,
and 9% lower than those in Kaiser et al. For PM2.5, our emission estimates were approximately 10%
and 3% higher compared with GFEDv4 and Kaiser et al., respectively. Our result agreed within ±10%,
compared to other inventories.
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3.4. Uncertainties and Limitations

The emissions used to derive bottom-up anthropogenic inventory estimates were assembled from
a variety of human statistics data sources. Generally, such documentation is published with a time lag
of several years, while the pace of change in many Asian countries has been increasing, leading to rapid
economic development and increasing efforts at mitigating air/climate pollutant emissions. These rapid
emission changes make it difficult to maintain emission input statistic currency and to reflect the
rapid changes happening in Asia—which in turn leads inevitably to a degree of uncertainty in the
representativeness of data. In addition, some countries—such as N. Korea—publish very limited
amounts of data, so that, overall, data reliability constitutes a source of uncertainty and limitation for
this study.

Biogenic emission estimation is highly dependent on vegetation-related parameters and
weather conditions. As mentioned in Section 3.3, using different modeling frameworks or versions
(of MEGAN, for example) can cause discrepancies in emission calculations. Henrot et al. [63] also
noted that most discrepancies between model calculations could be attributed to meteorological
parameter inputs and to LAI and PFT distributions, which can be the source of major uncertainties.
This implies that input parameters need to be subjected to appropriate sensitivity testing and should
be sampled over longer time periods where possible to support more accurate estimate calculations.
Rapid economic development and urbanization throughout Asia continue to cause landcover and land
use changes, which also add to emission estimate accuracy uncertainty.

Biomass burning emission estimates can be strongly affected by both fire observation information
and burned area size estimates. This means that natural source emissions, from both biogenic
sources and biomass burning, include uncertainties related to both meteorological variables and to
remote-sensing data uncertainty. Satellite observations are sometimes affected by cloud contamination,
for example, as described in Streets et al. [43].

Anthropogenic emissions inventory was estimated based on annual energy statistics,
policy measures, and emissions factors whereas natural emissions were estimated using comprehensive
emission models with a much more diverse set of input data. Some of the input parameters of
the natural emission models were not available for the same period as the anthropogenic emission
input data. The base year of natural emissions is a year older than anthropogenic because of the data
limitation during the development period. We will use the same base year for every emission source in
our new development of the inventory.

These issues will form part of our future research focus, which will aim to update and improve
the work described here. We need to continue our evaluation experiments by including more ambient
data observations, and by updating and improving CREATE emission data, in order to build on the
outcomes achieved so far in this study.

3.5. Data Availability

We have launched a data download platform for the CREATE inventory at http://aisl.konkuk.ac.kr/
#/emission_data/create_emission_inventory. Monthly gridded emission data sets for each major sector,
at 0.1◦ × 0.1◦ resolution for Asia, and 3 × 3 km resolution for S. Korea, can be downloaded for all species.
Data provenance information and a summary table of annual emissions by sector can also be accessed.

4. Summary and Conclusions

We developed a new regional emissions inventory, named CREATE (Comprehensive
Regional Emissions Inventory for Atmospheric Transport Experiment). This was designed as
a comprehensive emissions framework, including both anthropogenic, biogenic, and biomass
burning emissions estimates. Since the emissions in CREATE were estimated based on human
and natural activities, both static databases and dynamic models had to be broadly applied in
the framework, and then integrated into the final inventory database. The target species in this

http://aisl.konkuk.ac.kr/#/emission_data/create_emission_inventory
http://aisl.konkuk.ac.kr/#/emission_data/create_emission_inventory
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work included major air pollutants and GHGs, with estimates calculated for both national and
regional emissions.

Anthropogenic emissions were developed using the GAINS-Asia framework, which is an
integrated policy assessment model. Major activity data were sourced from official national or
international statistics to estimate anthropogenic emission totals in CREATE, while EFs and data on
the degree of control equipment penetration (such as FGD and SCR) were updated using published
literature and government reports.

Our final estimates for Asian total anthropogenic emissions in 2010 were as follows: CH4—109.4 Tg;
CO—280.5 Tg; CO2—14.1 Pg; N2O—4.1 Tg; NH3—26.4 Tg; NOx—35.3 Tg; PM10—37.4 Tg;
PM2.5—26.7 Tg; SO2—46.0 Tg; and VOCs—45.2 Tg.

Estimates for nine biogenic emissions in 2009 were calculated, using the MEGAN
modeling framework. The model estimates for isoprene emissions in Asia were 87.1 Tg/yr,
with 19.3 Tg/yr estimated for monoterpenes. Indonesia, China, and India together accounted for 64%
of Asian biogenic emissions.

Biomass-burning emissions in the CREATE inventory were calculated for 2009 using the
BlueSky model. We adapted this model for Asia, developing a BlueSky-Asia modeling system,
combining this with SMOKE-Asia [7], which is an emission processing system. Modeling outputs were
generated as speciated, three-dimensional, model-ready input data for AQ modeling. Total Asia CO
emissions from biomass burning were estimated to be 37.6 Tg in 2009; S. Asia contributed 61% (23 Tg)
of this total, S. E. Asia 28% (10.4 Tg), and E. Asia 11% (4.1 Tg). We found that the results were strongly
influenced by the amount of area burned and by the number of fire events.

CREATE emissions estimates were established for anthropogenic, biogenic, and biomass burning
emissions using the same domain, resolution, and period. Final inventory estimates were based on
activities and other parameters, which formed fundamental information for the resulting emissions.
These characteristics allow CREATE emissions to be applied to many research areas, such as
future emission projections, policy-based reduction scenarios, and CC-driven emissions changes.
Since SMOKE-Asia, MEGAN, and BlueSky-Asia are either members or linked components of the
CREATE inventory framework, its format could be easily adapted to chemical transport modeling.
It also can be useful for N. E. Asian studies, as its base year (2010) was an important turning point in
emissions reduction, as noted in Woo et al. [64] and Zheng et al. [65].

We believe that our work successfully fulfilled our objective, which was to develop an inventory
scheme that provides better support for AQ modeling and which can be operated in concert with the
SMOKE-Asia emissions processing system. We hope that the CREATE emissions inventory presented
in this paper will contribute to a better understanding of regional air pollution and its influence on
human health and climate. We also hope it will provide a basis for future environmental policies and
will contribute to international cooperation in the field of regional policy analysis and support. We plan
to continue updating and improving the CREATE inventory framework developed in this study.
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