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PREFACE

This paper is intended as a contribution to the research
program being carried out by the Regional Development Task at
the International Institute for Applied Systems Analysis. The
program is concerned with the development of a model system
for application in regional development planning. Although
work on the model system is already at an advanced stage,
several models have yet to be developed, among which is a
settlement=system model for a rural region.

The settlement network is a hierarchical system, hence its
activities should be considered within hierarchical framework.
So far, such an approach to the location of economic activities
is at an initial stage.

In this paper several models of the optimal location of
economic activities are reviewed. The models are distinguished
by their concern for location problems in hierarchical settle-
ment systems in rural regions. They have been selected from
the existing literature on the basis of their potential for
further research.
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THE OPTIMAL LOCATION OF ECONOMIC ACTIVITIES
IN A HIERARCHICAL SETTLEMENT SYSTEM IN A
RURAL REGION

Ryszard Domanski

INTRODUCTION

The development of agriculture and the rural demographic
structure brings about many adjustment processes. For example,
the general acceptance of technological advances in agriculture
increases the demand for machinery, fertilizers, chemicals,
construction materials, technical services, etc. New technology
contributes to a growth in agricultural production, which in
turn stimulates the development of the transportation system

and the food-processing industry in rural areas.

Nowadays rural population requires many services: shops,
education, health care, repair facilities, entertainment, and
public administration. Some of the services that take on a
material form can be purchased in urban centers and trans-
ported to rural areas for consumption, for example records and
television sets. However, most services are consumed in urban
areas. It is, therefore, important to ensure that the rural

population has access to these centers.

In developed countries, rural-urban migration has led to
the depopulation of rural areas. The rate of this process has

now slowed down and in some cases the population has remained
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constant or even increased through in-migration. On the other
hand, in less developed countries rural-urban migration is still

considerable.

The efficiency of the economic activities in the settlement
system depends on the settlement size, its spatial distribution,
and its hierarchical pattern. A system with large, spatially
concentrated centers can take advantage of economies of scale,
thereby reducing unit production costs. At the same time,
however, it requires increased transportation. In a system
with small, spatially dispersed centers, the enterprises bear

higher production costs but lower transportation costs.

The adjustment processes are accompanied by investments in
new food-processing plants, services, housing projects, and
roads. At this stage, the problem of location arises: How
should the new activities be distributed within the settlement

system?

In this paper an attempt is made to analyze the distribution
problem by drawing upon a selection of the existing literature.
However, it is not intended to be a complete record of research
on locational theory, rather it is an appraisal of the most
significant contributions to the field. The selection was based

on three considerations:

-- the adaptability of the methodologies to the problems
of rural settlement systems;

-- the importance of the hierarchical framework when
dealing with problems of rural settlement systems;

-— the possibilities for further research offered

by the various contributions.

ECONOMIES OF SCALE

Production and transportation costs are the most frequently
applied criteria for choosing the optimal solution in mathemat-
ical programming. Their size depends, among other things, on
the hierarchical structure of the settlement system. On a
higher level of the hierarchical structure, large enterprises
and settlements occur. Lower levels are formed by small enter-
prises and settlements. The levels in the hierarchy are reflec-

ted in the levels of costs.



In the long run, the relationship between average cost
(y/x) and level of output (x) is usually described by means of

the function:

£ = a - bx + cx2 ’ (1)

where a, b, ¢ are constants.

When presented in graphic form, it gives the familiar
U-shaped average cost curve. The downward bend represents a
lowering of the average cost obtained because of the decrease
in the unit fixed cost with the increase of output. At higher
levels of output, there are also economies from labor special-
ization. The minimum point of the curve determines the optimal
scale of output, while the upward bend represents the increase
in average cost occurring when output grows beyond the optimal
level. This portion of the curve is, however, disputable. It
is argued that the optimal level of output rises with technolog-
ical and organizational advances, which means that the minimum
point shifts to the right and the U-shaped curve is transformed
into a curve consisting of a downward bend and flat portion
(Figure 1). The latter curve may be described mathematically

as:
i = axb . (2)

Changes in the average cost of output on various levels of
the settlement hierarchy are reflected in the changing values

of multiplier a and exponent b.

SETTLEMENT HIERARCHY

Compared to the standard location problem, the problem of
locating economic activities within a hierarchical system shows
additional complications. The model of a hierarchy of centers
developed by Tinbergen (1967) is helpful for gaining an under-
standing of these complications. It is the work to which other

researchers dealing with this subject usually refer.




Costs

Output
Figure 1. Changes in cost functions according to output levels.

Tinbergen assumes a closed national economy of regular form
evenly distributed with farms except in urban areas. There are
H industries, each producing final products indicated by
h (tqh=20,1,...,H). The term h denotes the rank of the industry,
and the case h = 0 represents agriculture. The demand for product
h, which is equal to ahY (Y being the country's income, and ay
being a given demand ratio for product h), is satisfied by ny

enterprises, whose size is supposedly optimal.

The industries have been ranked according to the number of

firms they include in such a way that:

>n, ... >n . (3)

The lowest rank represents the industry with the largest

number of firms, and on the highest rank there is only one firm.

Tinbergen's model of the size distribution of centers has
the following properties:

1. There are H types of centers (h'= 1,...,H), which means
that the number of center types corresponds to the

number of sectoral ranks.



2. In any center of type h', only the industries
of rank h < h' appear.

3. The industries of a rank lower than the
center's type satisfy local demand.

4. The industry of a rank corresponding to the
center's type (h = h') satisfies both local
demand as well as that for the product in the
centers of lower types. There is only one
enterprise of the highest rank in each center

of the given type.

From the assumptions and properties of the model given

above, further characteristics can be determined.

1. The size distribution of centers is expressed

by cumulative income:

Y = aOY , . (4)
a.Y
YO + Y1 = % ' (5)
1
a.Y
O 4+ L.+ YR = 0 . (6)
1 - a, - - a
1 o o o h'

2. The total income of all centers of type h' amounts to:

h' ah,aoY
Y =
(a0 + Ap 141 + ... + aH)(ao + ap, t ...+ aH)
(7)
3. The number of centers of type h' is:
h' 20
n = n.y (77— — )
h 1 a, N
(8)
a
=n|( 0 )
hY fay +ap, g ¥ + ay



4. The average income per center of type h' is:

. h' a. Y
Sh Y h X (9)

Y — T =
nh (a0 + 3 + ... + aH)nh,
Under certain conditions, the model generates an optimal

system of centers based on minimizing total transportation costs.

In the model a relationship between the number of enter-
prises in a sector and its spatial pattern is assumed. If the
number of enterprises in a sector is small, then the sector ap-
pears only in large urban centers. As the enterprises increase
in number, the spatial pattern of the sector changes. They
appear in smaller centers. The sectors with the largest number
of enterprises are located on the lowest level of the hierarchy

of centers.

LOCATION OF AGRICULTURE-RELATED ACTIVITIES

Agriculture-related activities include firms that supply
the inputs to agriculture and that process agricultural output,
for example the fertilizer, food-processing, and leather in-
dustries.

In modeling the spatial distribution of agriculture-related
activities, the firms' minimum production and transportation
costs are usually accepted as the criteria for the choice of
location. Several models may be applied to find the optimal
solution. Let us start with the model elaborated by Ulrich
(1968) .

Ulrich assumes that there are only three possible alterna-
tive distribution systems: a central-city distribution system,
a service-center distribution system, and a local-center distri-
bution system. In the first case, the firm or firms are loca-
ted only in the central city of the rural region. The system
generates the highest transportation costs and the lowest pro-
duction costs. In the second case, firms are placed in all
services centers (of which there are eight), and in the central
city. Such a distribution gives rise to lower transportation

costs, but at the same time, however, it may increase production



costs. In the third case, firms are dispersed in all local
centers (of which there are 72), in the service centers, and

in the central center (in total 81 centers).

Each of the three alternative distribution systems bears
different production and transportation costs. The average
production cost under the individual system is calculated

using the following equations:

pl = a (x® - x1)bs + c (10)
[ s s s !
b
2 _ & - 2,"s
b
— m _ 3, s
P as(xs Xs) +c , (12)
where
1 2 .
Ps’3Ps + = average production costs for sector s
Py under the first, second, and third

distribution systems, respectively;

a = multiplier in the production cost
function for sector s;

bs = exponent in the production cost
function for sector s;

c = unit cost of output (in dollars) at
the most efficient level of output;

X? = minimum efficient level of output in
sector s;

X; = total output of sector s in the region;

Xg = one-ninth of total regional output of
sector s;

Xg = one-eighty-first of total regional

output of sector s.

The total production cost is a product of the average
production cost in each alternative distribution system and
the total output of sector s.



The total transportation costs for the three alternative

distribution systems are calculated as follows:

1 Sy 1
= + d
T L (U, + k AINF, (13)
18
2 _ 2
T, = ) (Ug + k A)NFy (14)
d=1
6
3 _ 3
Ts = Z (Ug * kgdINFq (15)
d=1
where
T; = total transportation cost for sector s under
the first distribution system;
Ti = total transportation cost for one of the nine
centers under the second distribution system;
Ti = total transportation cost for one of the 81
centers under the third distribution system;
Us = intercept value of the transportation cost
function for sector s, representing loading
and unloading costs;
ks = cost per mile of transporting the output of

sector s;
d = number of miles from the center to the farm;

N_ = number of two-way trips between the center and
the farm for sector s, per yvear;

F. = number of farms at distance d from the central
city (it is assumed that there are no farms
more remote than 18 miles);

F, = number of farms at distance d from a local
center (it is assumed that there are no farms

more remote than 6 miles).

The total costs for the alternative distribution systems

are obtained by adding transportation costs to production costs:



1 1

1,1
Ss = Ts + (PSXS) , (16)
2 .2 . 2.1
S, = Tg + (PsXs) ’ (17)
3 _ .3 3,1
s2 =T, + (PIXg) . (18)

Using these totals, one can determine the distribution system
that minimizes production and transportation costs, i.e. the

optimal system.

This procedure is repeated for each sector related to
agriculture. When all the sectoral distribution systems are
defined, one can calculate the level of output in each center,
superimposing one sectoral system upon another. The outcome of
this calculation can be presented in the form of a four-element
vector. The first element refers to the central-city output,
the second to the service center output, the third to the local-
center output and the fourth to total regional output.

Agriculture-related activities tend to be placed in two
different types of location. Some of its sectors are closely
linked to the location of agricultural resources, others are
not restricted in this way and may be considered as 'foot-
loose' industries. Sugar refineries represent the first
type of sector and agricultural machinery plants represent the

second type.

The different locational tendencies are included in
Gunnarsson's model (1977), in which the idea of a hierarchy of
centers presented earlier by Tinbergen (1967) and Bos (1965)
has been extended. In particular, the idea behind one of the
necessary conditions for the hierarchy of centers, namely
indivisibilities leading to economies of scale, is developed.
This condition is introduced into the model as a constraint on
the output in a center of a foot-loose sector; i.e., output
should not fall below the minimum level at which production is
feasible, as determined by the plant capacity. The model consists
of the following elements:
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Data:

ik = total cutput of a locationally restricted
sector k (k = 1,...,n'"});

ip = total output of a foot-loose sector p
(p = n'+1,...,n);

Ep = capacity of a plant in sector p, correspon-
ding to the minimum level at which production
is feasible (p = n'+1,...,n);

dhh = distance between centers h and h';
@p = constant satisfying the condition ép > ip
(p = n'+1,...,n).
Unknowns:
, ‘
x?h = output of sector i delivered from center
h to h! (h,h' = 1,...,H; i =1,...,n);

xg = output of a foot-loose sector p in center

h (th=1,...,H; p=n'+l,...,n).
Coefficients:

qi = share of center h in total output of a

locationally restricted sector k
I{h

( q, = 1);

h=1 X |

L, = unit cost of transporting product i per
unit of distance; ,

i3 = input of product i in the production of
one unit of product j;

a, = ratio between final demand for sector i
and income (final demand includes the con-

n
sumption of workers ( J o, = 1));
- i=1
aij-faiwj==vij = generalized input-output coefficient
(w is the ratio between value added and
output for sectar j);
1-(aiid-ai:0 = Bi = surplus per unit of output in sector i

after subtraction of internally used out-

put, including employees' consumption.
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The model includes the following equations:

hh' hh' h
BiX: + ) X, = ) - ) v,.x. >0 ,
o o ? h' ji 13
(19)
i=1,...,n .

This equation states that output plus imports must at
least meet local demand and exports in every sector. A
distinction is made between locationally restricted sectors
(1,...,n') and foot-loose sectors (n'+1,...,n). The location
of the restricted sectors' output is assumed to be given and
is defined by the egquation:

h h=
)‘k=quk 7 k=1’.-.’n| . (20)

It has been mentioned earlier that the model accounts
for economies of scale. The following example shows how this

is done. Assume that the output of sector i in center h amounts

to x? > 1000 or x? = 0. This assumption can be presented as:

h

x. = 1000 (21)
l -

A\
o
-

and
h
"Xi 3_ 0 . (22)

The presence or absence of the sector p in center h can be

marked by an integer variable, whose value is either 0 or 1.

Thus, it can be concluded that the assumed level of output

should never fall below the capacity of the plant.

All these considerations relating to economies of scale
can be written as:
h

h - ]
xp + (zp - 1)cp >0 , p=n'+l,...,n , (23)



_xg - (zg - 1)Ep >0 p=n'+1,...,n , (24)
zh
P either 0 or 1 . (25)

The nonnegativity requirements assume the form:

>0 , (26)

h
>0 . 2
X5 2 (27)

The model can be used to determine the output of foot-
loose sectors in centers and the deliveries between centers
such that the total transportation costs are minimized. 1Its

objective function is written as:

1 1
min E 7T SR @ e, h#En . (28)
it *

The model has two weaknesses, one of which is that it
allows the concentration of foot-loose sectors in one large
center. This deficiency does not apply to restricted sectors,
whose output is located in a given place. The numerical
examples given above suggest, however, that a concentration in
one large center occurs only if there is an even spatial
distribution of agriculture. In the case where thé spatial
distribution of agriculture is uneven, this tendency is not

evident.

The other weakness is that the number and location of
centers must be specified. This does not allow the locational
pattern of output to be changed by the formation of new centers.
The model also assumes a closed economy. The weakness of this
assumption, however, may be eliminated by the introduction of

trade into the model.
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The hierarchical structure is more explicitly embodied in
the model of a nodal hierarchy in a network system, developed by
Scott (1971). The network system consists of a given set of nodes,
from which a subset of nodes is selected as locations for some
central facilities. These facilities produce or transmit the
commodities consumed at each node. The set of central facilities
forms a hierarchical system with m levels and each level incurs
different fixed capital costs as well as transportation costs.
The system is organized such that these costs are minimized by
selecting the number and locations of facilities and organizing

commodity flows from facilities to nodes in an optimal way.

The system modeled by Scott has some limitations resulting
from the following characteristics: the levels of the hierarchy
of facilities are functionally distinct; any facility on a given
level may receive (despatch) goods only from (to) the closest
higher level and despatch (receive) goods only to (from) the
closest lower level; the goods transferred from producers to
consumers do not themselves undergo material changes at inter-

mediate levels.

The notations used in the model are given below:

ak = amortized capital cost of any facility at
level k (it is usually expected that
a' > a’ > ... 2 a™);
d?j = minimum cost of transportation in the
given network between i and j per unit of
commodity transported from the facility on
level k (it is usually expected that d?. <
2 m 13 -
dac. ... <£4d..);
ij - 1]
Bk = capacity of any facility on level k;
Dj = final demand for the commodity at node j;
zK _{1 if a facility of order k is built at node i,
1 0 otherwise;
xij = number of commodities delivered to node j from

the facility on level k located at i (solution
variable) ;
M = arbitrarily large number.




The model described above can be stated as follows:

m n n
Minimize 2 = ) ) (akli + ) dk-Xk-) ' (29)
k=1 i=1 j=1 3 ]
subject to
n
k X
X.. < B
j; ij S , (30)
n m
X.. = D.
i£1 1] 3! (31)
n n
y K71 - ¥ ¥ =0 , (32)
i=1 1iJ i=1 J1
k Tk
MAY - Y xi. >0 (33)
i j=1 ij -
k _\1
Vi (34)
K
xij >0 . (35)

The constraints denote that: maximum capacities are not
exceeded; all demands are met; all inputs from higher-level
facilities to any k-level facility located at node j are equal
to all outputs from the latter facility:; whenever any demand,
however small, is made upon a k-level facility at node i, then
a facility is located at that node. The last two constraints

are largely self-explanatory.

The solution of the model identifies the optimal commodity
flows as well as the optimal number and location of the facili-
ties. It is worthwhile noting that the model can be reduced to

a standard transshipment problem. In the latter form its solu-

tion is simpler.



LOCATION OF SERVICES

The service sector also develops in rural settlements,
although more slowly than in urban areas. It is necessary
both for stimulating further growth of agricultural production
as well as for increasing the standard of living of the rural
population. Without a substantial improvement in services, it
would be difficult to keep the population in rural areas at
a size adequate to maintain dynamic demographic and economic

development.

In most countries the introduction of service facilities
in rural areas has been seriously neglected. The need for such
facilities is now urgent, requiring large investments. As the
availability of investment increases, so the problems associated
with the location of services also increase. Investment deci-
sions not only concern the location of individual facilities,
but also the configuration of whole systems. For example: How
should the optimal combination of central-facility locations be
selected from among a number of potential centrally located vil-
lages? How should a given number of central facilities be dis-
tributed so that the maximum distance between all of the users
and the closest facility is minimized? Where should the minimum
number of central facilities be located such that the distance
between the users and the closest facility does not exceed a
given maximum admissible distance? What configuration of given
central facilities maximizes the accessibility of the locations

to users?
Optimal Selection of Key Villages

An attempt was made in Domanski (1980) to simulate the
development process of key villages, conceived as service cen-
ters. The simulation technique applied was not used to evaluate the

means or outcome of development.

We now extend our inquiry to this evaluation problem by
asking the question: What combination of key villages selected
from among a number of villages will be optimal? There is no
optimization criterion that can be considered as fully satis-

factory. As usual in such a situation, we apply some surrogate.
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measure. The total distance traveled or time spent on travel-
ing by the population from dispersed villages to key villages
may constitute such a measure.

A problem of this type belongs to the class of problems
referred to as central-facility location. Hence, to solve the
problem, it may be possible to adapt earlier models of central-

facility location.
The following symbols will be used:

a;, = population of village i (i = 1,...,n);

dij = shortest distance in the network from
village i1 to key village j (3 = 1,...,n;
i# 3J)s
0 if village i is not assigned to key
village j,
i] 1 if village i is assigned to key
village 3j;

m = number of central facilities (key villages).

The problem of selecting key villages consists in
distinguishing m of n villages (m < n) in such a way that the
total distance traveled by the population between i and j is

minimized.

The model of this problem (ReVelle and Swain 1970) can

be written as:

n n
Minimize z = | ) a.d..x.. , (36)
i=1 j=1 t 13 1]
subject to
)
X.. = 1 ’ i= 1!"'In ’ (37)
j=1
xjj I xij ’ i=1,...,n ’

1,¢e.,n , (38)



ii (39)

e o
]
il
3

x.. >0 i=1,...,n ,

ij (40)

J=1,ce.,n .

The first constraint states that each village is assigned
to one and only one key village. The villages assigned to indi-
vidual key villages must form nonoverlapping districts that
cover the whole region. This requirement is particularly im-
portant when key villages are assigned some administrative
functions.

The second constraint states that key villages to which

other villages are assigned must serve their own area.

The third constraint limits the number of central facili-
ties and thus the number of key villages, i.e. villages that

serve themselves.

In the above model, it was assumed that the number of key
villages is given. Such an assumption is justified, since the
number might frequently be defined by a political body rather
than by a scientific method. However, since the creation of key-
villages is costly, the assumed number should be checked from
the economic point of view. First, the program for creating key
villages should be checked against the size of feasible invest-
ments. If we introduce the investment constraint, the model for
selecting key villages, conceived as service centers, will take
the form (Rojeski and ReVelle 1970):

n n
Minimize 2 = § § a.d..x.. ., (41)
i=1 j=1 * *1
subject to
n
y ox.. =1, i=1,...,n , (42)
=1
xjj > ij i=1,...,n ,
- 1,...,1’1 7 (u3)



) I b, 1
f.ox.. + b, a,x., <C , (44)
3=1 J ]3] =1 J =9 1 1D
xij > 33 - X5y for adjacent i-j pairs , (45)
xij >0 , i=1,...,n , (46)
3 =1,¢..,0 ,
where
fj = fixed cost of establishing facility j;
bj = coefficient of increase in variable cost
of facility j;
C = investment limit.

Other notations are the same as in the previous model.

The first constraint requires that the population of each
village be fully assigned. It will be assigned to one key vil-
lage if the solution consists only of zero-one variables (inte-
ger programming), and to n key villages in the event of a non-

integer solution (linear programming).

By the second constraint, the assignment is restricted to
those key villages that serve themselves. This condition, how-
ever, will be enforced only if the solution consists exclusively

of zero-one variables.

The third constraint demands that the total funds expended

do not exceed the investment limit.

The fourth constraint requires that each village be assigned
to the closest key village. If, for example, village A has no

central facility and village B does, the constraint assumes the

form:

X8 2 *sB ~ *an ¢ | (47)
or

X >1-0=1 . (48)
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Location Set~Covering and Maximal-Covering Location Problems

When searching for an optimal network of key villages as
well as for the optimal location of service facilities in an
already established network, it should be determined how well
a particular location configuration fulfills the objectives that
it is supposed to serve. Two measures of fulfillment have
received attention in location models (Church and ReVelle 1974):
total weighted distance or time for travel to the facilities
and maximal service distance; i.e. the distance (or time) that
the user most distant from the facility would have to travel to
reach that facility.

The models presented so far in this section have minimized
the total weighted distance. Now, models applying the concept
of maximal service distance will be presented. Such models can
be proposed particularly for the location of emergency facili-
ties such as fire stations and ambulance depots. The concept of
maximal service distance reflects well both the behavior of a
country dweller and the decision process of those responsible
for the location of public services. The country dweller is
interested in obtaining this type of service within a critical
time. This requirement is also of prime importance in the

preparation of location schemes.

The concept of maximal service distance appears in two
location problems: (a) the location set-covering problem, and

(b) the maximal-covering location problem.

The location set-covering problem is concerned with finding
the minimum number of facilities ensuring that the users at each
point of demand will find services within a desired maximal
service distance. 1In order to formulate a mathematical model
(Toregas and Revelle 1972), the following definitions will be

needed:

I = set of demand points;

J = set of possible facility sites;
d.. = shortest distance from site j to point ij;
s = maximal service distance that may separate

any demand point from its nearest facility;
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N, =[] € Jldji < s] for all i in I = set of
facility sites eligible to provide coverage
to demand point i.

The model assumes the form:

Minimize 2 = ] x. , (49)

subject to

Yy ox. > 1, ier , (50)

b
]

o, jed . (51)

By the first constraint, each demand point i must be covered
by at least one facility. The objective function minimizes the
number of facilities that satisfy demand. The solution also
specifies the location of these facilities.

Total coverage of the demand area within a desired maximal
service distance may be impossible because of budget constraints.
This will result in a limitation on the resources available,
which may not be sufficient for constructing the number of facil-
ities specified in the model solution. In such a situation, the
decision maker will have to reformulate his objective function.
He may abandon his goal of total coverage and instead attempt to
minimize the number of people that will not be served within a
desired maximal service distance. In other words, he may try to
find such a distribution of facilities that as many people as
possible are included within the desired area. This problem is
termed the maximal-covering location problem. Its mathematical
formulation can be stated as (Church and Revelle 1974):

Maximize 2 = |} a.y ' (52)
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subject to
v Xe 2 ¥, for all i e 1 , (53)
jen, -
i
) x. =P , (54)
jes I
x; = (0,1 for all je J , (55)
yl = (0,1) ' for all i € 1 ’ {56)
where
N, = {jEJldij < s} for all i in I = set of facility
sites eligible to provide coverage to demand
pecint i; '
s = distance beyond which a demand point is consi-
dered to be not covered;
a; = population to be served at demand point i;
1 if demand node i is covered by a facility
Yy, = with distance s,

0 otherwise;
P = number of facilities to be located.

All other notations are the same as in the previous model.

The objective function maximizes the number of people lying
within the desired service distance. The first constraint allows
Yy to be 1 only when the facility closest to the demand point i
is at a distance not further than s. The second constraint

restricts the number of facilities.

Another formulation of the maximal-covering location problem
is possible. Given the restricted number of facilities, we may
seek their distribution such that the maximum distance between
the facilities and the users is minimized. This problem is
structured mathematically in the following way (Bach 1980):

Minimize 2 = max min d?.a.. ' (57)
3 i ijTij



subject to
a.. =0or 1 , i=1..om (58)
1] j=1,¢e0e,n ,
!
21, j = 1,0..,n (59)
i=1 3
d.. > 0 i="10.0m (60)
ij - ! j=1,...,0 .

Constraints (58) and (59) allow each user to be assigned to
to at least one facility. Constraint (60) expresses the non-
negativity condition. The problem stated in this way has more
than one optimal solution, i.e. one may obtain alternative dis-
tributions of facilities fulfilling the conditions of minimizing

the maximum service distance.*

Social Welfare Maximization

Most models of facilities' location exhibit the following
two characteristics: they assume a fixed demand function and an
objective function minimizing travel costs. Both assumptions,
although reasonable and commonly accepted, ignore essential fea-
tures of the real world. The demand for services usually varies
with the cost of obtaining them; it decreases with the increase
in cost. The models describe real situations if they assume de-
clining demand functions. Minimization of travel costs as an
efficiency criterion is rather narrow. Social welfare would con-

stitute a more adequate criterion.

The models assuming fixed demand functions and travel-cost-
minimization objective functions yield, in fact, only suboptimal
solutions. The assumption of fixed demand requires demand to be
satisfied even if customers attach to the service a value that
is lower than the marginal costs of providing it. The level of
services obtained from such models tends to be higher than the

Pareto optimal level.

*Readers interested in the unifying framework for public-
facility-location problems are referred to Leonardi (1%80a).
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Wagner and Falkson (1975) elaborated models of public-
facility location that eliminate these drawbacks. The models
include a declining demand function and maximize social welfare
explicitly. The surplus of consumers plus producers is accepted
as a measure of social welfare. The notion of surplus is defined
as follows: the consumers' surplus (CS) is equal to the sum over
all consumers of the difference between the highest willingness-
to~-pay for a product and the amount actually paid; the producers'
surplus (PS) is the sum over all producers of the difference
between the revenue actually received for a product and the lowest
willingness-to-sell. The notion is structured mathematically in

the following way:

n n

cs= Y § (. -t,.d..-PHaX. |, (61)
521 i=1 i 13713 j Ti7i]
11 )

PS = ) (P, - b.)a.X.. - f.Y. , (62)
i=1 j=1 ] ] 1 1] j=1 J 3

where

Vi = willingness-to-pay of each member of community

i for a unit of product per unit time period;
13915 = transportation cost per unit of product between

demand node i and supply node j;

P? = factory price at supply node j;

a; = amount of service demanded at community i;

bj = marginal cost of service at j;

fj = fixed cost of service at j;

i3 = assignment variable representing the fraction of
demand of community i satisfied by supply node j;

Yj = zero-one location variable.

In summing the two surpluses, the P?s cancel out and the

sum is reduced to:

' n
(v - bj - tijdij)aixij -~ z £f.Y. . (63)
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The models of Wagner and Falkson (1975) distinguish between
two institutional environments that differ with respect to the
consumers' freedom of choice of facilities. These are: public
fiat environment and serve-all-comers environment. In the pub-
lic fiat environment, the consumers do not have the freedom of
choice but may be assigned arbitrarily to facilities and may be
denied service. In the serve-all-comers environment, the consu-
mers can choose the facilities freely and must be served by the
facility of their choice. Below, the models for both environ-

ments are specified.

The model for the public fiat environment can be stated as:

- )
Max ) (V. - b, - t..d..)a.X.. - £.Y.
521 121 i j 13713771715 521 i
(64)
subject to
n
-2 Xi5 21 i=1,...,n , (65)
=1
Yj > Xij , i,j=1,¢c.,n , _ (66)
Yj = (0,1) , j=1,ec.,n , (67)
Xij >0 , i,j=1,...,n . (68)

Constraint (65)-(66) expresses the demand requirement. It
has the form of an inequality since the environment does not re-
guire that maximum potential demand at any site be met. Con-
straint (67)-(68) states that production at node j necessarily

bears fixed costs.
The model for serve-all-comers can be stated as:

n n

Max [ 1 (V; =b. - t..dia X, -
521 i=1 j jTi] J

I 5
Hh
o
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subject to

n
) Xj3 €1 i=1,...,n , (70)
j=1
Yj 2 xij ’ i,3 =1, .l ' (71)
Yo+ ) iy 1 i,k =1,...,n , (72)
1€N. .
1K
n
¥ xij > Yij , for all i,j such
=1 that (73)
V., - t,..d.. - >0 |,
i ijTij ]
Yj = (0,1) , j=1,...,n , (74)
Xiy 2 0o . (75)

The latter model contains two additional sets of constraints:
(71) and (73). It is assumed that in a serve-all-comers environ-
ment the customers will choose the closest operating facility.
Constraint (72) ensures the assignment of customers to their
closest operating facility. It is also necessary to ensure that
all customers who require services are assigned to some facility.

This is stated in constraint (73).

The simple welfare-maximization model (64)-(68) can be ad-

justed to the case of declining community demand functions (of

delivered price). 1In this case only the coefficients of each

Xij in the objective function must be changed. In the simple

model they assume the form a., (V. - t..d.. - b.). In the case of
it ijTij J

continuous declining demand functions, they are replaced by the

form:

e+
a, V., - b, - t,.d..) £, (V,)dvV, 76
lJt..d.. + b. Vi IS S L 7o)
13743 j
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where fi(Vi) is the relative frequency function for values Vi in

community 1i.

Replacement is possible because of the relationship estab-
lished between the demand function and the frequency distribution.
An aggregate demand function, being in fact a cumulative willing-
ness-to-pay function, can be transformed into a cumulative fre-
quency distribution. This is done by measuring the fraction of
potential consumers who are willing to pay an amount of money

greater than, or equal to, any specified amount.

Hierarchical Location-Allocation Problem

The majority of research on the spatial distribution of
services assumes that the facilities form single-level systems.
Multilevel systems are rarely considered. However, Dokmeci (1973)
and Banerji and Fisher (1974) consider such a case. Dokmeci's
model, which is presented in this section, determines the optimal
distribution of hierarchically coordinated facilities over a

bounded space.

Demand points, the trip requirements of each demand point,
as well as facility and transportation costs for each level of
the hierarchy are given. The fixed part of facility costs varies
according to the size of the facility and reflects economies of
scale. The unknown variables to be defined in an optimal fashion
are: number, size, and location of facilities over a bounded
space. The model is used to find the minimum total cost of the

system, i.e. facility and transportation costs.

Demand is nonuniformly distributed at m pointst. The set
of these points forms a zero-th level or demand level, LO' There
are N facility levels, LB (B =1,...,N), each demand point being

serviced by one facility on each facility level. The hierarchi-

cal structure is given by:

Ly = {Pj|j =1,...,m} , (77)

1 {Pj

|
0

m+1,...,n} , (78)

.
]



.
I

o = (P53 = n+1,p) (79)

L. = {P.|j = q+1,...,r}

N j . (80)

The model's structure allows for interactions between facilities
of different levels but not of the same level.

The total transportation cost is given by:

x r
T = u..a,..d..t . 81
121 j£1 1111 1] en

The facility cost (F) varies according to the level of faci-

lities. The total facility cost is given by:

r
F = _Z (bi + ciKi) ’ (82)
i=1
or by:
? .
F = (gon, + h,a)) , (83)
=1 BB BB
where
uij = number of trips made from point j to
facility i;
= )1 if facility i supplies point j,
1 -0 otherwise;
d.. = distance between i and j;

t = unit transportation cost;

bi’ci = gpecified constants for each level
of facilities;
Ki = unknown capacity of facility i;

= gpecified total capacity requirement;

nB = number of facilities on level B;
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gBhB = gpecified constants for level B of

facilities.

The hierarchical location-allocation problem can now be

formulated.
11 )
Minimize Z = u..a..d.. + {(b. + c.K.) ,
i=1 j=1 ij7i371i] i21 i i7i
(84)
subject to
K. >Ag . (85)

ieB

The hierarchical problem described above is difficult to
resolve numerically because of the nonlinear objective function.
An easier way to find a solution is to apply a heuristic algo-

rithm.

ACCESSIBILITY

One of the major characteristics of a settlement system of
any region is that it provides the population with jobs, housing,
and services. It is important that these opportunities be acces-
sible to the inhabitants of the region. Spatial accessibility
of jobs, housing, and services can be considered as one of the
components of quality of life. Regional planning aims to improve
accessibility through the extension and proper location of faci-

lities of various kinds (Domanski 1979).

When planning the construction and location of new facili-
ties, decision makers may take maximization of spatial accessibi-
lity as their objective function. The equalization of the
accessibility of facilities from users' locationscan be considered
as an alternative objective function. By equalizing accessibility,

spatial equity may be increased.

Let us first consider the location of service facilities
maximizing spatial accessibility. Before presenting the model
of this problem, let it be understood that the concept of acces-

sibility is equivalent to the concept of potential in spatial
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analysis. There are several formulae to calculate the potential.
According to one (Bach 1980), the potential created at location i

by a central facility located at 3j amounts to:

M., = —3— (86)
1391 4+ 48,
1]
where
aj = attractiveness of the central facility at
j (it can be measured by the facility size
weighted with some quality index;
dij = distance between users at i and the central

facility at j;
B = exponent representing the influence of dis-
tance (transportation cost) on the interac-

tion between i and j.

The potential caused by all facilities interacting with the

given location of users can be written as:

a.
Moo= z.___JL__ . (87)

? 8
j 1+ dij

We will now present the model elaborated by Bach (1980).
Data:

U. = locations of users (i = 1,...,m);

n = number of central facilities (n > 2);

aj = attractiveness of central facilities
(3 =1,...,n).
Unknowns:
C. = locations of central facilities

(j = 1,...,n).



Constraints:

Each user must be assigned to exactly one central facility
in such a way that nonoverlapping districts covering the whole

region are formed.

The model aims to find those locations of central facilities
and configurations of districts that would maximize the sum of
potentials (accessibilities) created by central facilities at

the users' locations.

This problem may now be written in programmatic form as

follows:
m n
M imize Z = T, .Q. . 88
aximiz i£1 j£1 i35%19 (88)
subject to
0 l=1l---lm ’
a.. = , (89)
1J 1 y=1,4..,n ,
? .
a.. =1, i=1,...,m , (90)
j=1
ij 2 o , i=1,...,m , (91)
ji=1,...,n

The first two constraints ensure that each user is assigned to

one, and only one, central facility.

The given settlement system may ensure accessibility to
services, but not to jobs or housing, and vice versa. Such a
system is spatially unbalanced. It does not ensure a satisfac-
tory level of social welfare, which would require all components

of welfare to be accessible.

Klaassen, Paelinck, and Wagenaar (1979) developed a method
that allows individual accessibilities to be integrated into one
total accessibility. It simulates the characteristics of the

living conditions of individual villages and towns.*

*A multiactivity location problem with accessibility and con-
gestion-sensitive demand is being studied at IIASA (Leonardi 1980b).



The use of a special type of social-welfare function is
the main element of this method. The function is characteristic
in that the individual accessibilities (potentials) are its argu-
ments. The social-welfare function integrating all accessibili-
ties can be written as:
h s _v

w., = 1(mn.,n.,mT.
( 4 ll i

i i ) ' for all i = 1,...,m . (92)

where
ﬁ? = the accessibility to housing from
location ij;
ﬂi = the accessibility to services;
“I = the accessibility to jobs.

It can be specified, for example, as a Cobb-Douglas-type function:

(93)

The function presented above shows some typical characteris-
tics. First, different combinations of arguments (potentials,
accessibilities) can lead to the same value of the function. This
is the well-known principle of substitution. Second, if the
arguments are interdependent, then the change in one argument will
influence the others. Third, the total accessibility of location
i (village, town) depends not only on the availability of facili-
ties in location i itself, but also on the availability of those

in neighboring locations within reach of region 1i.

This form of social-welfare function may be used to reflect
the effects of governmental investment policy. The government
can allocate its budget among different facilities and locations.
Each allocation may bring different results. It is then necessary
to determine what allocation will bring the maximum increase in
the welfare of all locations together. The answer can be obtained

by finding the maximum of the social-welfare function.
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CONCLUSION

As a result of the assessment of the various models dis-
cussed above, we conclude that three features are important
when adapting or developing models to solve the problems of
rural settlement systems. These features are associated with
the hierarchical framework of such systems, their spatial ac-
cessibility, and their unigque characteristics, and they should
all be considered in the model. Some comments on these fea-

tures are given below.

The hierarchical framework allows for a more accurate
representation and analysis of economic activities in settle-
ment systems. While there are few such models currently in
operation, a number of promising directions for further

research have been identified.

Spatial accessibility should be one of the major criteria
in evaluating the development plans of settlement systems. 1Its
improvement would contribute to an increase in the quality of

life and social equity.

Settlement systems in rural regions have several unique
characteristics that the hierarchical optimization models should
reflect. Some of the existing models can be adapted to include
these characteristics and therefore may be suitable for solving

rural problems.
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