MULTIREGIONAL POPULATION PROJECTION: AN ANALYTIC APPROACH

Kao-Lee Liaw

June 1981 WP-81-81

Working Papers are interim reports on work of the International Institute for Applied Systems Analysis and have received only limited review. Views or opinions expressed herein do not necessarily represent those of the Institute or of its National Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS A-2361 Laxenburg, Austria

FOREWORD

The evolution of human populations over time and space has been a central concern of many scholars in the Human Settlements and Services Area at IIASA during the past several years. From 1975 through 1978 some of this interest was manifested in the work of the Migration and Settlement Task, which was formally concluded in November 1978. Since then, attention has turned to disseminating the Task's results, to concluding its comparative study, and to exploring possible future activities that might apply the mathematical methodology to other research topics.

This paper is part of the Task's dissemination effort. It is a draft of a chapter that is to appear in a volume entitled Migration and Settlement: A Comparative Study. Other selected publications summarizing the work of the Migration and Settlement Task are listed at the back.

Andrei Rogers Chairman Human Settlements and Services Area

ABSTRACT

This paper studies the dynamic properties of age-by-region population systems which are projected into the future by the Rogers model with fixed age- and region-specific rates of birth, death, and interregional migration. Insights are obtained through the analytic solution of the mathematical model.

To make the analytic solution of the Rogers model understandable this paper considers the Rogers model as a multiregional generalization of the classical Leslie model and then makes a useful synthesis of the early findings about the dynamic properties of single-region population systems and the well-known facts about a pure migration matrix.

The Rogers model is applied to three real-world systems: the Swedish female population observed in 1974, the Soviet population of both sexes observed in 1974, and the female population of Great Britain observed in 1970. Common as well as distinct dynamic properties of the three systems are found.

ACKNOWLEDGMENTS

I am grateful to Andrei Rogers for providing me with a wonderful research environment at IIASA and a demographic model that is substantively meaningful and analytically and computationally tractable. I am also indebted to all individuals who contributed to the construction of the data base that is used in this report. Comments from Philip Rees on the first draft are highly appreciated. Thanks to Susanne Stock for typing the paper carefully and to Maria Rogers for editing my work into a more readable form. The remaining flaws are all mine.

CONTENTS

- 1. INTRODUCTION, 1
- 2. THE ROGERS MODEL AND ITS ANALYTIC SOLUTION, 7
- 3. THE ROGERS MODEL AS A GENERALIZATION OF THE LESLIE MODEL, 13
 - 3.1 The Leslie Model, 13
 - 3.2 The Factorizable Rogers Model, 17
- 4. THE DYNAMIC PROPERTIES OF THE SWEDISH FEMALE POPULATION SYSTEM, 22
 - 4.1 The Leslie Model of Swedish Female Population, 22
 - 4.2 The Factorizable Rogers Model of the Swedish Female Population, 29
 - 4.3 The (Non-factorizable) Rogers Model of the Swedish Female Population, 37
- 5. THE DYNAMIC PROPERTIES OF THE SOVIET AGE-BY-REGION POPULATION SYSTEM, 55
- 6. THE DYNAMIC PROPERTIES OF THE GREAT BRITAIN AGE-BY-REGION POPULATION SYSTEM, 73
- 7. SUMMARY AND CONCLUSION, 88
- APPENDIX A: INPUT DATA OF THE ROGERS MODEL OF THE 1974 SWEDISH FEMALE POPULATION, 91
- APPENDIX B: INPUT DATA OF THE ROGERS MODEL OF THE 1974 SOVIET POPULATION, 101
- APPENDIX C: INPUT DATA OF THE ROGERS MODEL OF THE 1970 BRITISH FEMALE POPULATION, 111

REFERENCES, 121

MULTIREGIONAL POPULATION PROJECTION-- AN ANALYTIC APPROACH

1. INTRODUCTION

The basic question to be answered in this paper is: How would the characteristics of a population, such as the size, spatial distribution, and regional age profiles, evolve through time if an observed set of age- and region-specific rates of birth, death, and interregional migration were to remain constant? Before attempting to answer this question, it is necessary to know what useful knowledge can be obtained from the answer.

First, to the extent that certain attributes of the basic demographic processes will remain relatively stable in the foreseeable future, the answer may serve well as a prediction. Consider the Canadian interregional population system for example. It is reasonable to assume that interregional outmigration rates will remain through the 1980's to be much higher for the destinations of Alberta and British Columbia than for the destination of Quebec. Thus, with respect to the relative shares of the national population by these provinces, the multiregional population projection based on the constant rates of the 1970's (Liaw 1980b) can serve as a prediction with a small margin of error. Similarly, because of the very stable nature of agespecific mortality rates and the implausibility of a sharp rise

in fertility level, the increase in the mean age of the Canadian population that is projected with the 1971-76 fixed growth matrix (Liaw 1980b) is likely to be close to what will actually happen in the next two decades. Essentially, the projection with fixed rates reveals whether the characteristics of the status of a population system is compatible with those of its basic demographic processes. If they are highly incompatible, then either the status or the processes or both must experience significant changes. It is through the incompatibility, or the lack of it, that the projection with fixed rates helps us speculate what will happen in the future.

Second, population projection with fixed rates can reveal, without excessive complications, the major causal relationships which are inherent in a human population. An advantage of the knowledge of these relationships is that it can prevent us from misinterpreting demographic data. For example, a multiregional population projection using a fixed growth matrix can show clearly that within individual regions, there is a strong causal relationship running from a high fertility level to a steep age profile, and then to a low crude death rate (Liaw 1980a). The knowledge of this relationship enables us to avoid inferring incorrectly from the fact that the crude death rate is lower in the northern territories of Canada than in the rest of the country that somehow the harsh environment of Arctic region is particularly conducive to longevity.

Third, the transmission of population waves, which is of particular importance to the providers of age-specific goods and services (e.g., baby food producers, daycare centers, schools, and universities) but is usually ignored, becomes a prominent feature that can be studied systematically when a population projection with age-specific fixed rates is carried out.

The causal relationships of particular interest in this paper are those concerning the transmission of population waves, the change in regional age profiles, and the spatial redistribution of the population. We will use the discrete-time age-by-region Rogers model and its analytic solution to carry out the

investigation. Besides showing the dynamic properties that are common among industrialized countries, our results will also highlight the distinct features of each population system. From a theoretical point of view, our results also clarify how the dynamic properties of the non-spatial Lotka or Leslie model of population growth can be synthesized with well-known properties of an irreducible stochastic matrix to facilitate the study of age-by-region population systems.

The three age-by-region population systems to be analyzed in this paper are: the Swedish female population, 1974; the Soviet population of both sexes, 1974; and the female population of Great Britain, 1970. Each system is disaggregated into eighteen age groups (0-4, 5-9,..., 85+) and eight regions (see Figures 1.1 through 1.3). For the Soviet Union, the first seven regions contain only urban areas, whereas the eighth "region" contains the rural areas of the whole country. The single-year data base for each nation available at IIASA has been transformed into a five-year growth matrix by IIASA's standard procedure.

Section 2 introduces the Rogers model and its analytic solution. Section 3 shows how indepth understanding of the Rogers model can be obtained by considering it as a generalization of the Leslie model. Section 4 provides a detailed analysis of the Swedish population system and demonstrates the plausibility of the line of thought advocated in section 3. Sections 5 and 6 report the findings of applying the Rogers model directly to the Soviet and British population systems. Finally, section 7 summarizes the main points and concludes the paper.

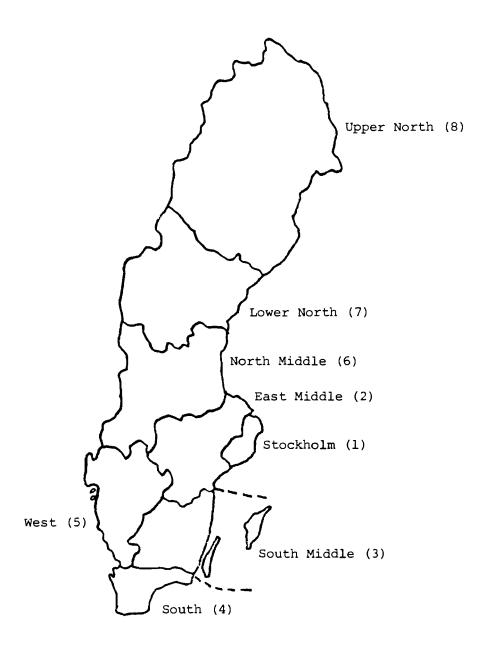
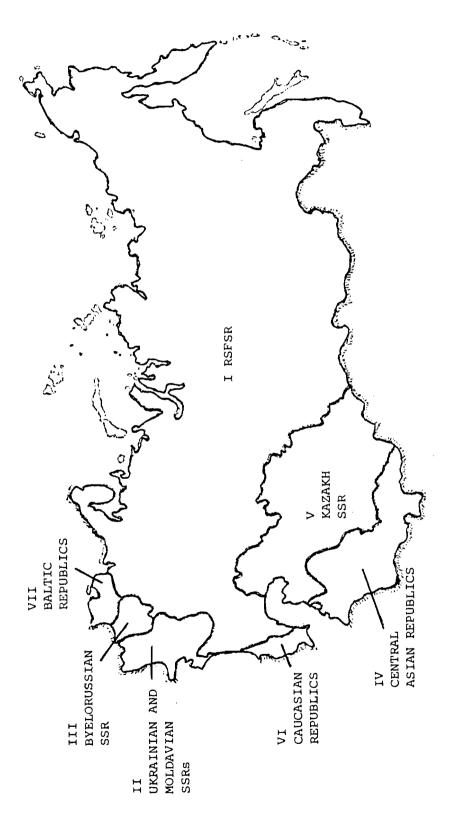



Figure 1.1 The regions of the Swedish system. (Source: Andersson and Holmberg, 1980.)

(Source: Soboleva, 1980.) The regions of the Soviet system. Figure 1.2

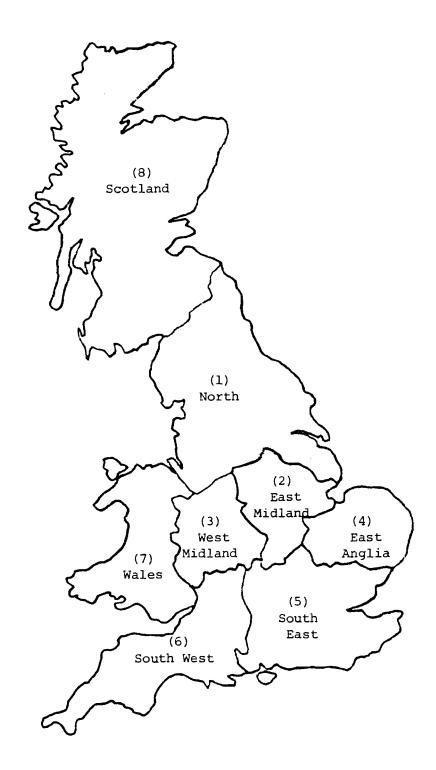


Figure 1.3 The regions of the British system. (Source: Rees, 1979.)

2. THE ROGERS MODEL AND ITS ANALYTIC SOLUTION

Consider a population system with r regions and w five-year age groups (0-4, 5-9,...). Using five years as the unit time interval, the (discrete) Rogers model (Rogers, 1975:117-129) is of the form

$$\begin{bmatrix} \begin{matrix} K_{1}(t+1) \\ K_{2}(t+1) \\ K_{3}(t+1) \\ \vdots \\ K_{f}(t+1) \\ \vdots \\ K_{m}(t+1) \end{bmatrix} = \begin{bmatrix} \begin{matrix} B_{1} & B_{2} & \cdots & B_{f-1} & B_{f} \\ S_{1} & 0 & \cdots & 0 & 0 \\ 0 & S_{2} & 0 & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & S_{f-1} & 0 & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ S_{f+1}(t+1) & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ K_{m}(t+1) \end{bmatrix}$$

$$\begin{bmatrix} K_{1}(t) \\ K_{2}(t) \\ K_{3}(t) \\ \vdots \\ K_{m}(t) \\ \vdots \\ \vdots \\ K_{m}(t+1) \end{bmatrix}$$

$$\begin{bmatrix} K_{1}(t) \\ K_{2}(t) \\ K_{3}(t) \\ \vdots \\ K_{m}(t) \\ \vdots \\ \vdots \\ K_{m}(t) \end{bmatrix}$$

$$\begin{bmatrix} K_{1}(t) \\ K_{2}(t) \\ K_{3}(t) \\ \vdots \\ K_{m}(t) \\ \vdots \\ K_{m}(t) \end{bmatrix}$$

$$\begin{bmatrix} K_{1}(t) \\ K_{2}(t) \\ K_{3}(t) \\ \vdots \\ K_{m}(t) \\ \vdots \\ K_{m}(t) \end{bmatrix}$$

$$\begin{bmatrix} K_{1}(t) \\ K_{2}(t) \\ K_{3}(t) \\ \vdots \\ K_{m}(t) \\ \vdots \\ K_{m}(t) \end{bmatrix}$$

$$\begin{bmatrix} K_{1}(t) \\ K_{2}(t) \\ K_{3}(t) \\ \vdots \\ K_{m}(t) \\ \vdots \\ K_{m}(t) \end{bmatrix}$$

$$\begin{bmatrix} K_{1}(t) \\ K_{2}(t) \\ K_{3}(t) \\ \vdots \\ K_{m}(t) \\ \vdots \\ K_{m}(t) \end{bmatrix}$$

$$\begin{bmatrix} K_{1}(t) \\ K_{2}(t) \\ K_{3}(t) \\ \vdots \\ K_{m}(t) \end{bmatrix}$$

$$\begin{bmatrix} K_{1}(t) \\ K_{2}(t) \\ K_{3}(t) \\ \vdots \\ K_{m}(t) \end{bmatrix}$$

$$\begin{bmatrix} K_{1}(t) \\ K_{2}(t) \\ K_{3}(t) \\ \vdots \\ K_{m}(t) \end{bmatrix}$$

for t = 0, 1, 2, ...

where K_a (t) for a = 1,2,...,w represents the interregional population distribution of the a-th group at time t; the B submatrices show how babies are born, survive, and migrate among regions; and the S submatrices indicate how existing people in individual age groups survive and migrate within a unit time interval.* The order of K_a (t) is r × 1, and those of B_a and C_a are r × r. We may write the model more compactly as

$$K(t+1) = GK(t)$$
 (2.2)

^{*}If foreign migration is important, the model can be modified to accommodate it (see Liaw 1978b and 1979).

where the growth matrix G has the order of wr \times wr, and the population vectors K(t+1) and K(t) the order of wr \times 1.

Using the empirically valid assumption that the non-zero eigenvalues of G are distinct, it was shown in Liaw (1978a) that the analytic solution of equation (2.2) is

where λ_i is a non-zero eigenvalue of G, and Q_i and P_i' are respectively the normalized right and left eigenvectors of G associated with λ_i . In other words, λ_i , Q_i , and P_i' are computed from the conditions

$$GQ_{i} = \lambda_{i \sim i}$$

$$P'_{ai}G = \lambda_{i}P'_{i}$$

$$P_{\tilde{a}\tilde{a}\tilde{a}}^{\prime}Q_{i}=1$$

and

$$\lambda_i \neq 0$$

The "residual" is a vector filled with zeros up to the last reproductive age group (f) and will become a zero vector for $t \ge w - f$. By letting $c_i = \Pr_{i=1}^{r} K(0)$, the analytic solution can also be written as

$$K(t) = \sum_{i} \lambda_{i}^{t} c_{i} Q_{i} + "Residual"$$
 (2.4)

Ignoring the residual, we see that the age-by-region population at time t is simply a linear combination of the right eigenvectors

of G, with the weights being $\lambda_{i}^{t}c_{i}$.* The relative importance of each term at t = 0 depends on the magnitude of the scalar c_{i} . However, since c_{i} remains constant through time, the relative importance of each term for large t depends increasingly on the magnitude of λ_{i} . As t becomes very large, only the dominant component (i.e., the term associated with the largest eigenvalue λ_{1}) remains important. In other words, we have

$$\lim_{t\to\infty} K(t)/\lambda_1^t = c_1Q_1$$

where, according to the Frobenius theorem (Gantmacher, Vol. 2, 1969:53-54), both c_1 and Q_1 are real and non-negative. Clearly, the system will approach a fixed long-run age-by-region population distribution, which is represented by the dominant right eigenvector Q_1 . The annual discrete long-run growth rate of every subpopulation is $\lambda^{0.2}-1$. The scalar c_1 is the stable equivalent population. The momentum of the population system is

$$m = [(c_1 - k)/k] \cdot 100\%$$

where k is the total population size at t = 0. The momentum represents the percentage amplification (or deduction, if m is negative) of the "ultimate" population size due to the difference between the initial and the long-run age-by-region distributions. By "ultimate" we mean the time when the dominant component begins to overwhelm the remaining components in the analytic solution. It is obvious that the dominant component, as well as other components associated with positive real eigenvalues, will behave monotonically through time.

^{*}Note that the right eigenvectors can be arbitrarily scaled as long as $P_iQ_i = 1$ is satisfied. For interpretational and computational convenience, the sum of the magnitudes of the elements in each real right eigenvector is set to unity, and the sum of the squares of the elements of each complex right eigenvector is also set to unity.

Most of the eigenvalues of the growth matrix are complex numbers, which occur necessarily in conjugate pairs due to the fact that G is real. For substantive interpretations, we must transform all complex terms into real form. Let α_i + $i\beta_i$ and α_i - $i\beta_i$ be a pair of complex eigenvalues of G, with U_i' + iV_i' , U_i' - iV_i' , X_i + iY_i , and X_i - iY_i as the associated left and right eigenvectors. Then the analytic components associated with these two eigenvalues can be changed into the real form:

$$2d_{i}\sigma_{i}^{t}[\cos(t\theta_{i} + e_{i})X_{i} - \sin(t\theta_{i} + e_{i})Y_{i}] \qquad (2.5)$$

where

$$\sigma_{i} = (\alpha_{i}^{2} + \beta_{i}^{2})^{\frac{1}{2}} \text{ is the } \textit{magnitude} \text{ of the eigenvalue}$$

$$\theta_{i} = \tan^{-1}(\beta_{i}/\alpha_{i}) \text{ is the } \textit{amplitude} \text{ of the eigenvalue}$$

$$d_{i} = \{ [\underbrace{U_{i}'K(0)}^{2}]^{2} + [\underbrace{V_{i}'K(0)}^{2}]^{2} \}^{\frac{1}{2}}$$
and
$$e_{i} = \tan^{-1}[\underbrace{V_{i}'K(0)}^{2}]^{\frac{1}{2}} (0) \}$$

The element in the combined analytic component (2.5) corresponding to the a-th age group and the j-th region can be further simplified into

$$2d_{i}\gamma_{iaj}\sigma_{i}^{t}\cos(t\theta_{i}+e_{i}+\phi_{iaj}) \qquad (2.6)$$

where

$$\gamma_{iaj} = (x_{iaj}^2 + y_{iaj}^2)^{\frac{1}{2}}$$
 (2.7)

and

$$\phi_{iaj} = \tan^{-1}(Y_{iaj}/X_{iaj}) \tag{2.8}$$

It is to be understood that X_{iaj} and Y_{iaj} are respectively the elements of X_i and Y_i corresponding to the a-th age group and j-th region. Equation (2.6) shows that each pair of complex components in the analytic solution is actually a cyclical component with θ_i as the frequency (in radians/five years). The period (in years) of the component is

$$p_{i} = 5(2\pi/\theta_{i}) \tag{2.9}$$

Since the cosine function assumes a value between +1 and -1 for all t, the elements in the cyclical component fluctuate below the smooth exponential upperbounds $2d_{i}\gamma_{iaj}\sigma_{i}^{t}$ as t increases. If the phase angles e_{i} + ϕ_{iaj} are zero, then all elements start at t = 0 from the upperbounds; otherwise, the starting points are within $\pm 2d_{i}\gamma_{iaj}$. The number of years which is required to reduce the upperbounds by half of their original sizes is called the half-life, which is

$$t_i = 5(-\ln 2/\ln \sigma_i)$$
 (2.10)

Now, let us see what determines what in a cyclical component. Equations (2.9) and (2.10) show that the period and half-life of a cyclical component are completely determined by a complex eigenvalue of the growth matrix G. Equations (2.7) and (2.8) show that the inter-age-group and interregional contrasts in upperbounds and phase angles of a cyclical component are completely determined by a complex right eigenvector of G. The initial age-by-region population distribution K(0), through its inner product with a complex left eigenvector, affects only the overall level d and the overall phase direction e of a cyclial component [see equation (2.5)].

The cyclical component with the longest half-life is called the dominant cyclical component, and its corresponding eigenvalue the dominant complex eigenvalue. For simplicity, we will treat negative real eigenvalues as a special kind of complex eigenvalue whose amplitude is π radians per five years.

Separating the cyclical from the monotonic components, the analytic solution for the projected population size in age group a, region j, and at time t is

$$K_{aj}(t) = \sum_{i=1}^{n_1} c_i Q_{iaj} \lambda_i^t + \sum_{i=1}^{n_2} 2d_i \gamma_{iaj} \sigma_i^t \cos(t\theta_i + e_i) + \phi_{iaj} + \text{"Residual"}$$

$$(2.11)$$

where K_{aj} (t) and Q_{iaj} are respectively the elements in K(t) and Q_{i} corresponding to the a-th age group and j-th region; and m_1 and m_2 represent respectively the number of monotonic and cyclical terms. It is a common empirical observation that the number of monotonic components (m_1) turns out to be equal to the number of regions (r) in the system. For each age- and region-specific subpopulation, the relative importance of the analytic components at t = 0 depends on the initial loadings c_iQ_{iaj} and $2d_i\gamma_{iaj}$ $cos(e_i + \phi_{iaj})$.

For simplicity, we adopt the following notational convention. The subscript "a" always refers to an age group; whereas the subscript "j" is used to identify a region. All components are arranged in descending order of the magnitudes of the corresponding eigenvalues (i.e., $\lambda_1 > \lambda_2 > \lambda_{n_1}$ and $\sigma_1 > \sigma_2 > \cdots > \sigma_{n_2}$).

3. THE ROGERS MODEL AS A GENERALIZATION OF THE LESLIE MODEL

Our strategy to obtain indepth understanding of the dynamic properties of the Rogers model is to consider it as a generalization of the Leslie model by splitting the population system into r regions. In this section, we will (1) describe the Leslie model and the mathematical properties of its analytic solution, and (2) study the properties of a factorizable Rogers model by synthesizing the early findings in classical mathematical demography and the well-known properties of an irreducible, column-stochastic matrix. Although an empirically-constructed Rogers model is in general not factorizable, the factorized version serves to clarify certain important features which recur in empirical applications.

3.1 The Leslie Model

When there is only one region, the Rogers model is reduced to the Leslie model:

$$\hat{K}(t+1) = \hat{G}\hat{K}(t)$$
 (3.1)

where $\hat{K}(t)$, $\hat{K}(t+1)$, and \hat{G} correspond to K(t), K(t+1), and G in equation (2.2). The $w \times w$ matrix \hat{G} is the same as G, except that the B_a and S_a submatrices are now reduced to scalars B_a and S_a . It can be shown that, with realistic assumptions, the growth matrix \hat{G} has a unique dominant eigenvalue which is real and positive (Keyfitz, chapter 3, 1968). All the remaining non-zero eigenvalues are either complex or real negative. Therefore, for the a-th age group, the analytic solution of the Leslie model is

$$\hat{K}_{a}(t) = \hat{c}_{1}\hat{Q}_{1a}\hat{\lambda}_{1}^{t} + \sum_{i=1}^{n_{2}} 2\hat{d}_{i}\hat{\gamma}_{ia}\hat{\sigma}_{i}^{t} \cos(t\hat{\theta}_{i} + \hat{e}_{i})$$

$$+ \hat{\phi}_{ia}) + \text{"Residual"}$$
(3.2)

where all quantities are analogous to those in equation (2.11). Ignoring the residual, the dominant component is the only monotonic term; the remaining ones are all cyclical.

The Leslie model and its continuous-time counterpart, the Lotka model, have been studied both mathematically and empirically for many decades. The major results are summarized in Keyfitz (1968) and Coale (1972). The main points about the analytic solution of the Leslie model are as follows.

- 1. The dominant eigenvalue of the growth matrix G and the corresponding right and left eigenvectors are relatively insensitive to alternative ways of discretizing the fertility and mortality schedules. In other words, the dominant component can actually reflect the intrinsic nature of the population system.
- 2. The dominant eigenvalue is positively related to the area under the net fertility function (i.e., the net reproduction rate) and negatively related to the mean age of this function.*
- 3. The period of the dominant cyclical component is almost equal to the length of a generation and is positively and strongly related to the mean age of the net fertility function.
- 4. The half-life of the dominant cyclical component is negatively and strongly related to the dispersion of the net fertility function. In other words, a highly

$$F_a = B_a S_{a-1}, \dots, S_1$$
 for $a = 2, 3, \dots$

where the right-hand-side quantities are taken from equation (2.1), with matrices being replaced by the corresponding scalars. The net reproduction rate is the sum of \mathbf{F}_a across all age groups. We will call the sum of all \mathbf{B}_a as the gross reproduction rate (GRR) for simplicity, although \mathbf{B}_a are affected by infant mortality.

^{*}With discrete age groups, the net fertility function F is defined as

- concentrated fertility schedule results in a small rate of attenuation for population waves that are transmitted through successive generations.
- 5. Higher frequency eigenvalues depend on peculiarities in the fertility and mortality schedules in a way that is difficult to describe and, hence, difficult to understand intuitively. Furthermore, these eigenvalues are also very sensitive to alternative ways of approximating the fertility and mortality schedules. There is not much insight about a population that can be learned from the components associated with these eigenvalues, except that they guarantee the "material balance" of equation (3.2) for any initial population.
- 6. The dominant cyclical component is damped, relative to the dominant component, by about 2.5% to 5% annually. In other words, the ratio of $\hat{\sigma}_1/\hat{\lambda}_1$ is usually between 0.88 and 0.77. Cyclical components with higher frequencies are attenuated at least twice as rapidly as the dominant cyclical component.
- 7. If the initial population is heavily concentrated in the age interval 0-24, the stable equivalent population size (c₁) will be much larger than the initial total population size (i.e., there will be a large momentum for the population to continue growing even if the fertility level is already below replacement level). This is due to the fact that the elements of the dominant left eigenvector remain at a high level in the age interval 0-24 and drop sharply afterwards toward zero at the end of the reproductive age interval. The typical age pattern of the dominant left eigenvector is determined by the fertility and survival schedules of the Leslie model, according to the formula

$$\hat{P}_{1,a+1} = (\hat{\lambda}_1/S_a)\hat{P}_{1,a} - (B_a/S_a)\hat{P}_{1,1}$$
for 1 < a < f

For the young age groups, $(\hat{\lambda}_1/S_a)$ is usually close to one, and (B_a/S_a) is zero or nearly so. This explains why $\hat{P}_{1,a}$ remains more or less at the same level for small a. But, the large values of B_a around the peak of the fertility pull $\hat{P}_{1,a+1}$ down sharply. For a > f, $\hat{P}_{1,a} = 0$ for any i.

- 8. The initial upperbound of a cyclial component $(2d_i\gamma_{ia})$ tends to be small, when the initial population is not highly concentrated in the youngest age group. The higher the frequency, the stronger this tendency. This relationship is due to the fact that the elements of the left eigenvector associated with a high frequency eigenvalue decline in magnitude very rapidly as age increases. The age pattern of a complex left eigenvector can be explained by a formula like equation (3.3).*
- 9. For most empirical data, the time-path of the 0-4 age group of the Leslie model can be quite accurately approximated by the sum of the dominant and dominant cyclical components. That is,

$$\hat{K}_{a}(t) = \hat{c}_{1}\hat{Q}_{1a}\hat{\lambda}_{1}^{t} + 2\hat{d}_{1}\hat{\gamma}_{1a}\hat{\sigma}_{1}^{t} \cos(t\hat{\theta}_{1} + \hat{\theta}_{1} + \hat{\phi}_{1a})$$
 (3.4)

Thus, for the youngest age group, the time-path of the projected population size can be visualized as a damped wave with a period of about 25-30 years, which is superimposed on a smooth exponential trend.

^{*}The complex left eigenvectors of the Leslie model are discrete analogues of Q_i (a) in equation (3.20) in Coale (1972), page 68.

3.2 The Factorizable Rogers Model

Now, let us disaggregate the population system into r regions as well as w age groups. In order to obtain an easily understandable analytic result, we assume in this subsection that fertility and mortality schedules do not vary among regions, and that the level and pattern of migration are constant across all age groups. In other words, it is assumed that the non-zero submatrices in equation (2.1) can be factorized in the following manner:

$$B_a = B_a \hat{G}$$

and

$$s_a = s_a \hat{s}$$

where \hat{G} is a fixed r × r column-stochastic matrix, and B_a and S_a are respectively the birth and survival rates of the growth matrix \hat{G} of the corresponding Leslie model. For simplicity, we will call \hat{G} and \hat{G} a pure migration matrix and a Leslie matrix, respectively.

Using the Kronecker's product*, we find that our assumptions about the age-by-region population system lead to the factorizable Rogers model:

*Let
$$\hat{G} = \begin{bmatrix} B_1 & B_2 & B_3 \\ S_1 & 0 & 0 \\ 0 & S_2 & 0 \end{bmatrix}$$
 and $\hat{G} = \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix}$. Then the Kronecker's

product of \hat{G} and \hat{G} is

$$K(t+1) = (\hat{G} \otimes \hat{G})K(t)$$
 (3.5)

Its analytic solution then becomes

$$K(t) = (\hat{G} \otimes \hat{G})^{t} K(0) = (\hat{G}^{t} \otimes \hat{G}^{t}) K(0)$$

$$= (\sum_{k} \hat{\lambda}_{k}^{t} \hat{Q}_{k} \hat{P}'_{k}) \otimes (\sum_{\ell} \hat{\lambda}_{\ell}^{t} \hat{Q}_{\ell} \hat{P}'_{\ell}) K(0) + \text{"Residual"} (3.6)$$

$$= \sum_{k} \sum_{\ell} (\hat{\lambda}_{k} \hat{\lambda}_{\ell})^{t} (\hat{Q}_{k} \otimes \hat{Q}_{\ell}) (\hat{P}_{k} \otimes \hat{P}_{\ell})' K(0) + \text{"Residual"}$$

where $\hat{\lambda}_k$ is a non-zero eigenvalue of the Leslie matrix \hat{G} , and \hat{P}'_k and \hat{Q}_k are the left and right eigenvectors of \hat{G} associated with $\hat{\lambda}_k$; and $\hat{\lambda}_\ell$ is a non-zero eigenvalue of the pure migration matrix \hat{G} , and \hat{P}'_ℓ and \hat{Q}_ℓ are the left and right eigenvectors of \hat{G} associated with $\hat{\lambda}_\ell$.

Comparing equations (3.6) and (2.3), we see that for a factorizable Rogers model,

(footnote continued from previous page)

$$\hat{G} \otimes \hat{G} = \begin{bmatrix} B_1^{m} & B_1^{m} & B_2^{m} & B_2^{m}$$

For a brief but useful introduction, see Theil (1971:303-308).

$$\lambda_{i} = \hat{\lambda}_{k} \hat{\lambda}_{\ell} \tag{3.7}$$

$$Q_{i} = \hat{Q}_{k} \otimes \hat{Q}_{\ell} \tag{3.8}$$

and

$$P_{i} = \hat{P}_{k} \otimes \hat{P}_{\ell} \tag{3.9}$$

In other words, each non-zero eigenvalue of G is a non-zero eigenvalue of G times an eigenvalue of G; and each left (right) eigenvector of G is a Kronecker's product of a left (right) eigenvector of G and a left (right) eigenvector of G. Since we have examined the eigenvalues and eigenvectors of G in section 3.1, we will now focus on G.

Because the pure migration matrix \hat{G} is an irreducible, non-negative matrix, we know from the Frobenius theorem (Gant-macher, Vol. 2, 1959:53-54) that its dominant eigenvalue and dominant right and left eigenvectors are positive. Furthermore, the fact that \hat{G} is column-stochastic guarantees that the dominant eigenvalue equals unity, and that the sum of the elements in the right eigenvector associated with any of the subdominant eigenvalues $(\hat{\lambda}_2, \dots, \hat{\lambda}_r)$ is zero. In other words,

$$\hat{\lambda}_1 = 1 \tag{3.10}$$

and

$$\sum_{j=1}^{r} \hat{Q}_{\ell,j} = 0$$
 for $\ell = 2,...,r$ (3.11)

Equation (3.10) is intuitively clear, because the pure migration matrix can never cause an increase or a decrease in total population size. Equation (3.11) shows that every subdominant

right eigenvector $\hat{\mathbb{Q}}_{\ell}$ (ℓ > 1) represents an interregional zero-sum game.* Finally, every subdominant left eigenvector $\hat{\mathbb{P}}_{\ell}$ (ℓ > 1) must have at least one positive and one negative element, because its inner product with the dominant right eigenvector $\hat{\mathbb{Q}}_{1}$ must be zero.

There are two additional properties of \tilde{G} that can be easily proved in a biregional case and have not been violated in empirically-constructed migration models. First, due to the fact that migration rates are always much smaller than stayer rates (i.e., \hat{G} has a dominant diagonal), all eigenvalues of \hat{G} are real and positive. Second, as the level of migration is increased, the subdominant eigenvalues become smaller.

Now, we are ready to synthesize. We begin by considering the eigenvalues of the factorizable Rogers model. Because $\lambda_1 = \hat{\lambda}_k \hat{\lambda}_\ell$, we see that corresponding to each eigenvalue of the Leslie model, there is a cluster of exactly r eigenvalues in the factorizable Rogers model. Within each cluster, all the eigenvalues have the same frequency (because all $\hat{\lambda}_\ell$ are real and positive), and the eigenvalue with the largest magnitude is exactly equal to an eigenvalue of the Leslie model (because $\hat{\lambda}_1 = 1$ and $\hat{\lambda}_\ell < 1$ for $\ell > 1$). Furthermore, the difference in magnitude among the eigenvalues in each cluster increases as the level of migration is raised, because the subdominant eigenvalues of \hat{G} are negatively affected by the level of migration.

The components associated with the subdominant positive real eigenvalues (λ_2 to λ_r) are called *spatial components*, because they convey the information about spatial redistribution. Each spatial component of the factorizable Rogers model represents

^{*}This zero-sum property was not realized by Feeney when he proved incorrectly that there is a one-to-one correspondence between the eigenvalues of the Leslie model and those of the corresponding nearly factorizable Rogers model (Feeney 1970).

an interregional zero-sum game for every age group, because equation (3.11) implies $\sum_{j=1}^{r} Q_{iaj} = 0$ for all spatial components. The relative importance of a spatial component at t = 0 depends on the relative size of $c_i = (\hat{P}_1 \otimes \hat{P}_i)K(0)$. Since \hat{P}_1 is strictly positive, and \hat{P}_i (i > 1) has both positive and negative (i.e., mutually cancelling) elements, it is usually the case that c_i (i > 1) are smaller in magnitude than c_1 . In other words, the spatial components are usually less important than the dominant component, even at the initial stage. The sum of all spatial components is called the superimposed spatial component, which is found to have very smooth time-paths in all known empirical applications, although this is not a necessary implication of the fact that the individual spatial components all have smooth exponential time-paths.

The r cyclical components associated with the most durable cluster of complex eigenvalues are called major cyclical components, because with the common period of one generation, they determine jointly the major features of the transmission of population waves from one generation to another. Within this group there is an important distinction between the dominant cyclical component and the remaining ones. The former represent population waves that move synchronically across all regions for each age group (because the dominant right eigenvector Q_1 of Gis real and positive), whereas each of the latter represents population waves that move in opposite directions simultaneously in two non-empty subsets of regions (because every subdominant right eigenvector of G has the aforementioned zero-sum nature). We will call these two contrasting types of waves as synchronical and opposite waves, respectively. Because each subdominant left eigenvector P_{ℓ} (ℓ > 1) of G has both positive and negative elements, and the dominant left eigenvector P1 is strictly positive, the dominant cyclical component is usually more important than the other major cyclical components, even at the initial stage. In other words, we would anticipate the actual population waves to be more synchronical than opposite.

4. THE DYNAMIC PROPERTIES OF THE SWEDISH FEMALE POPULATION SYSTEM

4.1 The Leslie Model of Swedish Female Population

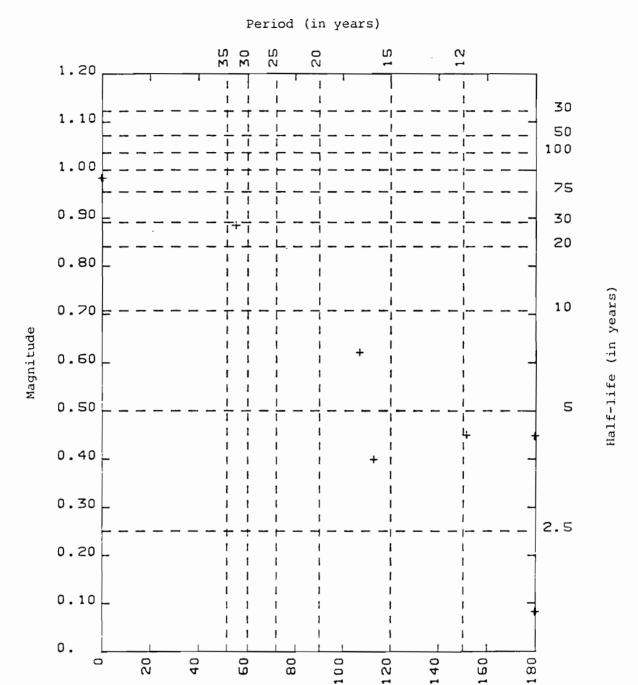
The initial age distribution and the non-zero elements of the growth matrix of the Leslie model of Swedish female population are shown in Table 4.1. The fertility schedule has a high mean age of 29.76 years and a small standard deviation of 5.97 years. Since more than 95% of the population survive from the first to the tenth age group, the net reproduction rate (0.90) is very close to the gross reproduction rate (0.91). Both mortality and fertility levels are low, with the latter being significantly below the replacement level.

Table 4.1 The initial age distribution and the non-zero elements of the growth matrix of the Leslie model of Swedish female population, 1974.

Age group	Initial population	Birth rates (B _i)	Survival rates (S _i)
0-4	300,755	-	0.9949989
5-9	289,672	-	0.9988349
10-14	264,778	0.0000276	0.9986243
15-19	261,624	0.0289772	0.9979913
20-24	282,670	0.1672100	0.9978095
25-29	328,133	0.2963153	0.9972473
30-34	274,276	0.2490735	0.9959975
35-39	226,512	0.1223440	0.9939728
40-44	221,743	0.0378757	0.9903277
45-49	239,077	0.0068123	0.9850863
50-54	269,042	0.0003645	0.9771738
55-59	246,333	-	0.9657391
60-64	248,353	-	0.9435229
65-69	225,571	-	0.9011995
70-74	185,246	_	0.8281277
75 - 79	133,952	-	0.7138729
80-84	81,641	_	0.8100655
85+	49,668	-	_

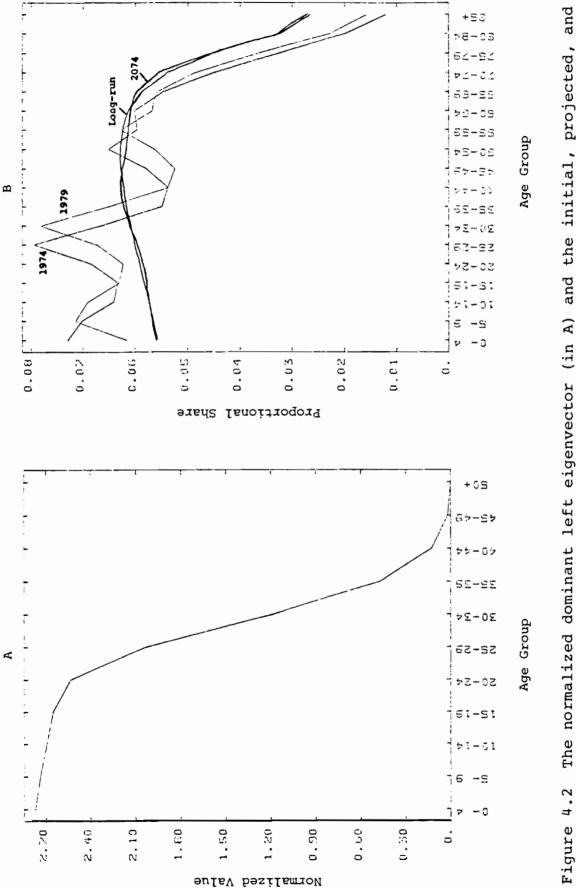
Note: The data are consolidated from the Rogers model, using the initial age-by-region population distribution as the weighting scheme.

The eigenvalues of the growth matrix of the Swedish Leslie model are shown in Table 4.2 and Figure 4.1. We see that as the frequency $(\hat{\theta}_i)$ increases, the magnitude $(\hat{\sigma}_i)$ tends to decrease. The dominant eigenvalue is $\hat{\lambda}_1 = 0.9833$, which implies a long-run growth rate of -0.3% per year and a half-life of 205 years. The smallness of the dominant eigenvalue reflects mainly the low level of the net reproduction rate and partly the unusual length of the mean age of the net fertility function (29.74 years).


The age patterns of the dominant_left and right eigenvectors of the Swedish Leslie model, together with the initial and projected national age profiles are shown in Figure 4.2. First, we see that the elements of the dominant left eigenvector indeed remain at a high level in the first five age groups and then drop very sharply and become zero beyond the end of the reproductive range. Since there is a high concentration of the initial population in the first six age groups, it is not surprising that the stable equivalent $(c_1 = 4,879,000)$ is substantially greater than the initial total population size (4,129,000). The corresponding population momentum is 18%. This means that by the time the system achieves the stable growth pattern, the total population size projected with the observed distribution will be 18% greater than the total population size projected with initial population which was rearranged in advance according to the stable age profile. Because of the positive growth momentum, the Swedish female population continues to expand from 4.13 million in 1974 until the early 1990's when a maximum population size of 4.23 million is reached.

The dominant right eigenvector in Figure 4.2 shows that the long-run age profile starts at about 5.6% in the 0-4 age group, rises smoothly and gently toward a maximum of about 6.2% in the 50-54 age group, and then declines sharply to a minimum of about 2.7% in the 85+ age group. The shape is typical of the industrialized countries whose net reproduction rates are below the replacement level. The dissimilarity index between the 1974 and the long-run age profiles is 7.9%,

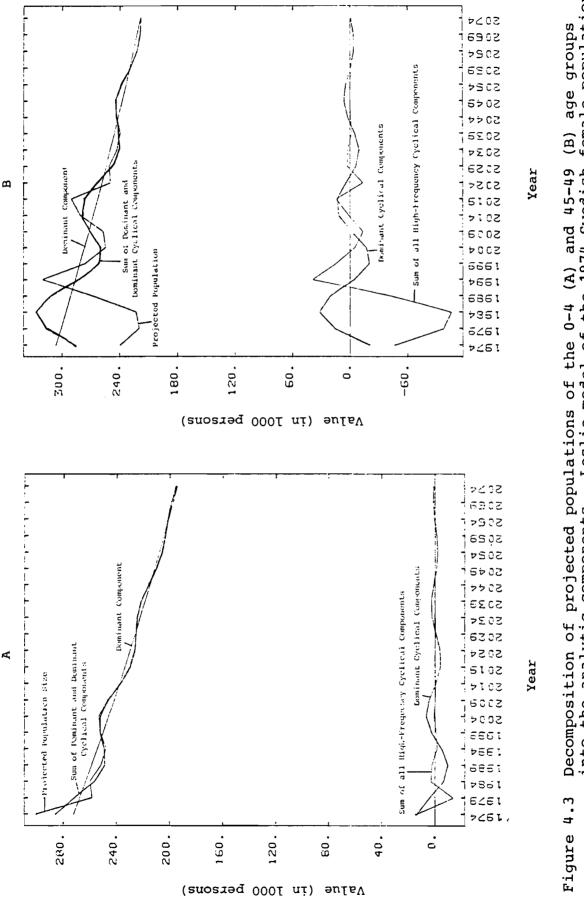
Table 4.2 The non-zero eigenvalues of the Leslie model of Swedish female population, 1974.


Real Part	Imaginary Part	Magnitude	Half-life	Frequency	Period	Annual Rate of Change
(a _i)	(β _i)	(o _i)	(t _i)	θ _i)	(P _i)	(%)
0.98325	0.00000	0.98325	205.17	0.00	ω	-0.337
0.50654	0.72482	0.88427	28.18	55.05	32.70	-2.430
-0.18255	0.59307	0.62053	7.26	107.11	16.81	-9.102
-0.15590	0.36628	0.39807	3.76	113.06	15.92	-16.825
-0.39484	0.21429	0.44925	4.33	151.51	11.88	-14.789
-0.44793	0.00000	0.44793	4.31	180.00	10.00	-14.839
-0.08181	0.00000	0.08181	1.38	180.00	10.00	-39.387

Note: Each complex conjugate pair is represented by the eigenvalue with positive imaginary part. Half-lives and periods are in years, whereas frequencies are measured in degrees per five years. The second and third pair of complex eigenvalues have periods of 17 and 16 years instead of 21 and 13 years found in most national populations.

Frequence (in Deg./5 years)

Figure 4.1 The pattern of non-zero eigenvalues of the growth matrix of the Leslie model of the 1974 Swedish female population. For complex eigenvalues, only those with positive imaginary part are shown.


The normalized dominant left eigenvector (in A) and the initial, projected, and long-run age profiles (in B) of the Leslie model of the 1974 Swedish female long-run age profiles (in B)
population.

which means that 7.9% of the population has to be redistributed in order to make the two age profiles identical. If we use a dissimilarity index of 2% to indicate the "completion" of the convergence toward the long-run distribution, then the convergence of the age profile of the Swedish Leslie model is completed in less than 60 years.

The period of the dominant cyclical component of the Swedish model (p₁ = 32.70 years) is perhaps the longest of all recorded national populations. This is, of course, due to the very high mean age of the fertility schedule (29.76 years). The corresponding half-life is also exceptionally long (28.18 years), thanks to the strong concentration of the fertility schedule (standard deviation = 5.97 years), which is the result of very deliberate and effective birth control. This half-life implies a damping rate, relative to the dominant component, of 2.1% per year, which is smaller than those of the 47 populations examined by Coale (1972). Therefore, although the overall shape of the long-run age profile is nearly achieved in about 60 years, population waves passing through individual age groups are still visible even in 100 years (see Figures 4.2b and 4.3).

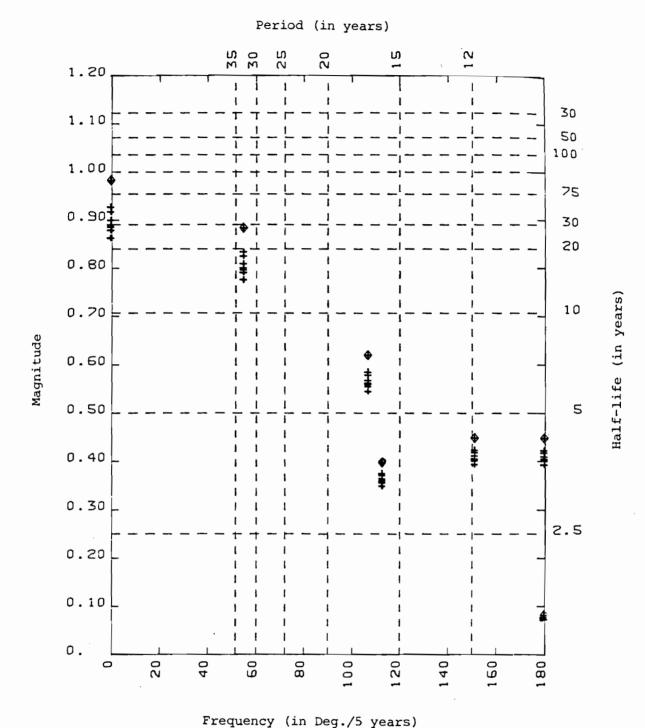
We see in Figure 4.3a that for the 0-4 age group, the time-path of the sum of the dominant and the dominant cyclical components provides a good approximation to that of the actual projected population. By 1984, the difference between the two time-paths becomes negligible. The population wave has the first trough around 1989 (due to the deficit in potential mothers who were born in the late 1950's and early 1960's), which is followed by a peak around 2004 (due to a "surplus" of mothers who were born in the late 1960's and early 1970's).

Figure 4.3b is quite instructive in demonstrating the tendency that, for relatively old age-groups, the sum of the dominant and the dominant cyclical components becomes a poor approximation in the short run for the projected population. The lack of fit is mainly due to the past changes in fertility level (a babybust in the 1930's, a babyboom in the 1940's, etc.).

Leslie model of the 1974 Swedish female population. into the analytic components.

In a pure mathematical sense, this lack of fit is completely accounted for by the high frequency components. However, it does not really make substantive sense to say that the fluctuations in the fertility level in the previous decades can be explained by the high-frequency eigenvalues and eigenvectors of the 1974 growth matrix. With very short half-lives (between 7.3 and 1.4 years), all high frequency components are damped at least three times faster than the dominant cyclical component.

In summary, the Leslie model of the 1974 Swedish female population system has (1) a low long-run growth rate which is compensated for in the near future by a large growth momentum, (2) new population waves with an exceptionally small damping rate and long period, and (3) a smooth long-run age profile which has a weak maximum in the 50-54 age group.


4.2 The Factorizable Rogers Model of the Swedish Female Popula-

The pure migration matrix G of the Swedish female population is shown in Table 4.3. It has been aggregated from the growth matrix of the Rogers model, using the 1974 age-by-region population distribution as the weighting scheme. The origin-destination migration rates range between 0.16% (South to Lower North) and 3.03% (Stockholm to East Middle). The region with the highest overall outmigration rate is East Middle (9.34%), whereas the lowest is West (5.41%). The eigenvalues of \hat{G} are all positive, lying between $\hat{\lambda}_1$ = 1 and $\hat{\lambda}_8$ = 0.8776.

The pattern of eigenvalues of the factorizable Rogers model of the Swedish female population is shown in Figure 4.4. It is indeed true that (1) corresponding to each eigenvalue of the Leslie model, there is a *cluster* of exactly r = 8 eigenvalues in the factorizable Rogers model; (2) within each cluster, all eigenvalues have the same frequency; and (3) the eigenvalue with the largest magnitude in each cluster is equal to an eigenvalue of the Leslie model. It is interesting to note that the

The pure migration matrix of the 1974 Swedish female population system. Table 4.3

	1. Stockholm 2. E.Middle	2. E.Middle	3. S.Middle 4. South 5. West	4. South		6. N.Middle 7. Lower N 8. Upper N	7. Lower N	8. Upper N
1	0.9100260	0.0291638	0.0144563	0.0115044	0.0115044 0.0100683 0.0203012	0.0203012	0.0269362	0.0247430
2	0.0302616	0.9065597	0.0183964	0.0085602	0.0085602 0.0104117 0.0252818	0.0252818	0.0165243	0.0178878
3	0.0082713	0.0099692	0.9120762	0.0126780	0.0126780 0.0086577	0.0040046	0.0033789	0.0040753
4	0.0106424	0.0098901	0.0227336	0.9458716	0.9458716 0.0112034	0.0044099	0.0054205	0.0049233
5	0.0107466	0.0153346	0.0232770	0.0140280	0.9467833	0.0158879	0.0102412	0.0096963
9	0.0147180	0.0170390	0.0048151	0.0036324	0.0072849	0.9193038	0.0119886	0.0082651
7	0.0080689	0.0054704	0.0015785	0.0015529	0.0025006 0.0059100	0.0059100	0.9115434	0.0117927
8	0.0072653	0.0065733	0.0026669	0.0021724	006080000	0.0049010	0.0139669	0.9186165
Total Migration	0.0899740	0.0934403	0.0879238	0.0541284	0.0541284 0.0532167 0.0806962	0.0806962	0.0884566	0.0813835

requestey (in beg./5 years)

Figure 4.4 The pattern of non-zero eigenvalues of the growth matrix of the factorizable Rogers model of the 1974 Swedish female population. The eigenvalues of the corresponding Leslie model are shown as diamonds.

difference in magnitude among the major complex eigenvalues is due to the moderate level of interregional migration and has nothing to do with the interregional difference in the shapes of regional fertility schedules.

The differential importance of the dominant and spatial components are indicated in Table 4.4. First, the fact that the initial regional loadings of the dominant are much greater in magnitude than those of the spatial components suggests that the initial interregional population distribution is rather compatible with the current basic demographic processes. dissimilarity index between the initial and the long-run interregional population distribution is only 4.15%. Second, the fact that the spatial components have large positive loadings on Stockholm, East Middle, and South Middle on the one hand, and large negative loadings on West and South on the other indicates that the general trend of geographical redistribution is from Stockholm, East Middle, and South Middle to West and South. Third, the fact that the spatial component with the shortest half-life (23.50 years) has the largest positive and negative loadings on Stockholm and East Middle, respectively, is due to the fact that the interregional migration rates between these two regions are at the highest level. The annual relative damping rate is 2.57% for this component and 1.16% for the most durable spatial component.

The eight major cyclical components have a common period of 32.70 years and have annual relative damping rates within the range of 2.09% and 4.61%. Since this range overlaps with the range of the damping rates of the spatial components, it might happen that very large loadings are associated with λ_8 and σ_1 and hence, spatial convergence proceeds more rapidly than the convergence in regional age profiles. However, we see in Tables 4.4 and 4.5 that relatively high loadings are associated with λ_2 , λ_5 , λ_7 , σ_1 , σ_7 , and σ_8 . Therefore, the Swedish interregional population system, just as the Canadian system (Liaw 1980a), shows the usual tendency that convergence in the regional age profiles proceeds at a faster rate than spatial convergence.

The half-lives, initial levels, and initial regional loadings on the 0-4 age group of the dominant and spatial components of the factorizable Rogers model of the 1974 Swedish female population.* Table 4.4

Half-life	Initial	Stockholm	E.Middle	S.Middle	South	West	N.Middle	Lower N	Upper N
(t _i)	(c ₁)	Initial Reg	Initial Regional Loadings (c ₁ Q _{iaj})	gs (c _i Q _{iaj})					
205.17	4,879,430	44,933	43,095	23,719	43,829	57,739	29,539	13,663	15,755
45.89	246,088	1,599	1,527	-862	-4,376	-1,620	1,634	1,005	1,100
40.30	60,405	276	184	92	698	-1,685	52	104	124
32.90	25,799	50	210	52	-29	-196	408	-149	-346
29.84	267,198	1,210	1,636	4,256	-2,376	-1,235	-2,993	-850	353
28.71	20,874	-88	30	-75	51	9-	188	-413	313
27.03	198,608	2,798	1,904	-2,115	156	683	-2,277	-903	-245
23.50	34,081	724	-873	67	-19	46	102	-59	13

*The unit of half life is measured in years, and c_i and c_i are in persons.

The half-lives, periods, and regional information about the 0-4 age group of the major cyclical components of the factorizable Rogers model of the 1974 Swedish female population. Table 4.5

28.18 19.08 18.04 16.39 15.59 15.28 14.79									
28.18 19.08 18.04 16.39 15.59 14.79				Initial Reg	Initial Regional Upperbounds (2d ₁ Y _{iaj})	rbounds (20	d'Yiaj)		
19.08 18.04 16.39 15.59 14.79	32.70	2,349	2,253	1,240	2,291	3,018	1,544	714	824
18.04 16.39 15.59 14.79	32.70	113	108	61	308	115	115		77
16.39 15.59 15.28 14.79	32.70	141	94	39	, 442	857	26	2.5	63
15.59 15.28 14.79 13.67	32.70	72	536	73	41	279	581	213	493
15.28 14.79 13.67	32.70	162	219	569	. 318	. 165	401	114	47
14.79 13.67	32.70	103	36	87	09	7	219	483	392
13.67	32.70	2,442	1,662	1,845	136	596	1,987	788	214
	32.70	2,069	2,495	191	54	132	290	169	37
				Initial Regional Phase Angles (e _l	onal Phase	Angles (e	1 + 0 iaj		
28.18	32.70	15.59	15.59	15.59	15.59	15.59	15.59	15.59	15.59
19.08	32.70	-161.59	-161.59	18.41	18.41	18.41	-161.59	-161.59	-161.59
18.04	32.70	-107.67	-107.67	-107.67	-107.67	72.33	-107.67	-107.67	-107.67
.6.39	32.70	-62.58	-62.58	-62.58	117.42	117.42	-62.58	117.42	117.42
.5.59	32.70	-1.29	-1.29	-1.29	178.71	178.71	178.11	178.71	-1.29
15.28	32.70	-60.29	119.71	-60.29	119.71	-60.29	119.71	-60.29	119.71
14.79	32.70	-64.16	-64.16	115.84	-64.16	-64.16	115.84	115.84	115.84
13.67	32.70	-84.38	95.62	-84.38	95.62	-84.83	-84.83	95,62	-84.38
			Initi	Initial Regional Loadings $[2d_{f i}\gamma_{f iaf j}$ $\cos(e_{f i}+\phi_{f iaf j})]$	Loadings [7	'd _i 'iaj co	s(e ₁ + \$\psi_{\text{iaj}}\$)]	
28.18	32.70	2,262	2,170	1,194	2,207	2,907	1,487	688	793
19.08	32.70	-107	-102	58	292	109	-109	-67	-73
18.04	32.70	-43	-28	-12	-134	260	8	-16	-19
16.39	32.70	33	138	34	-19	-128	268	-98	-227
15.59	32.70	162	219	569	-318	-165	-401	-114	47
5.28	32,70	21	-18	43	-30	4	-109	239	-181
14.79	32,70	1,064	724	-804	59	260	-866	-344	-93
13.67	32.70	203	-244	19	5-	13	28	-17	4
SUM	•	3,626	2,858	1,101	2,052	3,258	291	272	250

The major cyclical components are characterized in Table 4.5. Since the initial regional phase angles of the dominant cyclical component for the 0-4 age group are all equal to 15.59 degrees, the synchronical population waves start near their maximums at t = 0. The regional phase angles of each of the remaining major cyclical components are arranged in two exactly opposite directions (i.e., they differ by 180 degrees). each of the components represents opposite population waves that involve a zero-sum type of trade-off among the regions. Since the regional upperbounds of fluctuations are in general greater for the dominant cyclical components than for the remaining major cyclical components, we see in Figure 4.5 that the regional time-paths of the superimposed major cyclical component for the 0-4 age group appear more synchronical than opposite. The effect of the subdominant major cyclical components is shown to be the advancement of the first trough in South Middle, North Middle, Lower North, and Upper North by five years, and the delay of the first trough in Stockholm by the same length of time. Since the dominant cyclical component is much more durable than the remaining ones, the tendency of increasing synchronization is clearly seen in Figure 4.5.

As a consequence of the fact that $Q_1 = \hat{Q}_1 \otimes \hat{Q}_1$, the factorizable Rogers model has the unattractive property that all regional long-run age profiles must be identical to the smooth long-run profile of the corresponding Leslie model. This is, of course, the price we pay for analytic clarity. However, the factorizable Rogers model is much better than a set of single-region Leslie models as an approximation to the general Rogers model.

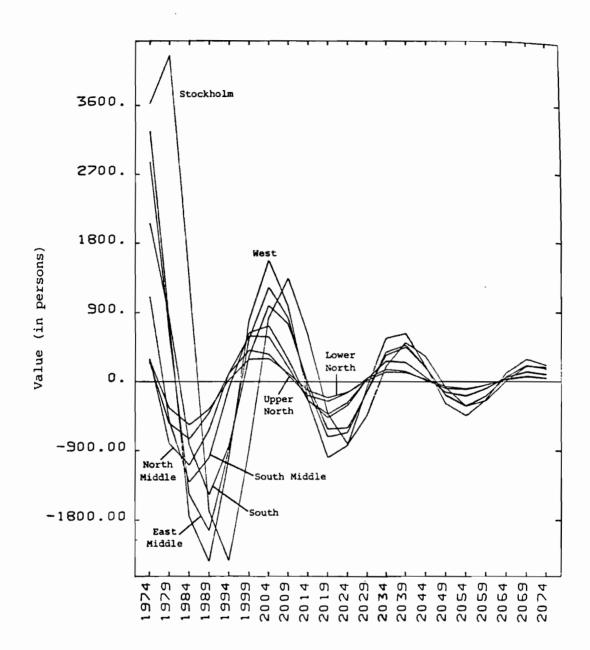
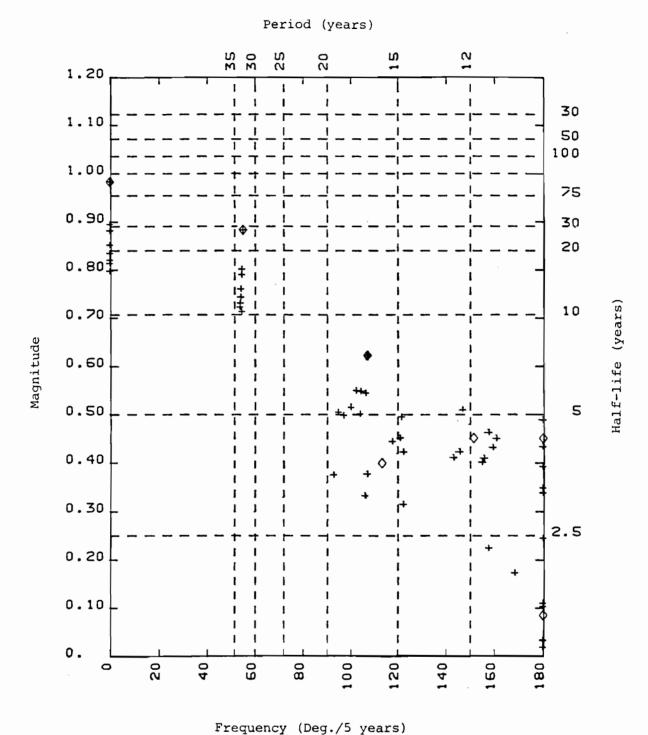


Figure 4.5 The regional time-paths of the superimposed major cyclical component for the 0-4 age group of the factorizable Rogers model of the 1974 Swedish female population.

4.3 The (Non-factorizable) Rogers Model of the Swedish Female Population


The non-zero submatrices of the growth matrix of the Rogers model of the 1974 Swedish female population is shown in Appendix The regional fertility, survival, and interregional outmigration schedules are characterized by gross rates, mean ages, and standard deviations in Table 4.6. The regional survival schedules have almost identical mean ages (about 41 years) and standard deviations (about 24 years) but have gross rates that are somewhat higher in the highly urbanized regions (Stockholm, South, and West) than in the rest of the country. Similarly, regional fertility schedules are almost identical with respect to mean age (30 years) and standard deviation (6 years), but differ somewhat in gross rate, ranging from 0.83 in Stockholm to 0.96 in Upper North. In contrast, interregional migration schedules differ more across regions in all three characteristics: the gross rates range from 1.29 in East Middle to 0.74 in West; the mean ages from 25.3 in Lower North to 28.6 in Stockholm; and the standard deviations from 16.8 in Lower North to 19.9 in Stockholm.

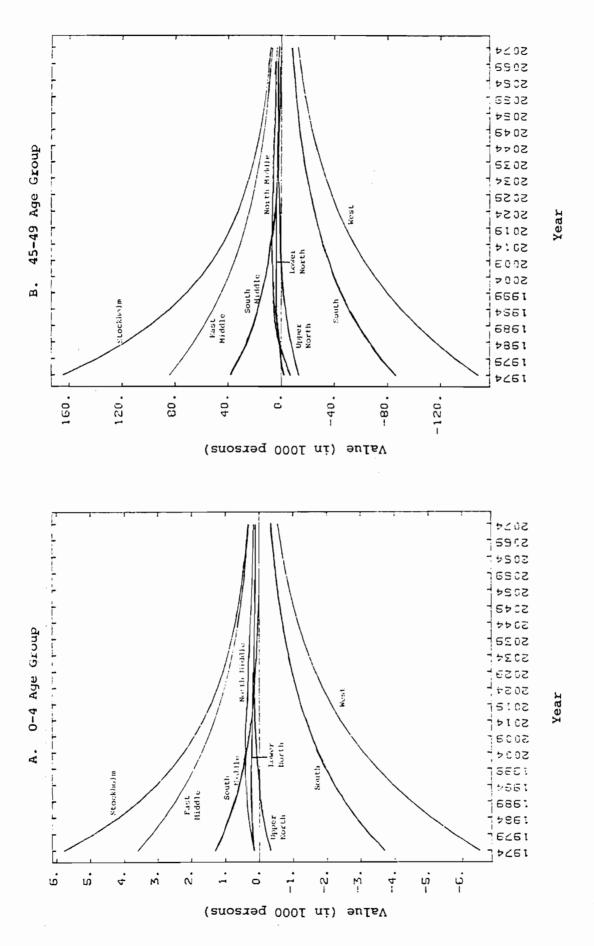
The eigenvalues of the growth matrix are shown in Figure 4.6. The overall negative relationship between the durability (half-life) and frequency of the analytic components of the Rogers model is similar to that of the corresponding Leslie model. Comparing Figures 4.4 and 4.6, we find that the dispersion in the two most durable clusters of eigenvalues of the Rogers model is similar to that of the corresponding factorizable model.

Table 4.7 shows how the dominant and spatial components convey the information about interregional redistribution process. First, the initial loadings of the dominant component are much larger in magnitude than those of the spatial components. This implies that the initial and long-run spatial distributions are very similar. For the whole system, the spatial dissimilarity index between the two distributions is only 4.14%. Second, the spatial components have relatively large positive initial loadings on Stockholm, East Middle, and South Middle, and relatively large

The gross rates, mean ages, and standard deviations of the regional fertility, survival, and migration schedules of the (non-factorizable) Rogers model of the Swedish female population. Table 4.6

	Stockholm	E.Middle	S.Middle	South	West	N.Middle	Lower N	Upper N
			Fertil	Fertility Schedules	les			
Gross Rate Mean Age	0.8326	0.9310	0.9571	0.9152	0.9262	0.9064	0.9228	0.9623
Stand. Dev.	5.99	5.91	00.9	5.89	5.98	6.01	5.94	5.98
			Surviv	Survival Schedules	sə.			
Gross Rate	16.1606	16.0535	16.0780	16.1583	16.1168	15.9728	16.0286	16.0201
Mean Age	41.03	40.75	40.80	40.98	40.88	40.56	40.73	40.69
Stand. Dev.	24.07	23.92	23.93	24.02	23.97	23.82	23.93	23.90
Gross Death Rate	1.8394	1.9465	1.9220	1.8417	1.8832	2.0272	1.9714	1.9799
		Interr	Interregional Migration Schedules	ation Sche	dules			
Gross Rate	1.2510	1.2908	1.2402	0.7535	0.7367	1.1708	1.2821	1.1029
Mean Age	28.63	26.59	26.05	26.16	26.47	25.91	25.30	26.08
Stand. Dev.	19.85	17.81	17.35	17.03	17.69	17.43	16.82	17.21

riequency (beg./5 years)


Figure 4.6 The pattern of non-zero eigenvalues of the (non-factorizable) Rogers model of the 1974 Swedish female population. The eigenvalues of the corresponding Leslie model are shown as diamonds.

The half-lives, initial levels, and initial regional loadings on the 0-4 age group of the dominant and spatial components of the (non-factorizable) Rogers model of the 1974 Swedish female population. Table 4.7

	Initial	Stockholm	E.Middle	S.Middle	South	West	N.Middle Lower N	Lower N	Upper N
Half-life (t _i)	Level (C _i)	C _i Ω _{i,1j}							
209.39	4,860,345	44,359	44,571	23,984	41,785	626,09	26,198	12,236	17,735
31.42	311,545	1,865	1,726	-871	-4,103	-1,904	1,322	826	1,357
27.75	164,942	596	414	222	1,874	-3,505	89	140	274
21.72	191,276	541	1,420	440	-401	-993	1,377	-286	-2,001
19.23	158,708	57	351	2,163	-1,003	-528	-1,154	-250	299
17.58	64,679	423	-114	-67	-35	86	-532	297	-341
16.84	154,426	1,107	1,056	-665	14	269	-1,107	-695	69
15.36	97,537	1,193	-1,261	88	-25	57	177	-192	19

negative initial loadings on South and West. This implies that the spatial redistribution process, though rather unimportant, is mainly from Stockholm, East Middle, and South Middle to West and South. Third, the most rapidly damped spatial component has loadings of relatively large magnitudes on Stockholm and East This reflects the high mobility level between these two regions. All these three main points were seen to be true for the factorizable Rogers model, although the right eigenvectors associated with subdominant positive eigenvalues of the nonfactorizable model are no longer guaranteed to have the zero-sum nature. Of particular interest is the fact that, although the individual spatial components have very different relative annual damping rates (1.85% for λ_2 and 4.08% for λ_2), the regional timepaths of the superimposed spatial component remain very smooth not only for a whole region but also for individual age groups (see Figure 4.7).

Table 4.8 and Figure 4.8 show how the transmission of population waves through the 0-4 age group is accounted for by the major cyclical components. First, the regional upperbounds of fluctuations (2d $_{\textrm{i}}\gamma_{\textrm{iai}})$ are significantly larger for the dominant cyclical component than for the remaining cyclical components. This suggests that regional population waves will look more like synchronical rather than opposite waves. that the nearly synchronical nature of the dominant cyclical component is indicated by the fact that its regional phase angles are bunched narrowly in only one direction. The regional time-paths of the superimposed major cyclical component in Figure 4.8 suggests that the nearly synchronical population waves will cause the youngest age group to have a major trough in 1989 and a major peak in 2004. Second, the relative damping rates of the major cyclical components range between 2.09% per year for σ_1 and 6.20% per year for σ_8 . These damping rates are, on the average, greater than those of the spatial components. This explains why convergence in the age profiles tends to proceed faster than spatial convergence. Third, the fact that the damping rate of the dominant cyclical component is exceptionally small (due to the high concentration of the regional fertility

The regional time-paths of the superimposed spatial component for the 0-4 age group (A) and all ages (B) of the (non-factorizable) Rogers model of the 1974 group (A) and all ages (B) Swedish female population. Figure 4.7

The half-lives, periods, and regional information about the 0-4 age group of the major cyclical components of the non-factorizable model of the 1974 Swedish female population. Table 4.8

1	(P,)	SCOCKHOTH	E.Middle	S.Middle	South	West	N.Middle	Lower N	Upper N
	•			Initial Regional Upperbounds $(2d_1 \gamma_{1aj})$	ional Uppe	rbounds (2c	d ₁ Y _{iaj})		
28.26	30,05	2.383	2,308	1.240	2,202	3,190	1.284	627	933
15.70	32.93	-	156	74	378	158	110	75	126
14 73	32.97	124	08	3.5	337	652	22	S &	09
2,67	33.20	314	481	771	163	331	284	8 6	643
70.11	33.00	44.	, c	7.7	169	766	100	ני מ	ה מ מ
77.70	67.66	200	07.	6	100	2	100	900	נטנ
90.11	33.28	316 1	148	227	77	20	302	296	163
10.26	32.96	•	917	160	23	67	355	93 93	23
				Initial Regional Phase Angles ($\mathbf{e_{i}}$	onal Phase	Angles (e	1 + 4 iaj)		
28.26	32.96	12.22	21.73	13.91	15.86	16.09	10.83	10.83	9.22
15.70	32.93	-158.04	-142.35	25.49	32.41	10.65	-146.50	-161.83	-167.03
4.73	32.97	-77.20	-53.99	-95.97	-87.91	100.23	-26.23	-70.94	-79.69
12.67	33.20	-31.37	17.14	8.13	172.08	-175.97	14.63	-140.48	-173.03
11.70	33.19	174.01	88.65	54.73	-122.21	-131.61	-104.46	-151.77	43.81
1.08	33.28	23.16	178.76	-85.80	174.79	4.31	-174.31	14.90	-149.01
10.69	33.42	-18.03	77.87	-167.79	132.07	-18.39	174.81	174.64	-35.76
10.26	32.96	156.37	-58.26	114.65	20.28	-102.93	103.86	26.08	115.60
			Initial	al Regional	Loadings [7	²d₁Y _{iaj} co≗	Regional Loadings $[2d_{1}\gamma_{1a_{1}}\cos(e_{1}+\phi_{1a_{1}})]$	_	
28.26	32.96	2,329	2,144	1,203	2,119	3,065	1,220	616	921
15.70	32.93	-169	-124	67	319	155	-92	-71	-123
4.73	32.97	28	47	4-	12	-116	19	10	11
12.67	33.20	268	460	175	-161	-330	371	-72	-638
1.70	33,19	174	89	55	-122	-132	-104	-152	44
11.08	33.28	263	-148	4	-27	62	-301	286	-142
10.69	33.42	1,156	105	-315	-15	166	-584	-522	61
10.26	32.96	-460	482	-67	22	-2	-85	84	-10

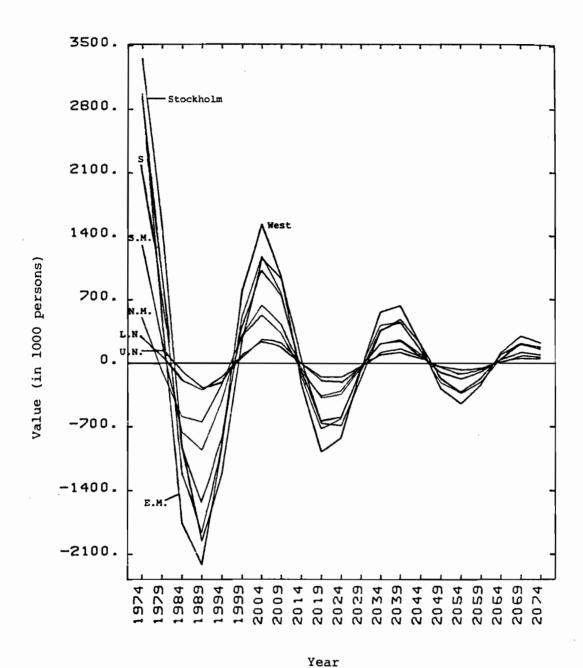


Figure 4.8 The regional time-paths of the superimposed major cyclical component for the 0-4 age group of the (non-factorizable) Rogers model of the 1974 Swedish female population.

schedules around the mean ages) implies that population waves may remain visible even after the overall pattern of the long-run regional age profiles has been closely approached. Again, these points were observed from the factorizable model. Finally, comparing Figures 4.4 and 4.6, we can infer that the dispersion of major complex eigenvalues depends more on the level of migration than on the interregional difference in the shapes of regional fertility schedules.*

Because not only the propensity to move but also the choice of destination of the Swedish population are highly selective with respect to age, the dominant right eigenvector of the growth matrix of the Rogers model implies a set of long-run regional age profiles in Figure 4.9 that are very different from the smooth long-run national age profile of the corresponding Leslie matrix. In Upper North, Lower North, North Middle, and South Middle, the long-run regional age profiles have a surplus in the youngest three or four age groups and a deficit in the 20-34 age groups, whereas Stockholm's long-run age profile This is, of course, the result displays the opposite pattern. of two contrasting migration pattern: capital outflow versus capital inflow (Rogers 1979). The smoothest long-run regional age profiles are found in East Middle, West, and South, reflecting the fact that age-selectivity in migration does not always cause irregularities in age profiles, even when the total inand out-flows are not balanced in individual regions. the difference in the gross reproduction rate between Stockholm (0.83) and Upper North (0.96) are reflected in the difference in slope between their long-run age profiles. The point is that a large difference in the overall slope of long-run regional age profiles is usually the result of interregional fertility differences.

^{*}This point escaped the author's attention in an earlier paper (Liaw 1979).

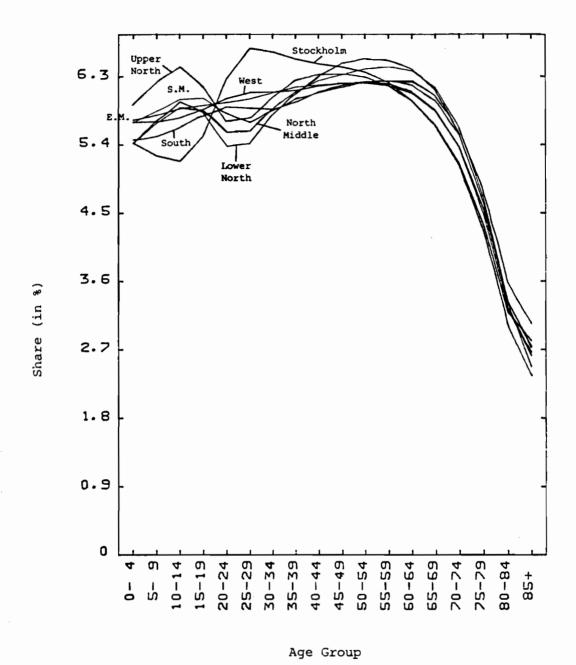


Figure 4.9 Regional long-run age profiles of the (non-factorizable) Rogers model of the 1974 Swedish female population.

Now let us look at the actual projection result in the light of the analytic components. Figure 4.10 shows (1) that the initial and the long-run spatial distributions are very similar; (2) that the spatial redistribution process is non-cyclical and proceeds at a slow speed; and (3) that the major gaining regions are indeed West and South, and the major losing regions are Stockholm, East Middle, and South Middle. These are consistent to what we have learned from the dominant and spatial components of the analytic solution.

The projected time-paths of the regional populations in the youngest age group are shown, with those of the meaningful analytic components, in Figure 4.11. We see in this figure (1) that each actual projected regional population fluctuates around a trend which is the sum of the dominant and superimposed spatial components; (2) that the fluctuations around the trend have a period of about 33 years and are closely approximated by the time-path of the superimposed major cyclical component; (3) that the spatial components are much less important than the dominant component in determining the trend, particularly in the two northern regions; and (4) that the damped population waves, with a major trough around 1989 and a major peak around 2004, are still quite visible in 60 years. Therefore, at least for the youngest age group, the analytic solution appears to be a useful scheme of decomposition.

Despite the fact that the long-run growth rate is negative 0.3% per year, the average annual growth rate of the whole population in the first 20 years (1974-1994) is projected to be positive 0.1%. This positive growth is consistent with the positive growth momentum of 18%. However, the system switches to negative growth before the turn of the century.

Lacking moving pictures, Figure 4.12 is used to indicate the convergence toward various long-run regional age profiles. All initial regional age profiles reflect, to various extents, past fertility changes from the low level in the 1925-39 period to a sharp rebound in the 1940's, to another low level in the 1950's, and then to a weak recovery in the 1960's just before the on-set

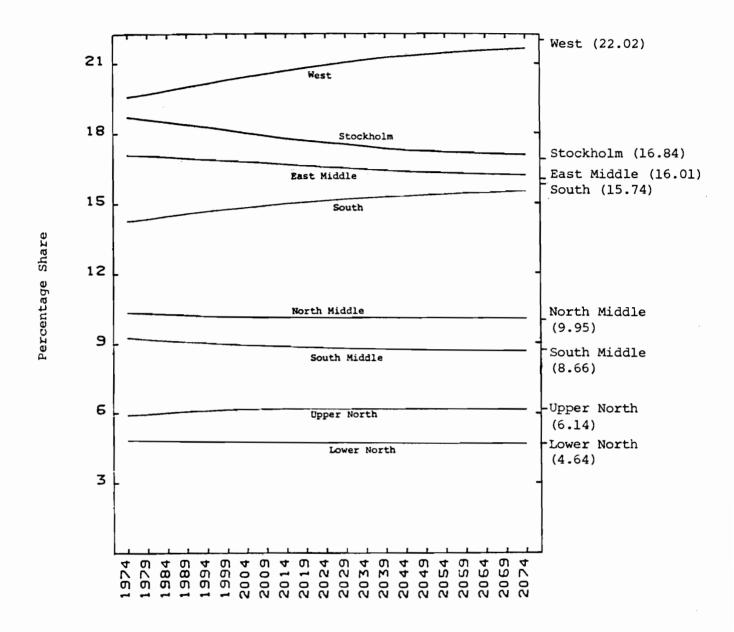


Figure 4.10 The projected regional shares of the Rogers model of the 1974 Swedish female population. The long-run shares are marked on the right axis.

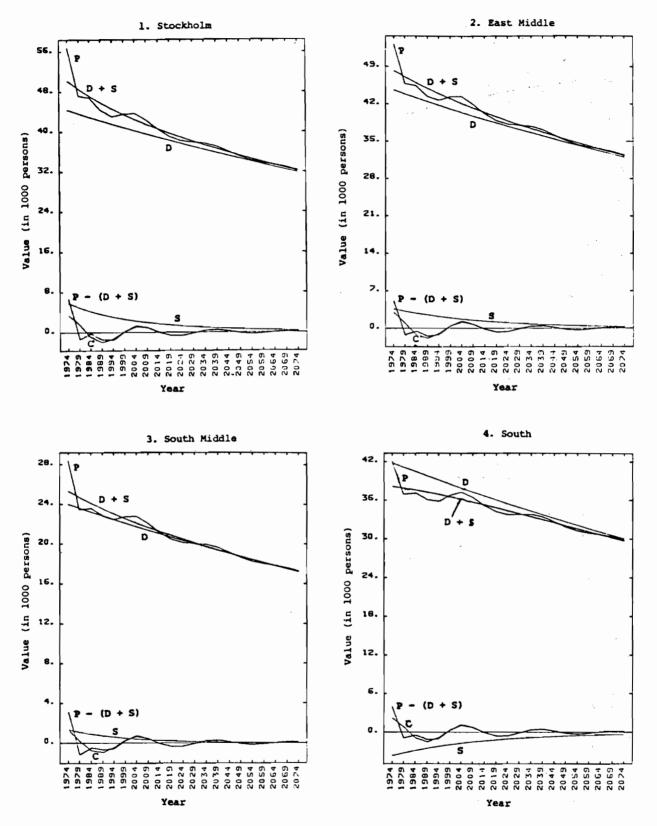


Figure 4.11 The analytic decomposition of the projected regional population sizes in the 0-4 age group of the (non-factorizable) Rogers model of the 1974 Swedish female population. P = projected population size; D = dominant component; S = superimposed spatial component; C = superimposed major cyclical component.

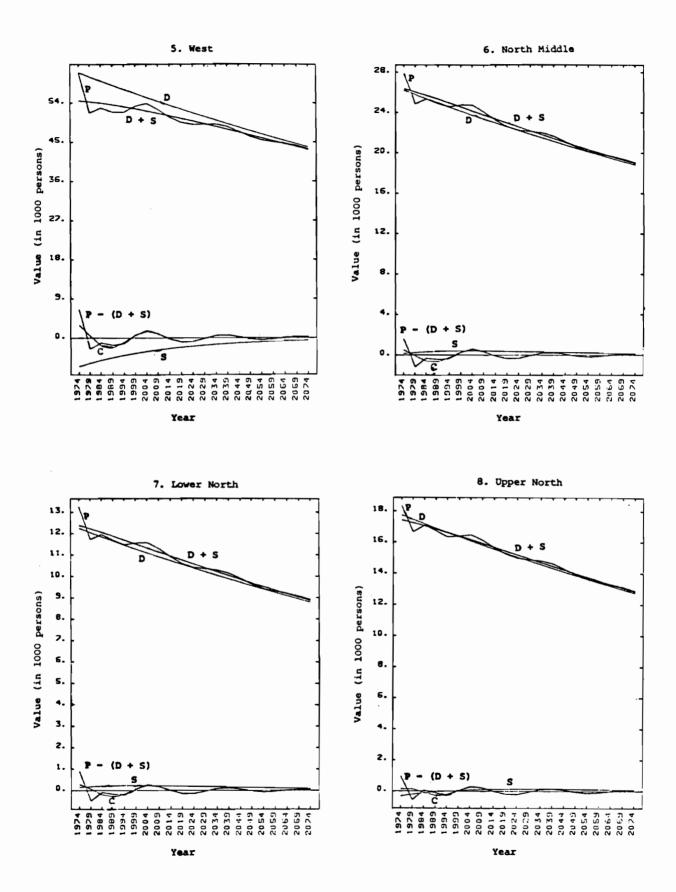


Figure 4.11 Continued.

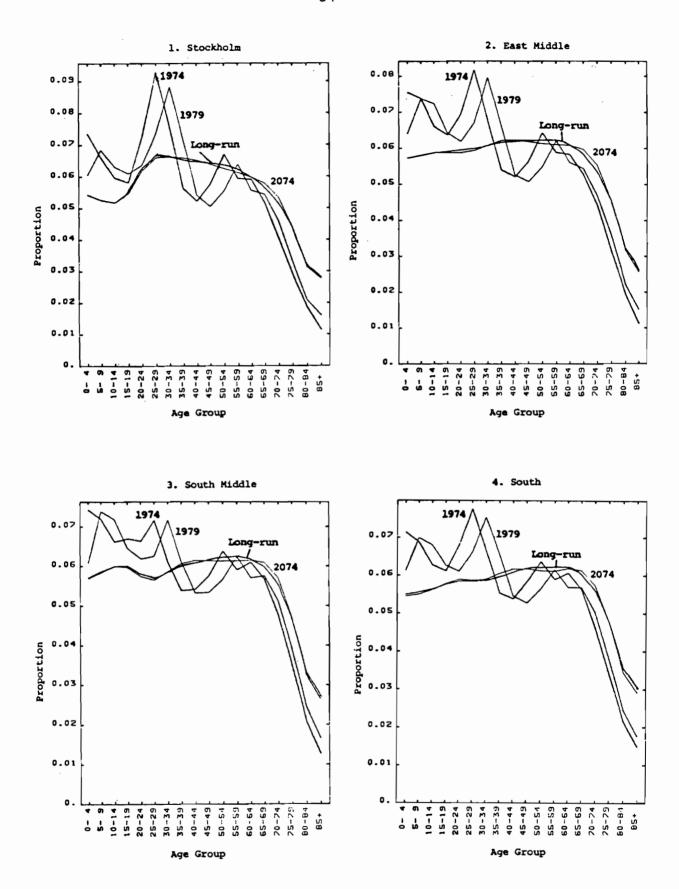


Figure 4.12 The initial, projected, and long-run regional age profiles of the (non-factorizable) Rogers model of the 1974 Swedish female population.

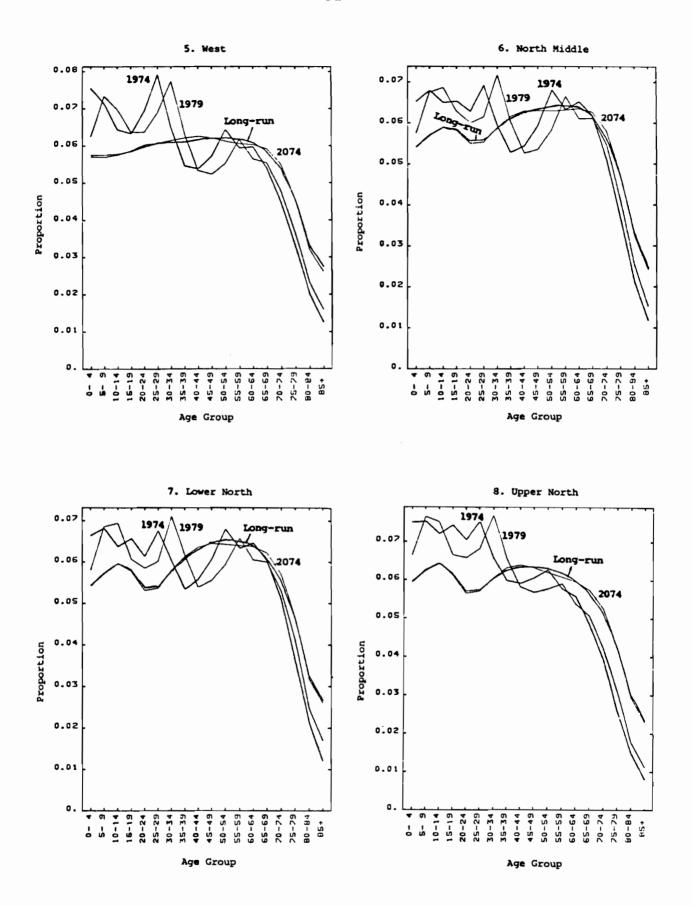


Figure 4.12 Continued.

of a deeper decline in the 1970's. The selectivity in the migration process in the recent past reinforces the concentration of Stockholm's population in the 25-29 age group on the 1974 age profile. The dissimilarity index between the initial and long-run age profiles ranges from 6.13% in Lower North to 9.22% in Stockholm. No matter whether the regional long-run age profiles are smooth or irregular, the convergence in age profile is completed (i.e., within 2%) for all regions in 55 years. Figure 4.12 shows the closeness of the 2074 and the long-run regional age profiles, although systematic deviations, due to the dominant cyclical component's small rate of attenuation, remain visible. In other words, the major outline of a regional long-run age profile is achieved long before the population waves become invisible.

Table 4.9 summarizes the evolution of regional age profiles in terms of mean age, percentage older than 64, and dissimilarity index. The trend in every region is, as a reflection of the very low fertility level, toward an older population. In terms of all three indices, the projected regional age profiles are already quite similar to their long-run counterparts by the year 2014. For government officials in Canada and the United States who are concerned with the problems of ageing population, it would be instructive to watch how the Swedes deal with the increasingly high proportion of senior citizens, which will remain much higher than in North America for many more decades.

Changing characteristics of regional age profiles of the 1974 Swedish female population system projected by the non-factorizable Rogers model. Table 4.9

					2	N.M.Taale	Lower N	Upper N	Sweden
				Me	Mean Age				
1974	37.9	37.8	38.6	38.9	38.2	39.7	39.7	36.5	38.3
1984	39.6	39.3	40.1	40.1	39.4	40.8	40.8	38.1	39.7
1994	40.7	40.2	40.8	40.9	40.0	40.2	40.2	39.1	40.5
2004	41.1	40.6	41.0	41.2	40.2	41.2	41.3	39.6	40.8
2014	41.6	41.2	41.5	41.7	40.8	41.7	41.8		
Long-run	42.4	42.1	42.4	43.1	42.3	42.8	42.8	41.3	42.4
				Percentage	Older	Than 64			
1974	15.1	15.9	17.3	17.3	16.4	18.2	18.1	13.6	16.4
1984	18.0	18.2	19.6	19.4	18.6	20.4	20.1	16.2	18.7
1994	18.9	19.0	20.2	20.0	18.9	20.6	20.3	17.1	19.3
2004	17.4	17.6	18.9	18.7	17.4	18.7	18.6	16.6	17.9
2014	20.0	20.1	20.7	20.9	19.3	20.4	20.4	18.6	20.1
Long-run	21.1	21.5	22.2	23.0	21.8	22.2	22.2	20.3	21.8
		Dis	Dissimilarity In	Index w.r.t.		Long-run Regional Age	Profile		
1974	9.2	8.6	7.0	7.7	7.7	6.2	6.1	8.5	7.9
1984	6.7	9.9	5.2	6.5	6.4	4.9	4.9	8.9	6.2
1994	5.2	5.2	4.2	5.4	5.6	4.4	4.4	5.3	5.0
2004	4.2	4.3	3.8	4.6	4.9	4.0	4.0	4.1	4.3
2014	3.3	3.2	3.0	3.5	3.7	3.1	3.0	2.9	3.3
2024	2.3	2.2	2.2	2.3	2.3	2.0		1.7	2.2
2034	7 1	,	,		,	u -	u	,	י כ

5. THE DYNAMIC PROPERTIES OF THE SOVIET AGE-BY-REGION POPULATION SYSTEM

The growth matrix of the Soviet age-by-region population system is shown in Appendix B. The regional schedules of fertility, survival, and interregional migration are characterized by the gross rate, mean age, and standard deviation in Table 5.1. It is interesting to note the sharp interregional contrast in fertility schedules between the northern urban regions on the one hand and the rural and southern urban regions on the other.

The dominant eigenvalue of the growth matrix is $\lambda_1=1.0297$, which implies an annual long-run growth rate of 0.59% and a long-run doubling time of 118 years. The fact that this dominant eigenvalue is much larger than that of the Swedish system is mainly due to the higher gross reproduction rate (1.28) and partly due to the lower mean age (24.5 years) of the national fertility schedule of the Soviet Union.

Figure 5.1 shows that the general pattern of eigenvalues of the Rogers model follows that of the corresponding Leslie model. But, because of the higher level of migration, the dispersion of the eigenvalues in each cluster is greater than what we saw in the Swedish model.

Table 5.2 shows the relative importance of the dominant and spatial components. The stable equivalent population is 269,969,000, which is greater than the initial size of 250,869,000. Thus, the momentum of growth is 7.5%. This momentum and the upswing of the population waves cause the average annual growth rate for 1974-1979 (0.98%) to be much higher than the corresponding long-run growth rate (0.59%). The values of c_1 for the spatial components are much smaller than the value of c_1 , with the major exception of c_8 which clearly signifies the rapid and sweeping process of urbanization. The half-life of this "urbanization component" is only 10.26 years, which corresponds to a relatively damping rate of 7.1% per year. Other spatial components that are worth mentioning are the one with a half-life of 17.36 years (representing the spillover effect from RSFSR to Ukraine and

The gross rates, mean ages, and standard deviations of the regional fertility, survival, and migration schedules of the Rogers model of the 1974 Soviet Union population. Table 5.1

	RSFSR	UK & Mo	Byelo	Cent. A	Kazakh	Caucasian	Baltic	Rural
				Fertility	Fertility Schedules			
Gross Rate	1.0186	1.0518	1.0938	1.7807	1.2339	1.4179	1.0001	1.6605
Mean Age	23.50	23.53	23.99	25.90	24.57	24.62	24.07	25.26
Stand. Dev.	5.85	5.99	5.99	7.06	6.49	6.23	6.14	6.95
				Survival	Schedules			
Gross Rate	15.8054	15.8373	16.1009	16.0455	15.8687	16.0153	15.8414	15.8316
Mean Age	40.71	40.67	41.23	41.37	40.94	41.10	40.68	40.84
Stand. Dev.	24.06	24.04	24.30	24.36	24.19	24.22	24.05	24.11
Gross Death Rate	2.1946	2.1627	1.8991	1.9545	2.1313	1.9847	2.1586	2.1684
			Inter	Interregional Migration Schedules	ration Sche	dules		
Gross Rate	1.1641	1.5392	2.0572	1.8961	2.7684	0.9889	1.4111	2.7102
Mean Age	31.55	30.89	34.51	34.63	35.20	32.64	29.92	29.10
Stand. Dev.	20.93	20.34	22.25	21.31	22.13	20.81	19.89	17.55

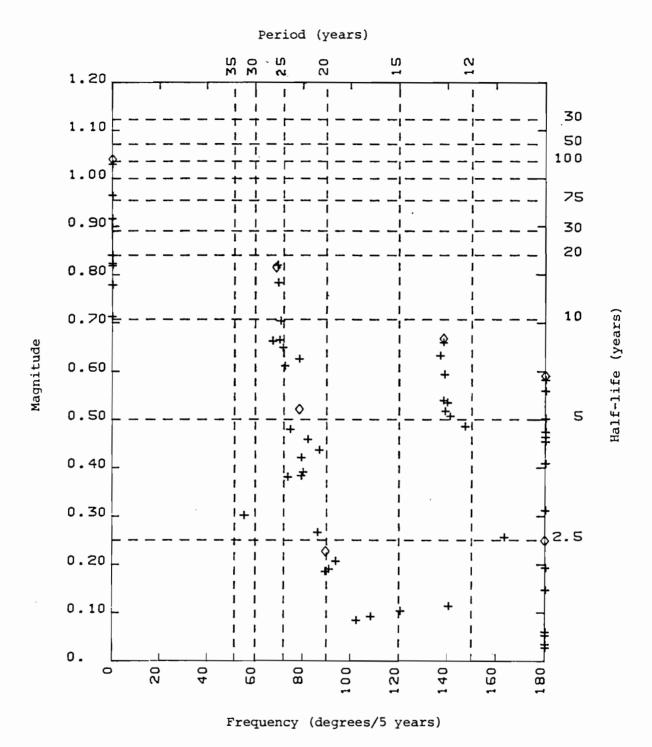


Figure 5.1 The pattern of non-zero eigenvalues of the growth matrix of the Rogers model of the 1974 Soviet population. The eigenvalues of the corresponding Leslie model are shown as diamonds.

The doubling time, half-lives, initial levels, and initial regional loadings on the 0-4 age group of the dominant and spatial components of the Rogers model of the 1974 Soviet Union population. Table 5.2

DT & HL*	Initial Level	RSFSR	UK & Mo	Byelo	Cent. A	Kazakh	Kazakh Caucasian Baltic	Baltic	Rural
(t ₁)	(C _i)	Initial Regiona	gional Loadir	l Loadings (C _i Q _{iaj})	, i				
118.40	269,696,224	8,508,172	3,037,482	624,017	2,419,982	949,821	1,169,465	468,186	5,998,505
69.56	7,401,454	123,967	48,029	11,897	63,160	17,415	-275,751	9,064	669'68
39.58	37,565,192	753,137	429,198	94,499	-1,141,819	8,676	-64,469	83,066	397,112
20.00	3,479,886	38,199	44,575	-9,768	-5,139	5,956	-521	-69,579	-3,392
17.77	3,100,184	8,852	-45,012	68,586	-67	534	347	-28,745	-5,780
17.36	17,777,740	385,372	-357,403	-59,876	-33,562	. 53,302	-1,946	3,089	26,180
13.83	8,173	203	-14	-2	17	-186	-1	<u>ا</u> 5	-3
10.26	195,885,584 -2,433,099	-2,433,099	-657,837	-264,928	-81,090	-244,888	-48,740	-109,692	3,587,041

*Note: Doubling time refers only to the dominant component.

Moldavia), and the ones with half-lives of 39.58 and 95.58 years (reflecting the higher natural growth in the Central Asian and Caucasian Republics due to their higher levels of fertility). The relative annual rates of damping for these three components are 4.5%, 2.3%, and 1.3%, respectively. effects of urbanization, spillover, and interregional difference in fertility upon the individual regions are combined into the smooth and non-cyclical regional time-paths of the superimposed spatial component, which are illustrated in Figure 5.2 for the 0-4 age group. The time-paths of the actual projected regional shares in Figure 5.3 are indeed smooth and non-cyclical and show all urban regions as gainers. The rural share of the national population drops rapidly from 40.4% in 1974 to 23.8% in 2004, a level which is already guite close to the long-run share of 20.2%. Reflecting mainly the rapidity of urbanization, the spatial dissimilarity index drops from 20.2% in 1974 to 4.9% in 2004, and then declines to a negligible 0.7% in 2074. As far as the spatial pattern of the urban subpopulation is concerned, Table 5.3 shows that the redistributional potential is very weak, with the dissimilarity index between the 1974 and the long-run spatial distributions being less than 5%. urbanization is seen to have little effect on the spatial pattern of the urban population at the regional level.

The dominant cyclical component has a half-life of 17.48 years (which implies a relative annual damping rate of 3.3%) and a period of 26.04 years. These values are rather similar to those of the Canadian system of the late 1960's (Liaw 1980a) but are significantly different from those of the contemporary Swedish system. The difference is related to the mean ages and standard deviations of the fertility schedules. Table 5.4 shows the initial regional upperbounds, phases, and loadings of the major cyclical components for the 0-4 age group. The table indicates that nearly synchronical waves (which are represented by the dominant cyclical component) are more important than opposite waves (which are represented by the remaining major cyclical components). The regional time-paths of the superimposed major cyclical component for the 0-4 age

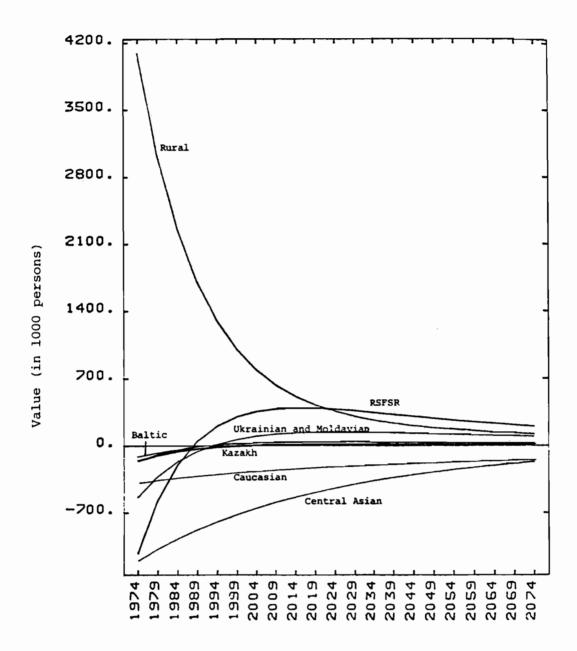


Figure 5.2 The regional time-paths of the superimposed spatial component for the 0-4 age group of the Rogers model of the 1974 Soviet population.

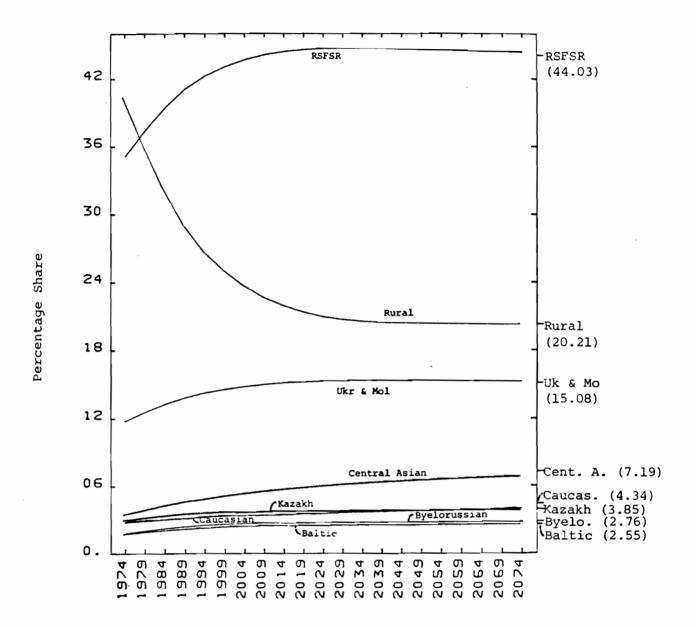


Figure 5.3 The projected regional shares of the Rogers model of the 1974 Soviet population. The long-run regional shares are marked on the right axis.

The spatial redistribution of the urban subpopulation of the Soviet regional population projected by the Rogers model. Table 5.3

Time	RSFSR	UK & Mo	Byelo	Cent. A	Kazakh	Caucas.	Baltic	Urban*
			Perce	ntage of tl	Percentage of the Total Urban Population	Population		
1974	58.95	19.74	3.04	5.80	4.91	4.62	2.90	59.63
2074	55.67	19.14	3.51	8.59	4.83	5.01	3.24	79.68
Long-run	55.18	18.90	3,45	9.02	4.82	5.44	3.19	79.79
			Diffe	rence from	Difference from the Long-run Distribution	Distribution		
1974	3.80	0.84	-0.41	-3.22	60.0	-0.82	-0.29	4.73
2074	0.49	0.24	90.0	-0.43	0.01	-0.43	-0.05	0.85

*In this column, the first three numbers are the urban shares in percentage of the total population, and the last two numbers are spatial dissimilarity indices of the urban subpopulation.

The half-lives, periods, and regional information about the 0-4 age group of the major cyclical components of the Rogers model of the 1974 Soviet Union population. Table 5.4

			CK & MO	Byelo	Cent. A	Kazakh	Caucas.	Baltic	Rural
				Initial Re	gional Uppe	Initial Regional Upperbounds $(2d_{f 1}\gamma_{{f 1}{a}{f j}})$	1, Yiaj)		
17.48	26.04	1,209,827	362,857	85,631	189,927	102,450	236,554	54,081	465,037
14.20	25.93	153,831	47,410	12,608	27,048	13,789	130,870	7,768	55,967
9.88	25.55	47,499	25,238	7,819	68,248	2,082	1,024	4,011	8,614
8.50	25.74	4,190	1,472	5,275	617	320	. 20	828	173
8.44	26.84	17,627	5,885	3,567	2,259	1,647	258	29,908	4,194
8.02	25.20	53,177	55,465	1,112	3,664	3,366	18	281	2,173
7.39	22.97	298,329	86,463	27,196	10,311	24,901	6,181	8,496	449,843
7.04	24.91	22,523	197	164	3,038	25,998	45	247	1,608
			JI.	ıtial Regi	Initial Regional Phase Angles (e _l		+ ¢ _{iaj})		
17.48	26.04	173.53	175.10	170.21	154.03	165.79	165.06	150.41	-174.24
14.20	25.93	168.23	170.28	164.11	148.40	160.20	-9.31	140.64	-175.00
9.88	25.55	98.38	100.70	78.61	-80.03	-94.73	-85.22	35.05	132.88
8.50	25.74	-157.26	-158.87	38.57	-22.32	-152.67	3.34	-53.52	-150.48
8.44	26.84	155.29	162.76	106.21	-126.87	165.43	-110.59	-21.76	69.85
8.02	25.20	-179.71	-0.99	-145.47	-19.76	179.98	137.76	86.70	51.37
7.39	22.97	-69.63	-65.68	-56.49	-86.74	-47.51	-92.61	-67.74	97.13
7.04	24.91	63.57	58.35	119.62	32.13	-121.92	-167.67	-95.49	-42.09
			Initia	Initial Regional	Loadings	$[2d_{j}\gamma_{iaj}\cos(e_{j}+\phi_{iaj})]$	$^{i}(e_{i} + \phi_{iaj})$	_	
17.48	26.04	-1,202,131	-361,532	-84,385	-170,744	-99,317	-228,557	-47,030	-462,725
14.20	25.93	-150,595	-46,729	-12,126	-23,037	-12,974	129,145	900,9-	-55,754
9.88	25.55	-6,920	-4,686	1,544	11,814	-172	85	3,284	-5,862
8.50	25.74	-3,865	-1,373	4,124	570	-285	20	492	-150
8.44	26.84	-16,013	-5,620	966-	-1,355	-1,594	-91	27,777	1,445
8.02	25.20	-53,176	55,457	-916	3,448	-3,366	-13	16	1,357
7.39	22.97	103,822	35,605	15,013	586	16,819	-281	3,219	-55,854
7						•			

group in Figure 5.4 suggest that the regional population waves moving through the youngest age group will have a major peak in 1989 and a major trough in 1999. Note that both Table 5.4 and Figure 5.4 show that the rural region is significantly affected by a cyclical component whose period and half-life are respectively only 23 and 7.4 years. Since the mean age of the rural fertility schedule is over 25 years, the short period cannot be directly related to the fertility schedule. It appears that a very high level of outmigration from a region can shorten the period as well as the half-life of the region's population wave.

Of particular interest is the rapid growth of the youngest population in the first fifteen years in all urban regions, with the rates of increase ranging from 60% in the Baltic and Caucasian Republics to 106% in Byelorussia. Table 5.4 shows that this is the result of the joint impact of intrinsic growth (dominant component), urbanization (spatial components), and population waves (cyclical components). In every region, the contribution of population waves is more important than that of intrinsic growth. With the exception of the Caucasian region, urbanization is also more important than intrinsic growth, and exceeds the importance of population waves in two regions (Baltic and Central Asian). During the initial fifteen years, the youngest population in the rural region is reduced by 9%, which is the balance of the gains through intrinsic growth (+6%) and population waves (+10%) and the loss through urbanization (-25%). A conclusive message from Table 5.5 is that no matter how the fertility level changes in the Soviet Union, there will definitely be a substantial increase (decrease) of young children in the urban (rural) areas.

Figure 5.5 shows the decomposition of the projected regional time-paths of the 0-4 age group into those of the analytic components. Every region's time-path fluctuates around a smooth trend which is the sum of the dominant and superimposed spatial components. The fluctuations are well "explained" by the superimposed cyclical component and are damped faster than those we

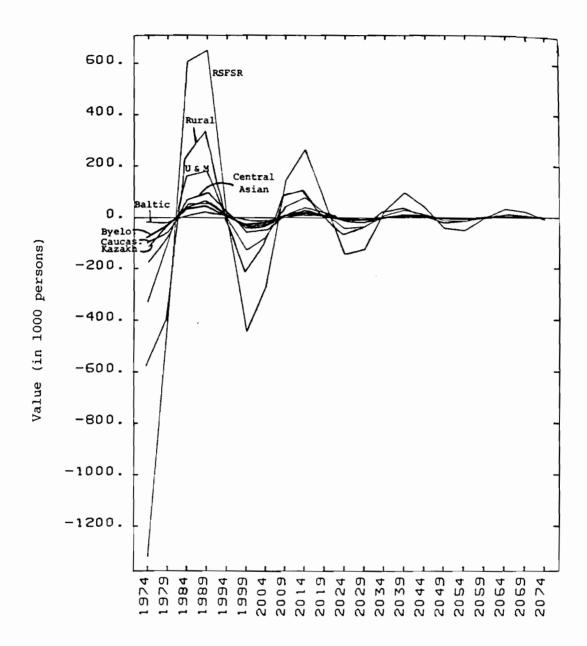


Figure 5.4 The regional time-paths of the superimposed major cyclical component for the 0-4 age group of the Rogers model of the 1974 Soviet population.

saw in the Swedish model. Note that the population waves in the Soviet Union are in opposite phases to those in Sweden; this is a reflection of the fact that after the common babyboom in the late 1940's, the fertility levels change differently in the two countries (Soboleva 1980:8-15; and Andersson and Holmberg 1980:15-18).

Table 5.5 Decomposition of projected Soviet population change in the 0-4 age group between 1974 and 1989.

Region	Projecte	d Dominant	Spatial	Cyclical*
		Absolute Change	(in 1000 persor	ns)
RSFSR	4,482	781	1,770	2,531 (1,972)
Jk & Mo	1,430	279	478	673 (509)
Byelo	337	57	146	163 (123)
Cent. A	859	222	326	310 (275)
Kazakh	431	87	126	219 (171)
Caucas.	382	107	75	200 (166)
Baltic	191	13	28	18 (13)
Rural	-885	+551	-2,394	+958 (+914)
Soviet	7,258	2,127	17	5,114 (4,170)
	Percent	age Change with Res	spect to the 19	74 Observed Size
RSFSR	82 [4.1] 14	22	46 (36)
Jk & Mo	71 [3.6] 14	24	33 (25)
Byelo	106 [4.9] 17	42	47 (36)
Cent. A		4.2] 22	32	31 (27)
			20	35 (27)
Kazakh		3.6] 14	20	33 (21)
Kazakh Caucas.	60 [3.2] 17	12	31 (26)
	60 [: 60 [:	3.2] 17 3.2] 14		
Caucas.	60 [: 60 [: -9 [-	3.2] 17 3.2] 14	12	31 (26)

^{*}Numbers in parentheses show the growth attributed to the superimposed cyclical component. The values in square brackets are average annual percentage changes.

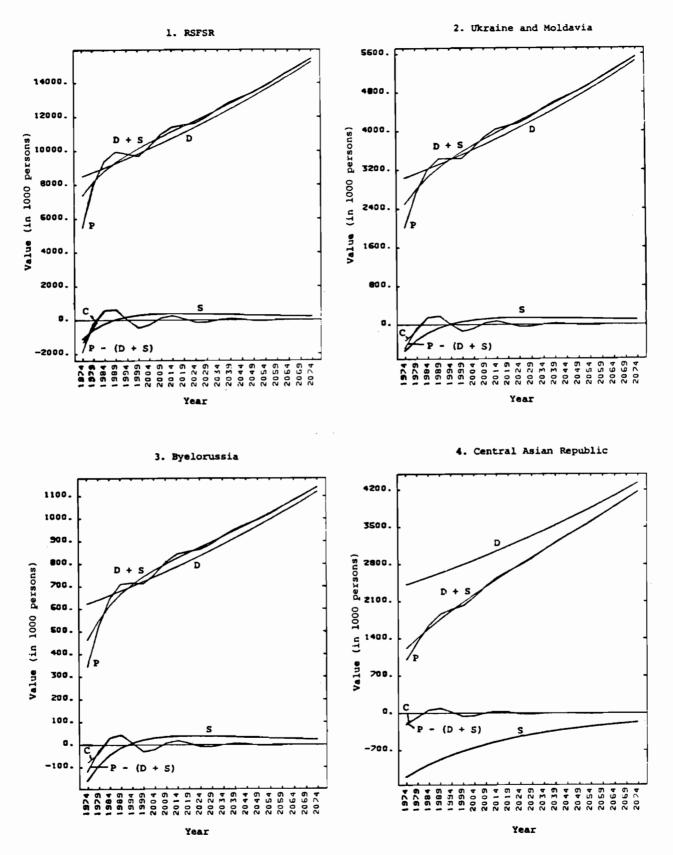


Figure 5.5 The analytic decomposition of the projected regional population sizes in the 0-4 age group of the Rogers model of the 1974 Soviet population. P = projected population size; D = dominant component; S = superimposed spatial composition; C = superimposed major cyclical component.

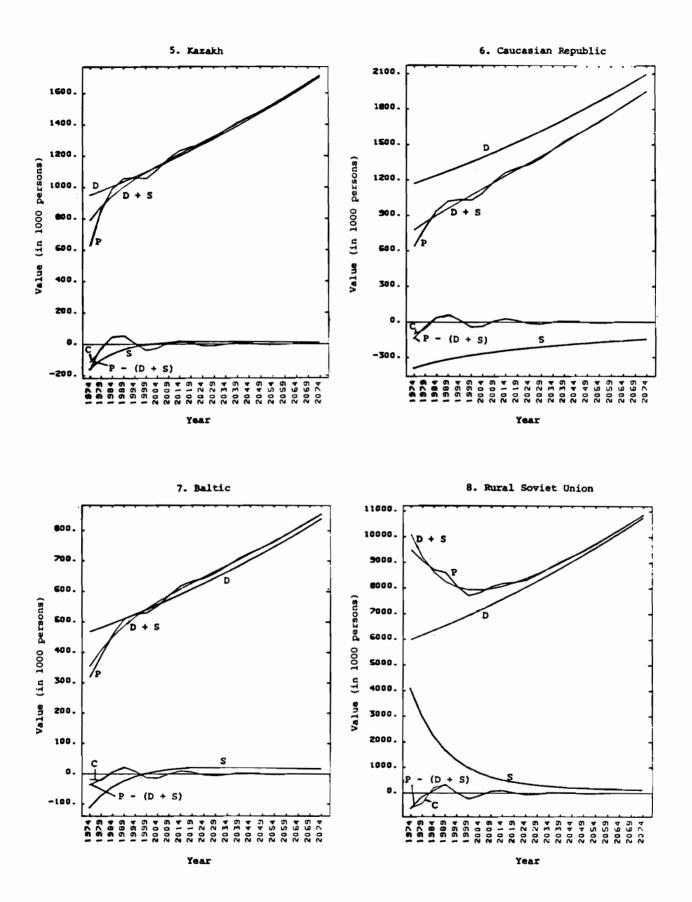


Figure 5.5 Continued.

Despite heavy rural-urban migration and the difference in fertility development between the essentially European and the essentially Asian regions, most of the 1974 regional age profiles in Figure 5.6 exhibit clearly the scars of the double-blow of World War II in the 50-54 and 25-29 age group and the subsequent second generation effect in the 0-4 age group. However, the similarly irregular initial age profiles converge to three different types of relatively smooth long-run profiles: age profiles with a significant surplus in the young adult age group (found in northern urban regions including RSFSR, Ukrainian and Moldavian Republics, Byelorussia, and the Baltic Republics); (2) relatively smooth and steep age profiles without a marked effect of migration selectivity (found in southern urban regions including Kazakh and Central Asian and Caucasian Republics); and (3) a steep age profile with a significant deficit in the young and middle labor force age groups (found in the rural Soviet Union). The interregional contrast in steepness of the long-run age profiles can be seen as a clear reflection of the large interregional difference in the fertility level. the fact that the long-run age profiles of the southern urban regions do not show a significant surplus in the young adult age groups cannot be easily inferred by comparing the age patterns of the interregional migration schedules.

Table 5.6 shows that the trend toward a moderate increase in mean age and percent older than 64 years is for some regions, particularly the rural part, less significant than the fluctuations. For the whole nation, the long-run mean age is 35.1 years, which is only 2.2 years greater than the 1974 figure, whereas the percentage of population older than 64 is 13% in the long run, compared with 10% in 1974. The dissimilarity indices in Table 5.6 show that the convergence toward long-run regional age profiles is almost completed in 60 years.

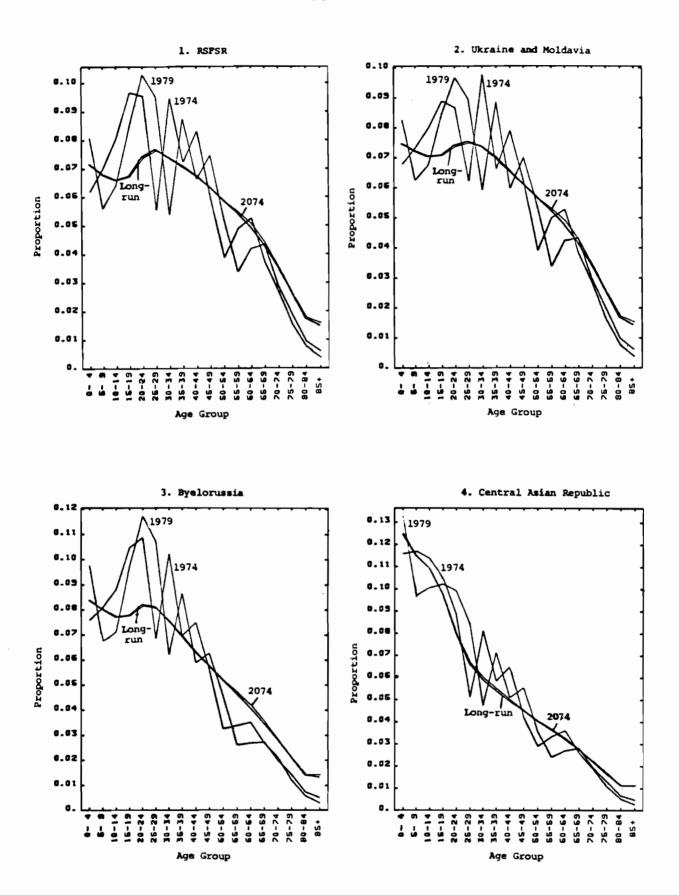


Figure 5.6 The initial, projected, and long-run regional age profiles of the Rogers model of the 1974 Soviet population.

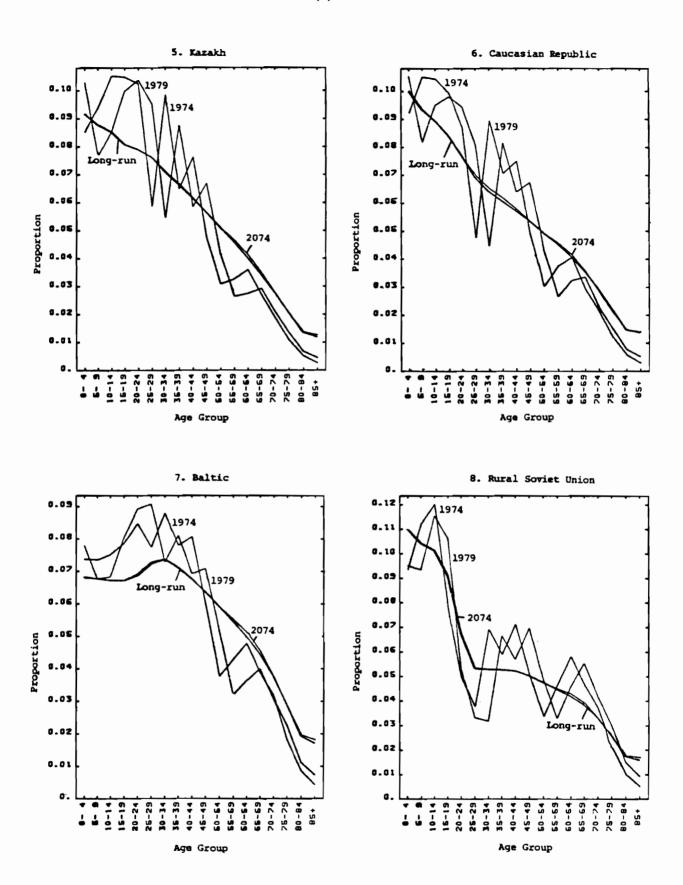


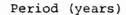
Figure 5.6 Continued.

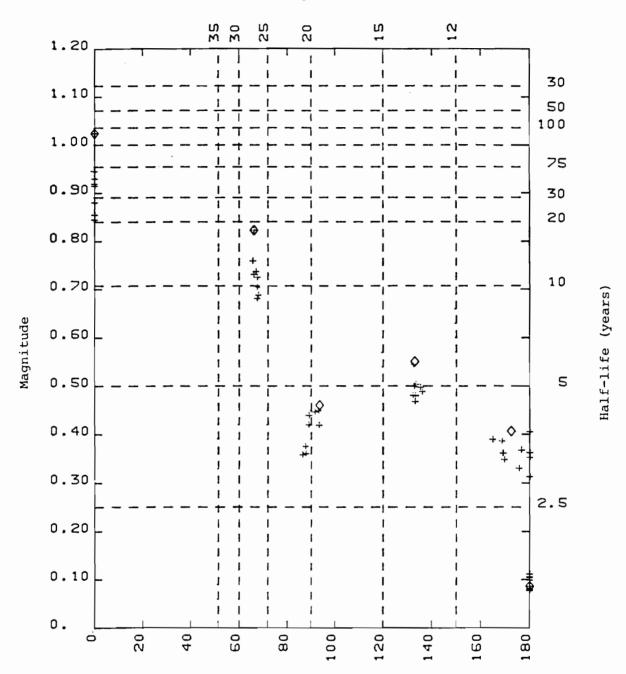
Changing characteristics of regional age profiles of the 1974 Soviet population system projected by the Rogers model. Table 5.6

	RSFSR	Uk & Mo	Byelo	Cent. A	Kazakh	Caucas.	Baltic	Rural	Union
					Mean Age				
1974	33.8	34.0	30.7	7.72	29.5	29.9	34.0	32.8	32.9
1984	34.3	34.0	30.5	27.7	30.4	30.8	34.3	34.9	33.9
1994	34.8	34.2	30.9	27.6	31.1	31.2	34.7	35.1	34.1
2004	35.6	34.9	32.0	28.1	32.0	31.9	35.6	34.5	34.5
2014	36.2	35.5	32.9	28.4	32.6	32.3	36.5	33.8	34.8
Long-run	37.0	36.3	34.1	29.0	33.2	33.0	37.7	32.7	35.1
				Percer	Percentage Older than	than 64			
1974	0.6	9.4	6.8	6.3	6.4	7.1	10.2	12.0	10.0
1984	10.9	11.0	7.1	7.0	7.5	9.8	10.9	16.3	12.2
1994	10.0	10.1	6.8	6.1	7.2	8.0	10.0	15.5	11.1
2004	11.5	10.9	8.0	6.9	8.8	8.6	11.5	16.7	12.2
2014	11.6	11.2	8.6	7.0	9.2	8.6	12.2	15.4	11.9
Long-run	13.8	13.4	11.2	8.9	10.8	11.6	14.8	13.1	13.0
		Q	Dissimilarity		c.t. Long-ru	Index w.r.t. Long-run Regional Age	ge Profile		
1974	10.9	8.4	10.4	8.9	11.7	10.5	8.6	10.0	8.3
1984	6.6	8.7	11.3	0.6	10.0	9.1	9.8	8.9	9.9
1994	7.5	6.9	8.4	7.1	7.1	7.1	7.2	7.7	5.6
2004	5.3	5.1	5.7	4.1	4.7	4.7	5.5	6.3	4.4
2014	3.8	3.7	3.8	3.7	3.4	3.9	3.8	3.8	3.4
2024	2.8	2.7	2.6	2.2	2.3	2.5	2.6	2.6	2.5
7007			,						

6. THE DYNAMIC PROPERTIES OF THE GREAT BRITAIN AGE-BY-REGION POPULATION SYSTEM

The growth matrix of the British age-by-region population system is shown in Appendix C. The regional schedules of the basic demographic processes are characterized in Table 6.1. As usual, the migration schedules show greater interregional differences than the fertility and survival schedules do.


The dominant eigenvalue of the system's growth matrix is λ_1 = 1.0235, which implies an annual long-run growth rate of 0.47% and a long-run doubling time of 149 years. The magnitude of λ_1 reflects the moderately high gross reproduction rate of 1.15 and a young mean age of 24.2 years of the system's fertility schedule.


Figure 6.1 shows that the overall pattern of the eigenvalues of the system's growth matrix is similar to that of the corresponding Leslie matrix, which in turn exhibits the commonly observed pattern that the three longest periods of cyclical components are about 25, 21, and 13 years and that the component with the 21-year period has a slightly smaller half-life than the component with the 13-year period (Coale 1972:70-79). The dispersion of eigenvalues in each cluster is significantly less than that of the corresponding cluster in the Soviet model because of Great Britain's relatively low level of migration.

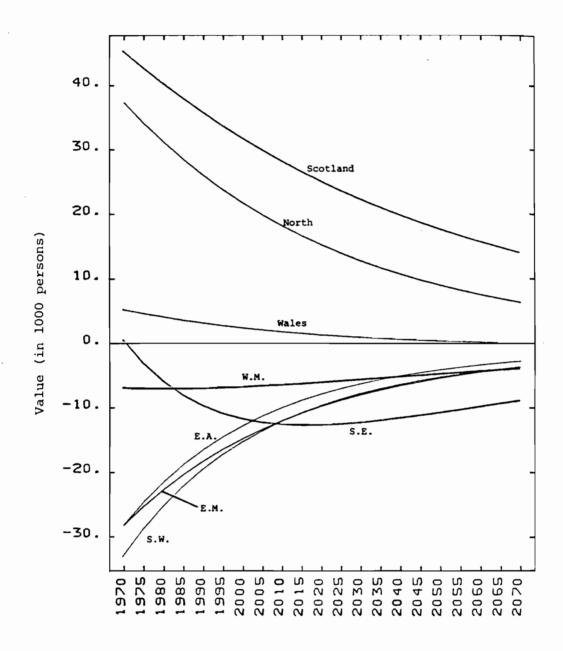
The relative importance of the dominant and spatial components is shown in Table 6.2. The stable equivalent population of 27,442,000, being slightly smaller than the 1970 observed population size of 27,859,000, implies a growth momentum of -1.5%. This rarely-observed negative momentum of growth is a reflection of the interesting fact that the 1970 fertility level in Great Britain was higher than not only those of many contemporary European countries but also its own average level in the five immediately preceding decades (Rees 1979:14). As a consequence of the negative momentum, the average annual growth rate in 1970-1990 (0.36%) is found to be smaller than the corresponding long-run value (0.47%).

The gross rates, mean ages, and standard deviations of the regional fertility, survival, and migration schedules of the Rogers model of the 1970 female population of Great Britain. Table 6.1

	North	E.Midland	W.Midland	E.Anglia	S.E.	S.W.	Wales	Scotland
			ĬΉ	Fertility Schedule	hedule			
Gross Rate	1.1978	1.1751	1.1977	1.1196	1.0875	1.1261	1.1519	1,1991
Mean Age	24.04	23.98	24.36	23.88	24.42	24.00	23.95	24.51
Stand. Dev.	6.37	6.25	6.47	6.14	6.28	6.18	6.29	6.36
				Survival Schedule	րեզոյե			
Gross Rate	15.7100	15.8448	15.7949	16.0570	15.9916	15.9209	15.7328	15.6334
Mean Age	40.10	40.39	40.27	40.87	40.72	40.54	40.15	39.96
Stand. Dev.	23.67	23.80	23.73	24.03	23.96	23.87	23.69	23.62
Gross Death Rate	2.2900	2.1552	2.2051	1.9430	2.0084	2.0791	2.2672	2.3666
			Interreg	Interregional Migration Schedule	tion Schedu	ıle		
Gross Rate	0.7844	1.3763	1.0517	1.5825	0.9358	1.5740	1.0707	0.7447
Mean Age	30.94	30.48	30.19	30.25	33.55	31.17	32.14	27.55
Stand. Dev.	21.51	21.51	20.28	21.36	22.44	21.56	22.70	19.29

Frequency (Deg./5 years)

Figure 6.1 The pattern of non-zero eigenvalues of the growth matrix of the Rogers model of the 1970 British female population. The eigenvalues of the corresponding Leslie model are shown as diamonds.


The doubling time, half-lives, initial levels, and initial regional loadings on the 0-4 age group of the dominant components of the Rogers model of the 1970 British female population. Table 6.2

DT & HL*	Initial Level	North	E.Midland	Midland W.Midland E.Anglia S.E.	E.Anglia	S.E.	S.W.	Wales	Scotland
(t ₁)	(C ₁)	Initial F	Initial Regional Loadings $(c_i Q_{i,j})$	ngs $(C_{\mathbf{i}}Q_{\mathbf{i},\mathbf{j}})$					
148.96	27,442,036	561,588	163,795	219,910	91,130	650,670	174,715	99,114	175,172
61.28	1,176,560	-10,821	-3,375	-9,304	-2,022	-9,163	-3,554	-5,293	41,024
47.61	1,222,139	38,789	-2,188	-10,450	-2,840	-21,792	-6,029	-1,170	1,324
41.04	535,297	-549	5	10,970	-2,222	-13,644	-2,237	3,458	2,286
39.08	292,035	828	-2,144	-5,243	969-	-1,881	110	8,863	223
27.28	819,192	8,248	-21,092	4,808	-3,147	10,405	2,220	-1,161	283
22.10	104,677	147	-792	257	2,442	85	-2,255	103	33
20.56	1,469,073	638	1,488	2,109	-19,533	36,588	-21,230	514	302

*The doubling time refers only to the dominant component.

The fact that the initial levels (c;) of the spatial components are much smaller than the value of \mathbf{c}_1 indicates that the initial and the long-run interregional distributions are quite similar. In other words, similar to the situation in Sweden, the initial spatial distribution in Great Britain is rather compatible with the basic demographic processes. From the pattern of initial loadings in Table 6.2, we see clearly that East Midland, East Anglia, and South West will be the gaining regions (because of the large negative loadings), whereas Scotland will be a losing region (because of the positive loadings). Being loaded positively by spatial components of short halflives and negatively by spatial components of long half-lives, the South East will have its share decreased first and then increased. These inferences about spatial redistribution are supported by the time-paths of the superimposed spatial component in Figure 6.2 and the projected time-paths of regional shares in Figure 6.3.

The major cyclical components have periods of about 27 years and half-lives of between 17.79 and 9.04 years. relative rates of damping of these components range between 4.3% and 7.9% per year. This suggests that population waves will be damped more rapidly in Great Britain than in Sweden and the Soviet Union. Since it is shown in Table 6.3 that the regional upperbounds of the dominant cyclical component are in general greater than those of the other major cyclical components, the regional population waves are likely to be more synchronical than opposite. The superimposed major cyclical component in Figure 6.4 further suggests that the more or less synchronical population waves moving through the youngest age group in every region will have a trough between 1975 and 1980 and a peak between 1990 and 1995. However, since loadings of the major cyclical components are much smaller than those of the dominant component, the new population waves that will be transmitted through the first age group to the older ones are of little importance in most regions. The decomposition of the projected regional time-paths of the 0-4 age group in Figure 6.5 shows how population waves fluctuate around the smooth trend which

Year

Figure 6.2 The regional time-paths of the superimposed spatial component for the 0-4 age group of the Rogers model of the 1970 British female population.

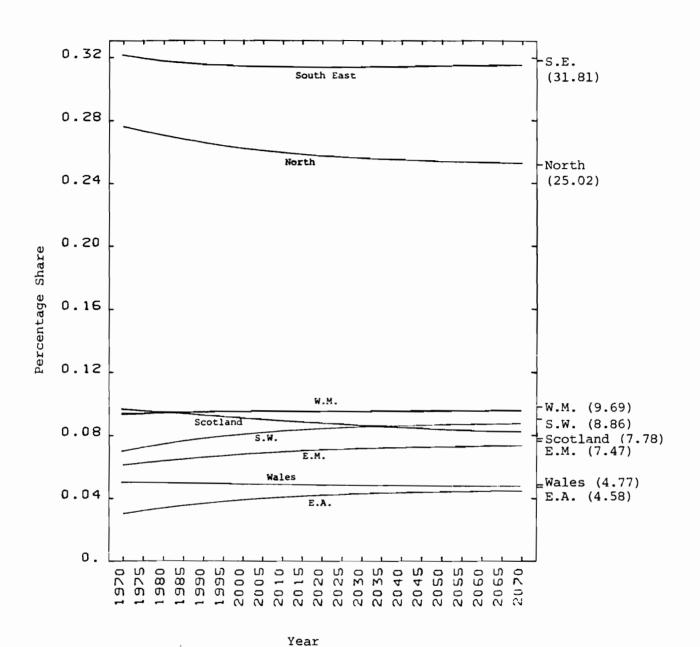


Figure 6.3 The projected regional shares of the Rogers model of the 1970 British female population. The long-run regional shares are marked on the right axis.

The half-lives, periods, and regional information about the 0-4 age group of the major cyclical components of the Rogers model of the 1970 female population of Great Britain. Table 6.3

6,136 966 782 370 636 1,748 720 226 -46.04 -1.34 -72.95 -18.20 -18.96 -72.95 -18.20 -158.96 -158.96 -158.96 -16.04 -105.20 -16.14 -105.20	Half-life Period $(t_{f i})$	North	E.Midland	W.Midland	E.Anglia	S.E.	S.W.	Wales	Scotland
27.25 16,727 6,136 26.90 8,881 782 26.90 8,881 783 26.69 957 636 26.71 985 1,748 26.72 985 1,748 26.71 129 226 27.25 67.66 65.50 27.29 21.06 -72.95 26.90 21.06 -72.95 26.71 8.90 -158.96 26.53 -98.71 73.76 26.54 -96.35 -9.87 27.25 6,357 2,545 27.25 6,357 2,545 27.29 1,096 671 26.90 1,237 782 26.90 1,237 782 26.90 1,237 782 26.90 1,237 782 26.90 1,237 782 26.90 1,237 782 26.51 -220 604 26.53 -220 604 26.53 -225 604 <t< td=""><td></td><td></td><td></td><td>Initial Reg</td><td>Initial Regional Upperbounds</td><td>ounds (2d_iY_{iaj})</td><td>iaj⁾</td><td></td><td></td></t<>				Initial Reg	Initial Regional Upperbounds	ounds (2d _i Y _{iaj})	iaj ⁾		
27.42 1,386 966 26.90 8,881 782 27.29 903 370 26.69 957 636 26.71 985 1,748 26.53 163 370 26.71 163 370 26.72 67.66 65.50 27.29 21.06 -13.4 26.90 21.06 -72.95 26.91 8.90 -18.20 26.53 -98.71 73.76 26.74 1,096 671 27.25 6,357 2,545 27.29 1,096 671 26.90 1,237 782 26.91 1,237 782 26.53 -220 604 26.53 -220 604 26.53 -220 604 26.53 -220 604 26.53 -220 604 26.53 -220 604 26.53 -220 604 26.53 -220 604 26.53 -220 604 26.53 -220 604 26.53 -220 604 26.53 -220 604 26.53	27.	16,	6,136	7,229	3,708	27,810	6,925	3,201	6,647
26.90 8,881 782 27.29 903 370 26.69 957 636 26.71 163 720 26.53 163 720 27.25 67.66 65.50 27.29 21.06 -72.95 26.69 -103.29 -18.20 26.71 8.90 -158.96 26.53 -98.71 73.76 27.25 6,357 2,545 27.25 6,357 2,545 27.25 6,357 2,545 27.25 6,357 2,545 27.29 842 108 26.90 1,237 782 26.69 -220 604 26.71 -25.71 -105.20	27.	1,	996	1,673	780	4,690	1,248	754	9,632
27.29 903 370 26.69 957 636 26.71 985 1,748 26.53 163 720 27.25 67.66 65.50 27.29 21.06 -72.95 26.90 82.00 -1.34 26.53 -98.71 73.76 26.53 -98.71 73.76 26.53 -98.71 73.76 26.53 -98.71 73.76 26.54 1,096 671 26.90 1,237 782 26.90 26.35 2,545 26.51 996 -220 604 26.53 -255 27.25 6,357 2,545 26.59 26.53 -16.108	26	8	782	1,943	710	5,684	1,325	892	337
26.69 957 636 26.71 985 1,748 26.53 163 720 26.53 163 720 27.25 67.66 65.50 27.29 21.06 -72.95 26.69 -103.29 -18.20 26.53 -98.71 73.76 26.53 -98.71 73.76 26.53 -98.71 73.76 26.53 -98.71 73.76 26.53 -98.71 73.76 26.53 -98.71 -105.20 27.25 6,357 2,545 27.25 6,357 2,545 27.29 842 108 26.59 -220 604 26.51 -25	27.		370	2,334	269	2,064	246	256	154
26.71 985 1,748 26.53 163 720 26.53 163 720 27.25 67.66 65.50 27.29 -37.74 -46.04 26.90 82.00 -1.34 26.69 -103.29 -18.20 26.53 -98.71 73.76 26.53 -98.71 73.76 26.53 -98.71 73.76 26.53 -98.71 73.76 26.53 -98.71 73.76 26.53 -98.71 73.76 26.53 -98.71 -105.20 27.25 6,357 2,545 27.25 6,357 2,545 27.29 842 108 26.59 -220 604 26.51 973 -1,631 26.53 -25	26		636	572	369	086	256	2,665	74
26.53 163 720 26.71 129 226 27.25 67.66 65.50 27.42 -37.74 -46.04 26.90 82.00 -1.34 26.53 -103.29 -18.20 26.53 -98.71 73.76 26.53 -98.71 73.76 26.53 -98.71 73.76 26.53 -98.71 73.76 26.53 -98.71 73.76 26.54 -59.71 -105.20 27.25 6,357 2,545 27.29 842 108 26.59 -220 604 26.51 -25	26		1,748	432	380	818	246	186	20
26.71 129 226 27.25 67.66 65.50 27.42 -37.74 -46.04 26.90 82.00 -1.34 27.29 21.06 -72.95 26.69 -103.29 -18.20 26.53 -98.71 73.76 26.51 -59.71 -105.20 27.25 6,357 2,545 27.25 6,357 2,545 27.29 842 108 26.59 1,237 782 26.59 -220 604 26.53 -25	26	_	720	162	1,919	503	1,138	89	14
27.25 67.66 65.50 27.42 -37.74 -46.04 26.90 82.00 -1.34 27.29 21.06 -72.95 26.53 -98.71 73.76 26.53 -98.71 73.76 26.71 -59.71 -105.20 27.25 6,357 2,545 27.25 6,357 2,545 27.29 842 108 26.90 1,237 782 26.90 1,237 782 26.59 -220 604 26.53 -220 604 26.53 -250 201	26.	_	226	222	954	2,299	1,862	88	39
27.25 67.66 65.50 27.42 -37.74 -46.04 26.90 82.00 -1.34 27.29 21.06 -72.95 26.69 -103.29 -18.96 26.53 -98.71 73.76 26.71 -59.71 -105.20 27.25 6,357 2,545 27.25 6,357 2,545 27.29 842 108 26.69 1,237 782 26.69 -220 604 26.71 -255				Initial Regio	nal Phase An	gles (e ₁ +	φ _{iaj})		
27.42 -37.74 -46.04 26.90 82.00 -1.34 27.29 21.06 -72.95 26.69 -103.29 -18.20 26.71 8.90 -158.96 26.53 -98.71 73.76 26.71 -59.71 -105.20 27.25 6,357 2,545 27.42 1,096 671 26.90 1,237 782 27.29 842 108 26.69 -220 604 26.71 973 -1,631 26.53 -25	27.	67.	65.50	53.84	67.70	49.86	64.42	66.91	47.41
26.90 82.00 -1.34 27.29 21.06 -72.95 26.69 -103.29 -18.20 26.71 8.90 -158.96 26.53 -98.71 73.76 26.71 -59.71 -105.20 27.25 6,357 2,545 27.42 1,096 671 26.90 1,237 782 27.29 842 108 26.71 973 -1,631 26.53 -25	27	-37.	-46.04	-58.87	-41.10	-72.49	-47.40	-26.26	129.78
27.29	26	82.	-1.34	-55.20	-76.08	-113.34	-76.47	48.77	-138.52
26.69 -103.29 -18.20 26.71 8.90 -158.96 26.53 -98.71 73.76 26.71 -59.71 -105.20 27.25 6,357 2,545 27.42 1,096 671 26.90 1,237 782 27.29 842 108 26.69 -220 604 26.71 973 -1,631 26.53 -25	27.	21.	-72.95	-101.94	129.97	99.59	143.45	-26.61	-84.90
26.71 8.90 -158.96 26.53 -98.71 73.76 26.71 -59.71 -105.20 27.25 6,357 2,545 27.42 1,096 671 26.90 1,237 782 27.29 842 108 26.69 -220 604 26.71 973 -1,631 26.53 -25	26	-103.	-18.20	14.92	-11.88	-37.82	96.29	140.51	-170.04
26.53 -98.71 73.76 26.71 -59.71 -105.20 27.25 6,357 2,545 27.42 1,096 671 26.90 1,237 782 27.29 842 108 26.69 -220 604 26.71 973 -1,631 26.53 -25	. 26	.8	-158.96	41.84	-145.54	32.02	93.74	-137.54	26.16
27.25 6,357 2,545 27.42 1,096 671 26.90 1,237 782 27.29 842 108 26.69 -220 604 26.71 973 -1,631 26.53 -25	26	-98	73.76	-87.73	-110.68	109.25	58.31	-123.96	-52.01
27.25 6,357 2,545 27.42 1,096 671 26.90 1,237 782 27.29 842 108 26.69 -220 604 26.71 973 -1,631	26.	-59.	-105.20	0.34	149.25	-1.20	171.16	-52.05	-42.92
27.25 6,357 2,545 27.42 1,096 671 26.90 1,237 782 27.29 842 108 26.69 -220 604 26.71 973 -1,631									
27.25 6,357 2,545 27.42 1,096 671 26.90 1,237 782 27.29 842 108 26.69 -220 604 26.71 973 -1,631 26.53 -25 201			Init	dal Regional	Loadings [2d	iliaj cos(e	i + \$ iaj)]		
27.42 1,096 671 26.90 1,237 782 27.29 842 108 26.69 -220 604 26.71 973 -1,631 26.53 -25 201	27		2,545	4,265	1,407	17,927	2,991	1,255	4,498
26.90 1,237 782 -1, 27.29 842 108 -26.69 -220 604 26.71 973 -1,631	27.		671	865	288	1,411	845	949	-6,163
27.29 842 108 26.69 -220 604 26.71 973 -1,631 26.53 -25 201	26.		782	-1,248	969-	600,7-	-1,320	1,065	-371
26.69 -220 604 26.71 973 -1,631 26.53 -25 201	27.			-483	-173	-344	-198	229	14
26.71 973 -1,631 26.53 -25 201	26.			553	361	774	-28	-2,057	-72
26.53 -25 201	26		-1,	322	-313	694	-16	-137	18
	26.	•	201	9	-678	-166	598	-38	8
. 26.71 65 -59	. 26	.71 65	-59	223	-820	2,299	-1,840	54	28

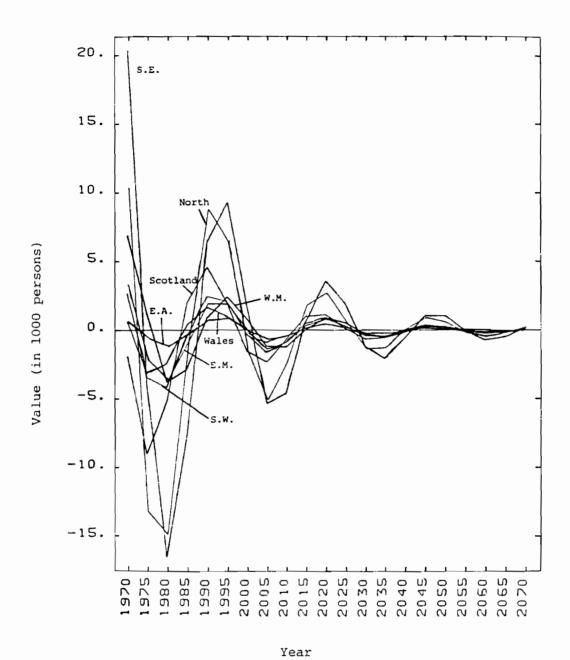


Figure 6.4 The regional time-paths of the superimposed major cyclical component for the 0-4 age group of the Rogers model of the 1970 British female population.

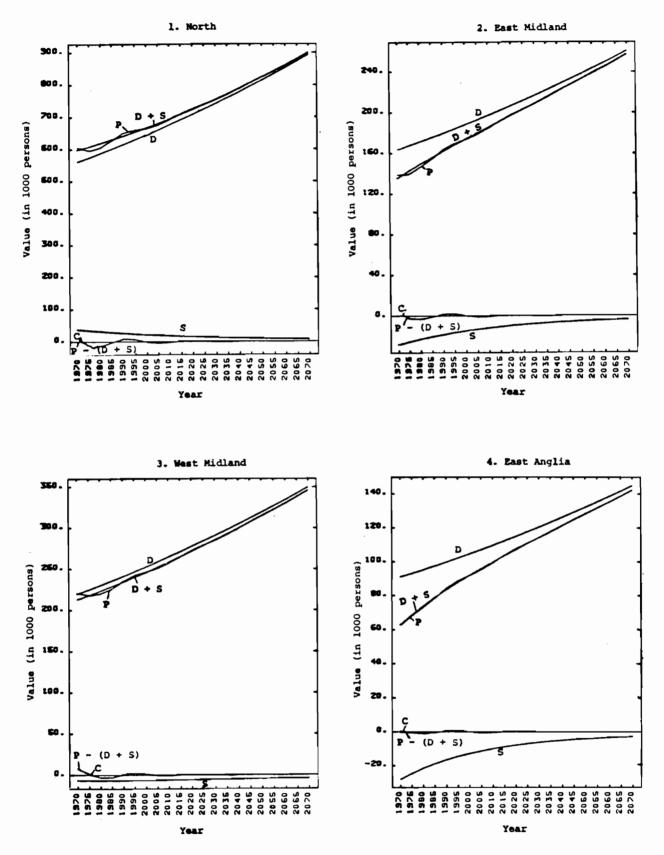


Figure 6.5 The analytic decomposition of the projected regional population sizes in the 0-4 age group of the Rogers model of the 1970 British female population. P = projected population size; D = dominant component; S = superimposed spatial component; C = superimposed major cyclical component.

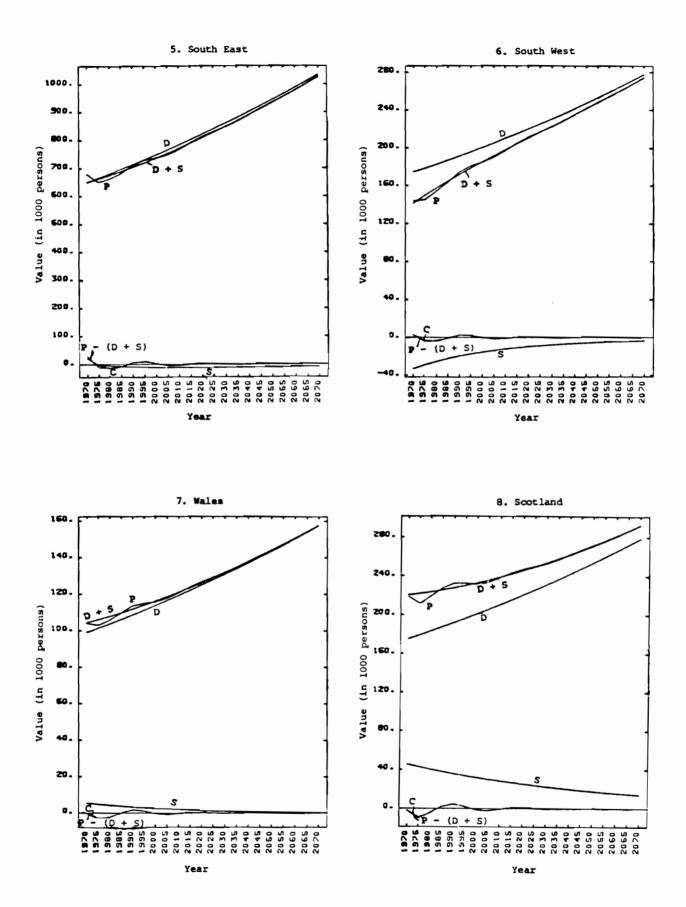


Figure 6.5 Continued.

is the sum of the dominant and the spatial components. The actual fluctuations are very well approximated by the super-imposed major cyclical components.

Figure 6.6 shows that the initial and the long-run regional age profiles are quite similar in the overall slopes. Therefore, the convergence toward the long-run regional age profiles involves mainly the smoothing-out of the initial irregularities, which for practical purposes is achieved in 50 years. The regional mean ages and percentages older than 64 in Table 6.4 show that the clearly ageing trends we saw in the Swedish and Soviet populations do not exist in the British population. The reduction in the dissimilarity indices reflects mainly the quick disappearance of the major irregularities in the initial regional age profiles.

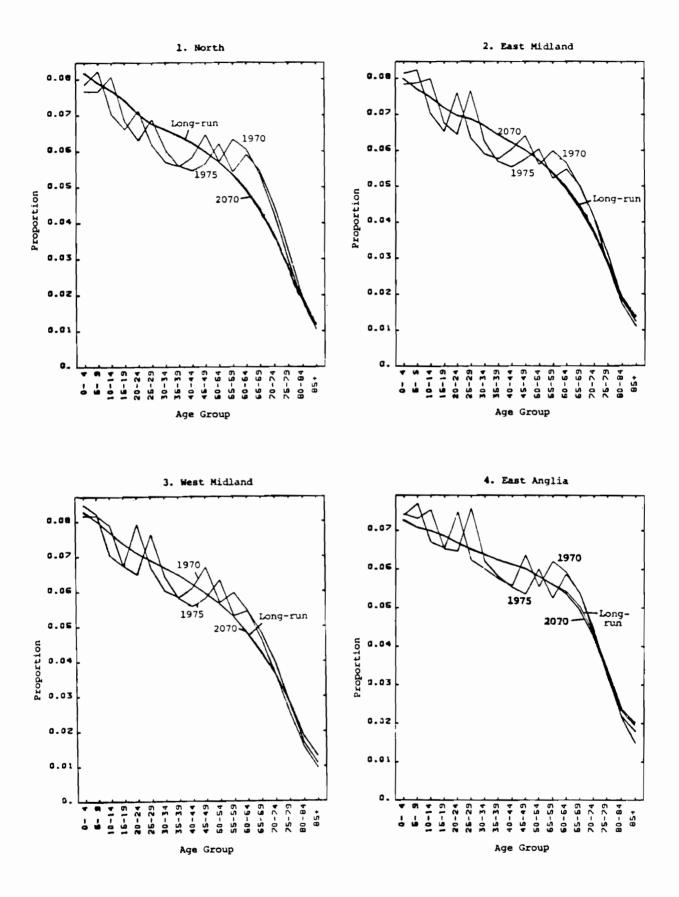


Figure 6.6 The initial, projected, and long-run regional age profiles of the Rogers model of the 1970 British female population.

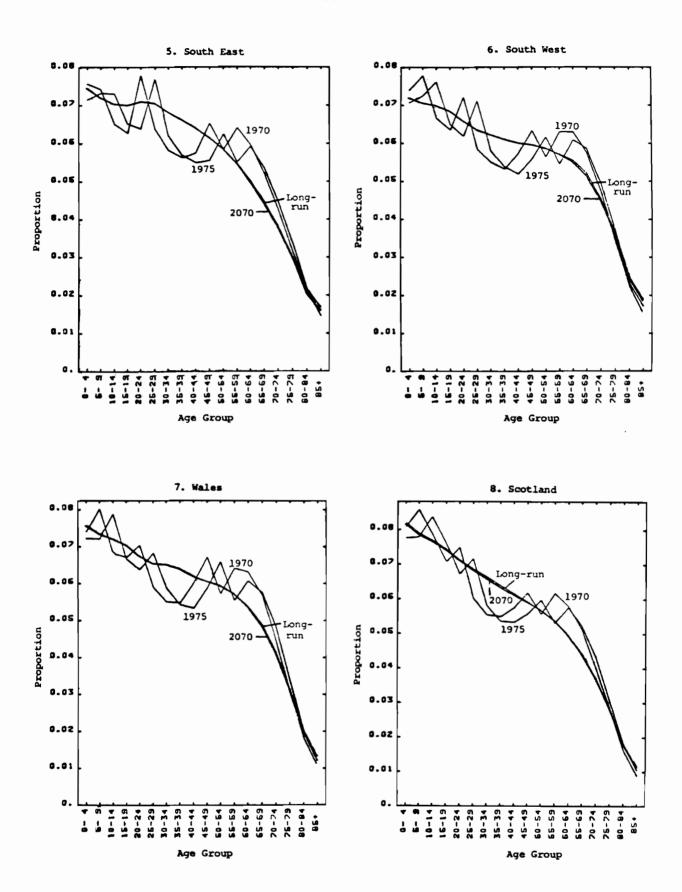


Figure 6.6 Continued.

Changing characteristics of regional age profiles of the 1970 British female population projected by the Rogers model. Table 6.4

Year	North	E.Midland	W.Midland	E.Anglia	S.E.	S.W.	Wales	Scotland	G.B.
				Mean Age					
1970	37.4	36.8	36.1	38.2	38.2	38.8	38.0	36.4	37.6
1980	37.4	36.7	36.4	•	38.2	38.9	38.3	36.7	37.6
1990	36.7	36.2	36.3	37.5	37.6	38.5	37.9	36.3	37.1
2000	36.1	35.8	35.8	37.3	37.0	38.0	37.3	35.8	36.6
2010	35.9	35.8	35.7	•	36.9	38.0	37.2	35.8	36.5
Long-run	36.0	36.5	35.9	38.5	37.2	38.8	37.4	35.9	36.8
			Percentage	Older	than 64				
1970	15.4	14.8	13.3	16.6	16.1	17.6	16.0	14.4	15.5
1980	16.8	15.7	15.1	17.4	•	18.9	17.6	16.1	16.9
1990	16.0	15.0	15.3	16.8	16.8	18.4	17.2	15.5	16.4
2000	14.3	13.6	14.0	15.3	14.9	16.7	15.6	14.0	14.7
2010	13.3	12.8	13.2	14.8	13.9	15.9	14.5	13.0	13.8
Long-run	13.8	14.4	13.8	17.2	14.9	17.7	15.4	13.8	14.8
			Dis	Dissimilarity Index	ndex				
1970	4.7	3.9	3.8	3.4	4.8	4.1	4.4	4.2	4.2
1980	4.4	3.1		3.0	4.3	3.3	3.9	3.8	3.7
1990	3.1	2.9	2.6	3.1	3.4	3.1	3.0	2.9	3.0
2000	2.1	2.6	2.1	3.4	2.5	2.9	2.6	2.1	2.3
2010	1.5	2.2	1.6	2.9	1.9	2.4	1.8	1.6	1.8
2020	1.1	1.6	1.2	2.0	1.4	1.8	1.3	1.1	1.3

7. SUMMARY AND CONCLUSION

We started with the belief (1) that it is useful to project into future a population which is subject to a set of time-invariant age- and region-specific rates of birth, death, and interregional migration, and (2) that the dynamic behavior of the projected age-by-region population can be better understood by studying the analytic solution of the Rogers model, which involves the eigenvalues and eigenvectors of the system's growth matrix as well as the initial age-by-region population distribution.

We then used a Leslie model and a factorizable Rogers model to illuminate some salient features of the analytic solution of the general (non-factorizable) Rogers model. Based on the Swedish data, we have shown that it is analytically useful to realize that an actual Rogers model is close to being factorizable. This realization made it easy to understand the characteristics of the dominant, spatial, and major cyclical components. After showing that the factorizable Rogers model is a simple generalization of the Leslie model, most of the findings in the literature about the dynamics of age-disaggregated single-region populations were synthesized with the well-known properties of an irreducible stochastic matrix for studying the dynamics of empirical age-by-region population systems. For example, we now understand why the sum, across all regions, of the elements of a spatial component is always close to zero, and why the dominant cyclical component represents nearly synchronical population waves, whereas the remaining major cyclical components represent opposite population waves.

The three empirical population systems turned out to be similar in several respects. First, the Swedish and British female populations as well as the *urban* part of the Soviet population have initial spatial distributions that are quite compatible with the current basic demographic processes. In other words, the spatial redistribution potential is rather weak in all three cases. This is in sharp contrast to the

contemporary Canadian age-by-region population system which has a strong westward shifting potential. Second, the projected age profiles of the capital regions in all three countries approach the long-run profiles which have a significant surplus of young adults. This is the long-run implication of the different migration schedules that have previously been classified into the capital-inflow and capital-outflow types by Andrei Rogers. However, we hasten to add that it is usually impossible to predict the shapes of the long-run age profiles by comparing a set of regional migration schedules, because the spatial pattern of migration flows are generally very complicated, unless there are only two or three regions in the Third, all regional population waves moving through the 0-4 age group are nearly synchronical within each country, because of the importance of the dominant cyclical component in representing the population waves. This importance derives from the fact that the impacts on the observed age profiles of major changes in fertility and mortality in the preceding decades were truly nationwide.

Each population system also has its distinct characteristics. Being most "mature" in terms of the theory of demographic transitions, the Swedish female population system, which already had very old regional age profiles, continues to age in such a way that every region would eventually have more than 20% of the population older than 64 years. American and Canadian officials who have been increasingly concerned with economic and social problems of ageing would probably benefit a lot by watching Sweden carefully. The projected population waves moving through the youngest age group in the Swedish regions are exceptional both in their long periods and in their small rates of damping. With the rural part of the whole nation considered as a region, the Soviet population system shows the unusual fact that spatial convergence proceeds faster than the convergence in regional age profiles. It is possible that by the end of the century, the Soviet Union could be as urbanized as the present industrialized countries in the West. The rich

varieties of long-run age profiles of the Soviet regions reveal that the Soviet population is not only very heterogeneous but also lagging far behind the Swedish and British populations in the evolution of the basic demographic processes. The joint effect of intrinsic growth, urbanization, and population waves is expected to result in an extremely high growth rate in the 0-4 age group of every urban region in the Soviet Union during the fifteen-year period between 1979 and 1984. A unique feature of the British system is that due to relatively high levels of regional fertility schedules, there is a lack of the trend toward older regional age profiles. Since the 1970 high fertility levels are not likely to last, this feature is only of passing interest. A more interesting characteristic of the British system is that the projected regional population waves moving through the youngest age group are very small and will be damped rapidly.

Finally, let us face the question: Could equally informative results about regional population dynamics be obtained by more simplistic models such as a set of single-region Leslie models or a spatial interaction model without age-disaggregation? The answer, I would say, is no. The major shortcomings of single-region Leslie models are (1) that these models usually lead to the relative regional growth which is contrary to the observed demographic developments in most industrialized countries, because relative regional growth in these countries has been determined mainly by the spatial imbalance in the migration process but has little to do with the interregional difference in fertility and mortality levels; and (2) that these models do not allow regional age profiles to approach undulated long-run profiles which reflect the age-selectivity of migration. A spatial interaction model without age-disaggregation ignores, among other things, the important demographic feature of population waves which are undermining the financial foundation of higher education and scholarly research in countries like Canada and the United States.

APPENDIX A: INPUT DATA OF THE ROGERS MODEL OF THE 1974 SWEDISH FEMALE POPULATION

17215 6.052 4620 4106. 1966. 4450 4808 5314 3619. 18343, 8405 7609 8181, 9573 6338 3627. 1816. Lower N 3100 2629 2629 1132 7222 6890 2895 Upper N 2236. 3487 2016. 2018 4264 3603, 23255. 25381. 29107. 27023. N.Middle 27911. 26831. 27854. 8974. 5028. 27911. 29025. 27749 25359 22573, 21756 15688 51924. 63932. 52383. 44102. 43472. 46273. 51997. 43514. 6633. 55998. 36060. 48249 6217. 0000 47987 60930, 57595 West 39232, 40517 31697. 35763, 34757 36014 46003, 34344 36922 33171 2656 27203, 37490 50049 South 27485. 25303. 25619. S.Middle 23322. 25363 27387 23321 8173. 3361. 24412. 28376. 20723 20600 22015 22586. 7962 E.Middle 57725 52027 46538 44881, 53199. 38044 36706 39758 45343, 37156 31181 22152 13588 48960 41435 41100 Stockholm 45551 39868 31139 2509 51817 51015 46053 56064 71893 58211 43329 45810 4353 44810 46308 44404 15-19 25-29 35-39 45-49 55-59 65-59 15-79 10-14 20-24 30 - 3440-44 50-54 70-74 80-84 Group 60 - 646-9 0-4

A.1 Initial Population (in persons)

A.2 The <u>B</u>-submatrices

Age Group	Stockholm	E.Middle	S.Middle	South	West	N.Middle	Upper N.	Lower N.
M	3968300.0	8.0000034	0.0909011	6.0000013	6000000 ପ	0.0000012	8. อหอผม15	୧୭୭୬୭୬୦.୯
×	8.0000025	100000000	0 .0000000	0.0000004	6,000000.0	oenanoo*o	ଉଦ୍ଧଳନ୍ତ୍ର ଓ	0°000000°0
m	6.0969996	กออยเขอ•เช	0,0000000	900000000	000000000	@.00acusa	o.0404000	0.0000000
M	0.0000013	3.00Jau	0.0000012	0.0000617	n.0000007	ø.000002	0.000003	U.0400902
m	890000008	0.000000.0	อะบอยดอยล	900000000	ଜନ୍ଧର୍ଷ୍ଟ୍ର ଜ	0°000000°0	บลผมผยงถ• ง	ଷ୍ଟ୍ରପ୍ରପ୍ରଥ ପ
M	6.ଅନ୍ତନ୍ଧୀୟ	ถ.อดบดอกอ	o.ueeodao	0.0000002	0 00000000000000000000000000000000000	000000000	ପ୍ରବଳ୍ପଳର ବ	0.3006000
m	7000000.0	ถะผลกษาตา	0.000000	0,0000001	0,0000000	o.ชคยคธ อ	ପ୍ରଧନ୍ନନ୍ତ ପ୍ରଧନ୍ନନ୍ତ	อ. องกลุกบาง
٣	୨ଉଟ୍ଟେଅଥର•ଜ	00000000	0.0000000	1000000.0	ଉଦ୍ଧର୍ଶ ପ୍ର	G.000000	0.0000000	N. 30000100
4	0.0204392	0.6013669	0.0006921	0,0004367	0.0004139	0.0411289	0.0013610	0.9013842
7	0.0014769	0.0279601	0,0000467	0.0004377	0.0005483	0.0016647	8,8809745	8.888888
4	0.0063651	0.0005142	0.0231259	0,0006208	0.0004207	0.0002511	0.8982897	0.2002300
7	0.0004920	0.6005231	0,0011250	0.0262194	0.0005075	0,0002672	0.6403122	0,0002588
4	0.0004978	1267688.8	0.0011627	0,0006191	0,0253205	6,6969363	6,6006919	0914000.0
4	6-9967928	0.0011197	0.0002634	0,0002353	0.0004320	8016020.0	8.0 006886	0.0004711
đ	0.0863930	U.08J2714	. ପ୍ରଧର୍ଜ୍ୟପତ , ପ	0.0000712	0.0001088	0.0003354	0.0216723	D.6084199
7	0.0003218	0.003424	. 0.3031482	0.0000940	0,0001615	0.0002943	0.0306504	0,6221984

Age Group	Stockholm	E.Middle	S.Middle	South	West	N.Middle	Upper N.	Lower N.
25	0.1133603	6.0105488	0.0057331	0.0039022	8,6034992	0.0094143	0.0127436	0.0116883
2	0,0099943	0.1457162	0.0084873	0.0037317	0.0044353	0,0123167	0.0086600	0.0082348
S	0.6026793	9,0039762	0,1323162	0.0051301	0.0034850	1061160.0	0.0316408	0.6617578
ស	0.0031698	0.0037948	0.0094360	0.1445870	0.0042194	0.0024505	0,0027053	0.0022870
2	0.0036848	0.0064205	0.0101506	0.0057752	0.1446851	0.0077325	0.0053456	0.0044946
is.	0.0048812	9.0068947	0.0021938	89912003	0.0629477	0.1446248	0.8951988	9575500.0
2	0.0027558	0,0022079	0.0039181	0.0006316	0,0009938	0.0022656	0.1322414	0.0642175
۲n	0.0020200	0.6026939	0.0912522	0.0009313	0.0013821	0,6423563	0,0063553	0,1360769
4	0.2167756	0.0152854	0.0001646	691000000	0.0056374	0.0114057	0,0154385	0.0116533
3	0.0151389	0.2580289	0.0116136	0.0057250	0,0066356	0.0153261	0.0112650	0.0104585
9	0,0039514	0.8969442	0.2579397	0,0019249	0,0853971	O.0426231	0.0021808	0,0025929
•	0.0046629	0.6056872	0.0130298	0.2638573	0.0963866	0.0026428	0.0037104	0.0030197
•	0,0056666	0.0098493	0.0156486	0.0072930	0.2706211	0.0106893	0.0062571	0.0063187
9	0.0673359	0.0095751	0.0030740	0.0024450	0.0042627	0,2484203	8-80708-8	0,0051493
•	0.6640764	W-0034198	0.0013545	0.0009283	0.0015666	0.0037275	0,2510986	0.6054368
9	9.00464R6	0.0045319	6666100.0	0.0016077	0.0022611	0.0037623	0.0101033	0.2691848
7	0.2074633	0.0080950	0.0042813	8986800.0	0.0032724	0,0044973	0.0057533	0,0042693
7	0.0097816	0.2182447	0.0058616	0.0050420	0.0037123	0.0068885	0.0049523	0,0050880
7	0.0024808	0.8633361	0.2393828	0.0044230	0.0030418	6.0014464	0.0010542	0.0016367
7	0.0038772	0.0031104	0.0063367	0,2353026	0,0034904	0.0013049	0.6417744	0.0613772

Age Group	Stockholm	E.Middle	S.Middle	South	West	N.Middle	Upper N.	Lower N.
7	0.0033486	0,6050343	0.0080279	0.0347481	0.2388583	0.0045219	0.0027261	0,0028463
7	0.0047895	0.0057143	0.0016541	0.0014752	0,0325369	0.2091400	0.0035493	6269299-0
7	0.0026671	0,6020840	0.0006781	0.8 005554	0.0009539	0.0920647	0.21668FB	0.0033781
7	0.0025636	0.8026696	0.0011659	0.6699690	0.0013887	0.0022785	0.0055867	0.2418923
EC;	0.1107420	0.0026938	0.0014564	0.0013260	0.0011355	0.0015014	8-0050093	0,0014246
æ	0.8039821	U.193867U	0.0420581	0.0010741	0.0013466	1664540.0	0.0018726	0.0017971
æ	0.0069635	0.0011545	0.1172759	0.0015551	6.0011041	0.4405154	8.0M04091	6.0006527
æ	0.0012363	0.6011323	0.0022927	0.1183723	0.0012648	0.0004738	0.9AGB469	0.0074663
10	0.0013065	0.0018193	0.0029074	0.0016984	0.1173244	0.0016761	0.0010636	0,0010278
80	0.0019559	0.0021600	0.0006448	0.0005430	56460000.0	0.1068144	0.0014970	0.0012198
©	0.0011227	0.0007761	0.0032571	0.0002050	0.6003769	0,0009325	0,1156535	0,0012384
4 0	0.0010298	769600000	0.0004461	0.0003893	0.0305214	0.04691940 o	0,0028466	V.1252627
6	0.0335143	0.6006706	0,0004001	0.0003186	0.0603039	0,6003963	0,0005495	0,0003940
6	0.0010633	0.0309822	0,0005679	0.0002810	0.0003765	9769690.0	0,0065400	0.0005206
6	9,0002762	0.0003176	0.0375650	0.0004184	0,0003260	0.0001612	0.0061351	0,00002029
6	0.0003623	0.0002837	0.0000011	0.0350364	0.9883251	0.0001162	0.0001895	0.0001251
o	0.0003339	0.0004614	0.0008163	0.0004175	0.0384571	0.0004569	6.0003653	Ø.0002984
σ.	0.8005069	0.0005529	0.0001696	0.0001345	6,3002622	0.0334825	0.0004645	0.0003501
•	0.0062001	0.0031876	0.0000713	0.0000443	0.0300924	0.0002110	0.0388498	0.0003316
6	0.0002579	u.uns2493	0.0001112	0.0000703	0.0001388	195200000	0.0005565	0,0417442

Age Group	Stockholm	E.Middle	S.Middle	South	West	N.Middle	Upper N.	Lower N.
10	0.0059317	0.0001153	0.0000°55	0.0000407	0.0000524	0.0000543	29900bb.N	0.0000016
10	0.6601721	ช.ตอ6ศบ29	6.0001402	0.8000360	B.00005664	7760000.0	N.0000657	0.0000829
61	0.0000389	0.6000507	0.0101177	0.8000519	0.0000525	0020500.0	0.0900131	0.0000310
01	0.0000458	0.6930472	0,0001391	0.0050413	0.0000551	0 ,0000152	0.9A00A229	0.0030195
10	8.520000.0	g-860gg-0	U.0001992	0.0000538	0.0073604	0.0000629	0.0409371	0.6003464
01	6.อิตอดผล	0.0000948	0.0000408	0.0000176	0.0000451	0.0051523	0.8888463	0.8030551
10	0.0000444	0.0030320	0.0000182	0.0000053	0.0000160	0.0000281	0.0050530	6.000a492
10	C. 40000407	0.0000428	6.0000271	8.3RJU96	Ø.0300246	0.0000323	0.890066.0	6.0072160
11	0.0035642	2,00000000	62000000.0	u.0000011	0.0800043	8. 0%unce9	9.	ଜ•ପର୍ଜ୍ଧପ୍ର
11	0.0000102	0.មហម4080	0.0000043	0.0000010	0.0000054	0.0000017	Ð.	6.0000053
11	8.000003.	8.0000033	0.0033186	0.0030514	0.0000043	o.5000003	.0	0.6990050
11	0.0000028	W.U@W@W31	0.0000043	0.0001393	ଡ ଼ପର୍ବର୍ଷ୍ଟ	8.000000 B	g.	6,6999313
1.1	0.000030	0.00Jau51	0.0000061	0.0000014	8619000.0	0.0000011	0.	Ø.00690.3
11	0.3060049	0.0000064	0.0000013	300000000	0.0000038	Ø . 88889928	.0	0.0000037
11	0.0000027	0.0909022	0.0000006	6.0008002	u.0000013	0 ,00099935	g.	A_8000033
11	0.0000024	0.0000028	8°C©000°0	0 .0000002	0 <u>,</u> 00000000	9.9900996 9.99	B	6,6004822

0.88239246 0.01242548 0.05277738 6,80458356 0.41168476 0.01019489 0.00733514 A. 6151581A 0.01548483 0.01271265 4.91919696 @.Mn355116 8.00545676 0.01848943 0.0225530 8.47.65 \$620 9.044341198 0.62579544 0,94733095 0.0845089a 9,01026992 0,01114955 16966980.0 0.77241051 M. 07871431 0.003495.51 18261100.0 M. 8972397 8.08369524 0.01352430 6.00322754 0,93044915 0.01269293 D. MZMAB34 P. 01/525494 26121703.9 0.01942199 0.01408395 0.10175949 0.03818552 0.91446456 6.73429:185 0.05123130 0.0121461964 0.89350122 0.00418875 6. 02.96RB97 0.01150622 0.87074667 0.04572725 0.03166787 0.02602047 0.6.15:19146 N. A2167531 B.0144143 0.04755421 0.01326171 0.00472194 0.00931928 A.77505334 0.01204485 0.00915733 0.03081500 7.0360.8477 8.901409B3 0.01157654 0.02318759 0.00453678 0.40573629 D. 299417728 0,00353932 0.07244349 9. WEELI9709 9.30784699 0.01M87356 0.04432510 0. MA7H4313 M. 00416985 0.01364399 6,00452640 8,62099273 0.88812393 Ø. ADS76H55 P. 9331643F 0.00473960 0.03515407 0.03462692 0.41869841 0.01386592 p.00429325 2659410.0 0.91312439 8.92441130 a.91024214 0.645240 0.9493A850 N.09399782 0,00319798 0.0111530 9.00989559 8.00913371 0.011324HS 8,60769615 0.00192860 0.021947H7 0.01759639 9.891120389 8.00585898 A. A1171895 3.00407398 0.00848455 0.0395A897 0.20803396 0.41025665 0.00595871 0.94662565 M.RO284452 0. PREEZT755 0.92318271 West 0.00281232 ด.ผมสากใจ8 **в.6972905**в 0.01119354 9.01372309 0.94421286 0.02667128 0.01101016 M. 92764475 0.00326633 0.20198866 P. 99764844 0.00417129 0,01250798 9.01793507 A. 01688767 0.00544723 0.04186383 0.95271307 0.00148557 M.09295677 0.06155156 0.00158473 0.42198956 B. 01783073 8,83169253 0.43467553 508086600.8 M.C1269501 P. H0997397 0.01226761 0.85318581 South P. ALA5A318 0.02364333 N.33~19014 0.00234872 0.0U371656 0.011118439 D. n1546985 0.01847940 P. 01901175 0.9U983898 0.00252687 0.02035214 0.02441322 80,45895498 0.7262127J 0.00423509 0.00113289 P. PU398225 0.00543240 0.92569667 0.03477791 3.89454211 0.01257373 0.78056240 3.05666392 8.05603743 9.015H399B 787200000 0.44515191 S.Middle 65481616 3 91901-19619 8.35147589 0.87549356 0.00443184 A. 33327436 8-90918035 W. 01 196927 0.02361430 9,91504550 4052800000 0.00527840 0.03746130 0,80102052 0,01306660 0.01919409 6.00RS7618 0.0110A593 0.01201692 0.81609389 0.00724455 0.01951427 0.91584702 0.03544217 8.97250177 0.8742A534 0.21260139 8.92450711 6.0044350 0.01001051 0.01952001 E.Middle 0.01423160 0.85158692 0.04683333 0.91355214 0.01656854 0.01931505 26/16/12710 0.01258519 0.015,3612 0.01154244 M.9U723575 0.00679400 0.02854059 8,00,934043 0.01167345 0.01254992 A.02239506 6.01233829 0.01296325 0,90339613 0.03312900 0.0014284 0.01637475 0.00733772 0.01142278 0.01362664 0.01003235 0.01953397 0.03963471 A.9U760171 9.04745152 Stockholm Group Age TEFFFFFMMMMMMMM DOUDUNN

A.3 The S-submatrices

age								
Group	Stockholm	E.Middle	S.Middle	South	West	N.Middle	Upper N.	Lower N.
2	0,81725954	917 JAU2	663	9.63295306	. 9267691	. ¥	0.04923180	0.00839865
· vo	B.05933687	707603	7.71	0.02397584	M.62678486	p.06997393	8. ₹5@23199	B.04794686
'n	0.01539291	.0235399	.7543109	0,03225642	0.02169581	P. GB 921614	A.CUR25.526	0.6079300a
2	0.41846502	. M225953	.0003308	0.84757298	0.02757518	0.01095571	M. 01523917	0.41561903
2	0.02267246	.037750.	.0655506	0.04037443	0.86393982	0.64759331	0.42665165	9.02749472
2	45466650°0	.0381363	011	0.00965937	0.91779515	0.76638671	0.03179541	0,02313072
2	0.01631669	.0132221	0.00529228	0.06399637	0.03626451	0.01546849	0.73544711	0.F.5188467
· Co	0.91934464	0.01518094	0.00724026	a. Muersa14	P.03797919	M.81282553	0.94147710	0.18211635
9	0.85455986	0.04709636	0.02326746	P. 512414646	0.01.933047	P. 027315AD	M.93456193	P. 02594455
•	0,04913(45	6.84397072	0.03109697	0.01587224	6.21879860	0.03761522	M. M2549978	0.62845445
٠,٥	6.01215948	@ 016.23630	0.85531735	6.42256785	6.9145664	0.00666562	0.01494152	0.09619845
9	0,21594152	9.41579019	6.05357628	9.89215092	0.61867724	M.U9788757	0.9824909	0.30/53988
•	A.01749641	0.62524540	0.95874270	0.6795456.0	P. 963384199	0.02368537	M.01351228	0.01454572
9	0.02348749	0.02705210	0.03745967	0.00732651	M.01260331	0.67375391	P. P. 559413	W. R14n6311
9	0,31283419	0.01423551	M.90241893	6.03321258	0.04478163	9.01P44077	0.86318272	0.62390936
9	0,01225193	9,01196639	0.11525,539	a_03528603	0.00514397	M.M1025207	M. 32944977	0.87946348
7	0.89762101	A.02718367	0.01269537	0.01416157	0.91112716	9.01492145	N.019∂6568	0.01371054
	#_03333296	0.90174690	0.017/12468	0. FUB 77 145	6.01146972	0.02193392	0.01467598	
. ~	0.00884833	6.01024524	0.91324262	n.01311379	P. CH975168	0.00300731	0.00391269	0.00413663
. ^	0.01252743	W. 71045738	0.02276810	P.9365A876	0.01282723	ค.ศธรรรร	0.600000000	3.00411108
. ~	0.01154471	0.01570455	0.02306776	0.01566994	0.93639529	9.01407552	0.00461233	P. 68752730
. ~	0.01479750	_	0.00537321	8,000,000	0.4077ª888	0.92150766	0.01485641	0.23874698
. ~	0,04422613	_	0.00111297	0.00216358	6.00349721	0.90711780	0.91494888	8,01254005
. ~	0.00773541		0.00362747	6.00240275	0.00363829	G. 3H725329	0.015U7555	9,93018015
- 20	0.92566240	_	W. mg955577	9818481196	0. NJS88789	0.01039544	M.01054479	8,60944795
. =0	0.02166361	_	0.01020488	66.744.439	0.00641742	0.01567398	0.05980p.0	0.01012576
8	0.00645945	_	069217800	0,96719742	6.40579942	n_unn349393	M. P0386535	6,40271294
· 63	4.6092432 J		0,01438645	0.95971039	6.869890.9	P. NO351531	0.66254443	0,00275747
. 60	0.08810764	0.0106362	0.01464908	0,00965440	0.95875829	n.01645827.	8. คุณ66.859	6,60462630
. 40	9.01.9655	0.013.13661	0.00335311	₽ \$₽\$₹₹₽₽₽	0.30538345	0.94169492	R. M16.19534	0.30622817
0	0.00691126	0.00416249	0.90955239	a,001131729	0.001164963	0.06584093	0.94327164	0.63911467
· 20	0.00463458	201129	0.90168698	g.d03/7972	0.01114296	9.06334511	0.00741190	6.94951239
6	0.94094166	0.01434534	0.00716241	0.00514595	0.40521968	M. GNA59998	A.88757735	0.00810256
6	0.01655596	9421111	0.90849552	0.00399693	0.00418745	0.01315069	0.NG419575	9,407779e8
. 6	0.05544182	0043541	٠.	0.895485.14	0,03382159	0.00297401	3. rs173407	M. W3217898
• 6	0,00532416	.0054473	•	96596991	P. AM549049	0.00246967	4.02170451	0.00191609
6	0.0000 PA180	.0342433	•	0.90545861	0.96577477	0.00727079	8.30561299	8.635W7R29
6	6.90744693	•	0.00264158	ด. มก159885	0.00389493	0.95060307	P. GWA64361	0.00367694
6	0.03471342	0.00200199	0.33356454	a. 40a91712	9,00109323	0.00299125	0.95863181	0.90700.0
6	8,93214,399	.0.129782	031	0.82881966	6.69787491	0.00170397	.0047211	9579587

3								
roup	Stockholm	E.Middle	S.Middle	South	West	N.Middle	Upper N.	Lower N.
6	9439778	-9113899	.0051515	-	0.00413197	9.00675276	Ġ	. 4959
	0146972	646		-	0.00403481	96967600.0	خ	. 6963154
. 5	0341636	.0341589	Ŭ.	_	0,00320673	B. 40158983	36	.0021898
9	03520	034921	0.00846242	0,96399933	0.00444174	0,00237325	Ø.00209675	4
2	. 3548243	,0059054	~	-	6.96529198	8.03516651	3	. Ng33723
10	9371413	. 7:1698	•	_	@.@@310627	0.95525712) (.0045353
10	2333664	.0022177	•	_	0.00P77979	D . 00299794	ċ	88752800.
9	461425A	์ ผมโดยสิม	•	_	R. CON 75641	0.00127476	6.90505998	52940
1	9390655	. 2364845	•	-	0.03253576	0.00507750	Š	7/12
	6126332	947549	`•	_	0.40336427	0.96772886	9.38459449	0.69692383
• -	0.31773	_001353U2	•	_	0.33283257	a. 00130738		.801
•	0046537	3041442	•	-	6.00404693	0.30141327	0.00160496	(02
•	PS46.595	2342459	`•	-	8.96201534	0.00395745		. 25.23
	0.061395	_NG60438	•	-	0,00226686	0.95398837		232
• -	0627566	0020200	•	_	R. 86044985	0.00237983		4 K G 4
	0912796	M313274	•	-	P. 00158154	0.00120707		81/6
• n	786.866	5053800	•	_	6.34277571	6,96394658		. 1004
1 v	3136476	9345597	•	_	0.06287951	8°61114621142		9៨១•
1 0	0030516	0032156	٠.	_	0.90251537	6.00157352		ا ناه
, n	0381654	WG35287	٠.	-	8.00431052	0.62146816		6693
10	P.)46186	0043625	•	-	A. 95177639	6,69415515		900
. ~	0364833	.0056272	•	-	0.00193919	0,94425511		90g
١٨	5624560	.0014808	•	-	6.39849798	0.700180770		.005227
1 ^	6012431	ัดอาระคต	•	-	R. M. 9 19 4 19 5 2	0.00105716		0.935457111
. ~	9362247	- 408.3944	٦,	_	0.90276638	0.00465610		.066871
. ~	0124343	9153369	•	_	M.00248499	0.00710377	-	. 80508
. ~	95621/00	96333999	•	_	0.00267779	0.00130140	_	. ผสไทพ.
~	2939500	.0027381	•	-	6.60424595	8.60130675	-	
	.0340986	.0037241	٠.	٠.	0.9319R/58	0.00418545	A. G.3132466	. 8019708
	.0375663	.0053263	•	•	8,962250645	8.91910475		.6669351
15	.0024393	.0011751	0.00051089	M.08029441	6.00025736	n.60169191	P. 91484016	01966400
3	.0014537	.0015236	•	٠.	0.000025519	0.00034688	-	. 9165883
7	0.8769332U	.00700	0.00274589	•	M.A0194242	9.05798300.p	0.00527240	P.00584873
7	201582165	8793263	•	٠.	0.00168314	g. 00641690	969881000	0826168
7	03322	115214	•	٠.	6.60209786	0.800092111	•	. 0008186
7	9U38hil7	50815UE.	•	~•	0.00317114	G 60161942	84463634	8634
7 -	5966200	333333	0.901994126	•	P.894485N6	9.00772434	6.00061115	.6012923
7	0.549.3	.003580	•	٦.	0.03174546		18014	6,06126649
7 7	7253100	904710	B11314459	٠.	27		5 th \$	1.2388H
7 7	601.5	(0.00)	.000000	_	.8001887	6,00646133	2	2241

Age Group	Stockholm	E.Middle	S.Middle	South	West	N.Middle	Upper N.	Lower N.
15	W. A1590423	0.90533064	0.0205170	0.00173772	M.0015ahu3	0.00270557	\$6280569.9	0.05272639
15	, AUD.	0.69784470	0.60149020	A. MO161241	0.00127721	0.00353927	0.00315198	0.00151316
15	P.P.1217372	M.00162820	0.81259429	0.00160056	0.00133555	P. 09375128	0.00065625	M.P.1451670
15	6,02711994	7280108	0.00453358	6.82544784	0.9821A6M5	P. 28054810	₽.8013818€	8988689998
15	0.03239169	9.00234462	0.00194062	0.00225272	M. 826671126	M. PR128439	72269000.0	8.00145158
15		0.00197485	=	0.00033800	6.00083224	g.80900151	0.80201057	0.60,192373
15	0.00149785	•	9.90051216	9,00016439	6.95619369	8.60P97441	M. AU714995	P. BING74370
15	•	•		8 100 MOC 8	8.6666688	0.0PM41655	0. FULL6789	M. A1807910
16	0.7.953542	0.00414121	0.01197304	0,611215444	0.3016A343	M. 00281650	0.63249190	0.00214353
16	0.00003467	0.69625169	•	0.00095155	6.90394858	0.00367023	8.66243555	0.00174586
16	0.00166876	0.03115905	0.49526()52	0.00118610	0.00097744	P.00039244	0.02052812	0.00832346
16	0.00213024	0.60094523		0.727311188	0.00159190	0.00043036	B.00058128	B.P0112415
16	•	0.00154314	€.	0.60169379	0.71396482	6.90114885	0.600061614	6.00113586
16	7.605500°0	0.3.12:15427	Ċ.	0.00021696	M. BUBS5249	8.58441117	N. 86151359	0.63876641
16	8.00128382	0.00018386	0.465000.0	P. BOMBG147	9.3691632B	R. N'1108694	W.68345839	8,00107688
16	646945030	0.00×5×00	0.60015188	a.d@ccces1	0.00007645	0,60328364	0.000033999	M.69232810
17	0.85544497	. 0028484	5	0.00218443	M.00187524	0.00246455	P.00324181	0.60228669
17	0.00463554	E.76272742	G	0.58946439	0.50078499	6,00404766	0.Nd240056	8.0614119E
17	0.00127264		0.79271097	0,30103688	8.00080452	•6	0.00061195	9
17	A. PU167971	9.04057734	0.00394118	9.53027780	0.00128999	0.00029139	.69	6. SB144195
17	Carp.	• P00956	50.	ดู ฤดิตครา5ช	0.80544376	0.64115867	0.00000964	P. 66143341
17	0.00204660	0,00252213	0.	60001934	0.00C3n189	M.72438624	0.00172226	R.00134982
17	05393	•	•	• 89	R.80016627	0.00000140	479566974	0.00148584
17	P.00035212	0.00018597	•	• 0	•	0.00028159	• 69	0.76833934

APPENDIX B: INPUT DATA OF THE ROGERS MODEL OF THE 1974 SOVIET POPULATION

1010531. 9479226. 7881302. 5120336. 3413558. 2149420. 501556. 1361861. 12187578. 5019938. 3815153 7027913 5973726. 7228710. 4718742. 5903079. 4729684 3757960. 338017 340960. 260618. 137658. 318804. \$67230. 135266. 63198. 68345 78736. 325800. 581429 85977 207363 18373 319269 37017 489091 337782. 2072R6. 260769. 620301 520286, 19682, 127294 722092, 282086, 47467 39654 687247 600058 329356 202353, 84346 724320. 475335 561348. 348579. 226350. 240006. 97945. 430065 263927. 37392. 78583 36945 8337. 751482 639383 772609 769605 626439 Kazakh 987297 444311. 507751. 565143. 364483. 224941, 912056 768913, 706462. 290098 314080. 016642, 21758 163022 93243 006117 251560 43837 Cent. A 122192. 95216. 477164. 494904 54460. 311167. 465269 317094. 59789. 401585. 340602. 54861. 48175 54102. 368119. 25604 2360391. 2165421. 1823433 1478028 1559734 833919 2625942 2558641 833893 2899012 956664 2338082 126475 224244 111299 2008964 8531010. 4322378, 4643<u>1</u>67, 6187733. 8360389 1345139 632406 7146911. 5232353 4891112 336668 3262766 2351788 369820 RSFSR 10-14 15-19 20-24 25-29 30 - 3435-39 50-54 55-59 70-74 75-79 Group 45 - 4960-64 69-69 40 - 4430-84 5-9 0-4

.1 Initial Population (in persons)

B.2 The B-submatrices

| Age
Group | RSFSR | UK & MO | Byelo. | Cent. A. | Kazakh | Caucas. | Baltic | Rural |
|--------------|-----------|-----------|------------------|-----------|-----------|-----------|-------------------|-----------|
| m | 0.0356050 | 0.0034385 | U.0034524 | 0.0028826 | 0,0049592 | 0,0019206 | 0.0025617 | W.0062023 |
| m | 0.0013797 | 0.0366395 | 8.0012665 | 0,3005967 | 0,0012553 | 0.0006032 | 69899999 | 0.0023117 |
| m | 0.0001826 | 0.0001856 | 0.0270891 | 0.0980768 | 0.0301611 | 0.0000571 | 0.0002634 | 0.0004837 |
| m | 0,0003568 | 0.0001810 | 0.0001595 | 0.0367131 | 0.6408644 | 0.3001674 | 0.8401286 | 0,0005081 |
| m | 0.0004277 | 0.0002553 | 0.0002195 | 0.0005983 | 0.0304943 | 0.0001132 | 0.0001270 | 0.0005547 |
| m | 9266060.0 | 0.0000016 | 0.0000559 | 6.0000767 | 0.0000719 | 0,0358573 | B •8494533 | 7665000.0 |
| r | C.0401458 | 0.0001241 | 0,0004565 | 0.0000544 | 0.0300828 | 0.0000453 | 0.0275101 | 0,0003141 |
| m | 0.0033793 | 0.0334917 | 6.0033477 | 0.0028501 | 0.0036813 | 0.0011958 | 0.0038711 | 0,0398672 |
| 4 | 0.1866549 | 0.0325911 | 0.0324691 | 0.0308835 | 0.0457482 | 0.0201118 | 0.0256677 | 0.0630583 |
| 7 | 0.0121826 | 0.1832697 | 0.0114712 | 0.0067628 | 0.0117306 | 0.0061687 | 0.0081760 | 0.0226403 |
| 4 | 0.0019816 | 0,0020543 | 0.1594940 | 0.9011938 | 0.3318777 | 0.0007526 | 0.0028415 | 0,0055356 |
| 4 | 0.0047073 | 9.6027579 | 0.0024647 | 0.2339568 | 0.0106292 | 0.0026687 | 6.8020209 | 0,0075179 |
| ব | 8.6041885 | 0.0327716 | 0.0024440 | 0.3065138 | 9,1525243 | 0.0014145 | 0,0016571 | 0,0062531 |
| 4 | 0.9012737 | 0,0011740 | 0.0008407 | 0.0011754 | 0.0010723 | 0.2349557 | 0,6008253 | 8,0030105 |
| 4 | 6.6013787 | 0.0012317 | U_8037654 | 0.4497696 | 0.0009326 | 0.2405333 | 0,1522850 | 0,0031940 |
| 4 | 0.0355781 | 0.0373516 | 0.0356647 | 0.0344607 | W.0399797 | 0.0150670 | 0.0410659 | 0,2134588 |

| Age | | | | | | | | |
|-------|-----------|-----------|-------------------|--------------------|-----------|-----------|-----------|-----------|
| Group | RSFSR | Uk & Mo | Byelo. | Cent. A. | Kazakh | Caucas. | Baltic | Rural |
| 5 | 0,3155999 | 0.0310005 | 0.0315906 | 0,0326217 | 0,0483558 | 0.0213643 | 0.0219306 | 0.0804776 |
| 2 | W.0184875 | Ø.3967644 | W.0095134 | 0,0055214 | 6606600.0 | 0.0054881 | 0,0055537 | 0,0242742 |
| S. | 0.3018127 | 0.6917934 | 0.3117481 | 0.0909328 | 3.0016863 | 0.0006770 | 0.0023347 | 0.0068005 |
| S. | 0.0055596 | 3,6327966 | 6.0324571 | 0.4706411 | 0.0136492 | 696888860 | 0.0016435 | 0.0110162 |
| ď | 0.0047405 | 0.0027630 | 0.0024233 | 9,0981867 | 0.3066283 | 0,0015233 | 0.0012691 | 0.0087477 |
| ıc. | 0.0014368 | 0.0912640 | 0.0008239 | 0.0013344 | 0.0311503 | 0.4564410 | 0.0007247 | 0.0043429 |
| 'n | 0.0013276 | 0.0210949 | 6.688 N3 B | 0.0006341 | 0.0038137 | 0.0005078 | 0.2752907 | 0.0037780 |
| ĸı | 0.0348319 | ₩,034983u | 0.0337886 | 0.0357479 | 0.0399278 | 0.0147052 | 0.0352065 | 0.4205397 |
| 9 | 0.2671006 | 0.0059235 | 0,0070576 | 0,0072897 | 0.0114532 | 0,0047338 | 0.0036365 | 0.0168470 |
| 9 | 0.0028117 | 8.1963666 | 6.0 625512 | Ø.0013629 | 0.0026321 | 0.0014374 | 0.0011234 | 0,0058588 |
| • | 0.0394123 | 0.003333 | 0,2263387 | 8.0001720 | 0.0003756 | 0,0001394 | 0.0004656 | 0,0014857 |
| £ | 0.0014240 | 9.0045419 | 6.9635199 | 0.3884404 | 0.0039876 | 0.0008652 | 0.0002545 | 0.0025747 |
| ٠ | 0.0012132 | 0.6005649 | 0.0005572 | 0,0022611 | 0.2442391 | 0.0003470 | 0.0001964 | 0.0019476 |
| 9 | 0.0002491 | 0.0001091 | 3.0001159 | 0.0002118 | 0.0001815 | 0.335812A | 0.0000881 | 6,8886992 |
| • | 0.0004677 | 6.0903282 | 0.001552 | ช ุวชุว182ผ | 0.0002443 | 0.0901631 | 8,2044373 | 0,0613575 |
| 9 | 0.0103103 | 5580600.0 | 017660000 | 0.0108586 | 0.0122358 | 0.0040858 | 0.0086750 | 0,3160051 |

| Age
Group | RSFSR | UK & Mo | Byelo. | Cent. A. | Kazakh | Caucas. | Baltic | Rural |
|--------------|-----------|--------------------|---------------------|-------------------|-------------------|-------------------|------------------|------------------|
| 7 | 0.0744597 | 0.0927626 | 0.032034 | 0.4037822 | 0.0353258 | ผูลผู1885ต | 0.0019312 | 0,0074458 |
| ~ | 0.0010722 | 0.2864368 | 0.0011215 | 0.0006630 | 0.0011949 | 8.000558 | 0.8609810 | 0.0926638 |
| 7 | 0.0001483 | 0.0001507 | 0,0921142 | 3.0000046 | 0.0901621 | 0.0400516 | 0.0002256 | 0,6006340 |
| 1 | 0.0006921 | 0.0003102 | u, მფმპშშ6 | 0.223/1388 | 0,0321532 | 0.0004040 | 0.0001660 | 0.0012723 |
| 7 | 6.2005756 | 0,003183 | 0.0003081 | 0.0013616 | 0.1145810 | 0.0001655 | 0,6001264 | 0.0010525 |
| , | 0.0001952 | 0.0900735 | 0.0000568 | 0.0001023 | 8,0000862 | 0.1367565 | Ø.868888 | 8.0002863 |
| 7 | 0.0001433 | 0.0001192 | 0.0005511 | 0.0000750 | 806000000 | 0.0000512 | 0.1053533 | 0,0004944 |
| ^ | 0.0949978 | 8.0059227 | 0.0054795 | 0.0062312 | 0,0006323 | 0.0018920 | 0,0053292 | 0.1848688 |
| æ | 0.0391693 | 0.0038412 | 0.0010136 | 0.0016254 | 0.0020721 | 8,3006,95 | 0.0005036 | 0,0032043 |
| 8 | 0.6003184 | U.0456U36 | 0.0003460 | 0.0632721 | g.8604542 | 0.0461940 | U.0001462 | 0,0011354 |
| 80 | 9866690.e | 8-4908498 | 0.0495972 | 0.0000361 | 0.0008661 | 0.3400190 | 0.0000644 | 8,0002973 |
| 80 | 0.0002120 | u£66069*9 | 6. ปิดยุศ924 | 0.1571183 | 0,0000005 | 0.0001321 | 0.0000425 | 0.0004615 |
| 80 | 0.0001658 | 0.0350904 | 0°60000°0 | 0.0005463 | 0.0762533 | 0.0000529 | 6,6968297 | 0,0004081 |
| æ | 0.0900257 | 8-8909232 | 0.0000142 | 8,0030332 | 8,0000018 | 0.0814342 | 0,0000111 | 9°0000000 |
| 89 | D.030A493 | 0.6366487 | u.0002007 | 8.9960334 | 8,0000371 | 0.0000196 | 0,0437738 | 0,0002360 |
| 6 0 | 0.0915907 | U.9316642 | 6.8018762 | 8.39248 99 | 8. 0025025 | 0.00 06503 | 0.0015854 | W, 1289549 |
| σ | 0.0047143 | 0 - 0000140 | 0.0001274 | 0,0894043 | 0, NAU3389 | 0.0001196 | 0,0000758 | 9661000.0 |
| o | 0.3000364 | 0.0044465 | U. 9003945 | 0.0000687 | 0.01/00735 | น. อผอหรรร | 0.0000226 | 0.0002904 |
| 6 | 0.0000055 | 0.0000047 | Ø.∃∂67964 | Ø.001H089 | 0.0909107 | Ø_6000034 | 66290H9-0 | W.0000752 |
| 6 | 0.6000286 | Ø.09U0113 | 6,0000132 | 0.0429684 | 0,0001299 | 8.5000228 | 0 ,899867 | 8560000.0 |
| | | | | | | | | |

| Age
Group | RSFSR | UK & MO | Byelo. | Cent. A. | Kazakh | Caucas. | Baltic | Rural |
|--------------|------------------------|-------------------|-------------------|----------------------|---------------------|-------------------|---------------|-------------------------------------|
| o | 0.0000222 | 0.6400105 | 0.0000132 | 0.0001370 | 0.0133284 | ย.ตผอดาคา | 8,8900058 | 8.8881018 |
| • | 0.000032 | 0.0000026 | 0.0000000 | J.8939972 | 0.0000038 | 0,0159896 | 0.0000017 | 56100000.0 |
| σ | 8 _0000054 | g.gaaaa38 | 0.0000247 | 0.6300081 | 9.000000.6 | 0.3009034 | 0.0073612 | 0,0406586 |
| 6 | 0.0002146 | 3.0302013 | 0.990090 | 0,0005344 | 0.004435 | 0.0001145 | 0.0002495 | 0,0351029 |
| 18 | 0.0004639 | 0.0000076 | อ. ชคกธ125 | 0.3000918 | 0.0000703 | ଓ , ପଷ୍ଠ ଉଟ୍ଟେଶ ଓ | 0.0000005 | 0.8801666 |
| 10 | 0.0000036 | 0.0004349 | U.9000044 | u.0000158 | 0.0000159 | 09000pu*0 | ଉ-ଉପଡ୍ୟତ୍ର | 0.0000010 |
| 10 | 0. 30000465 | 8,000,000 | 0,0036749 | 0,00000000 | 8.0000053 | 9600666.0 | 8,0000000 | 0,0000157 |
| 10 | 0.0000082 | 0.000932 | W.000M937 | 0.0100479 | A. 89009419 | 8,000000.0 | a.000no17 | 0.0000256 |
| 10 | 0.3030329 | 0.0000014 | 0.0000017 | 0,0000318 | 0,0029869 | 0,0044018 | 9 ଜଣ ଜଣ ଜଣ ଜଣ | 8.0000211 |
| 10 | 0.0000005 | ଓ ପ୍ରସମ୍ପର୍ଶ | 0,8903303 | 0.000016 | g . ស្រីសង្គេលខ្លួន | 9667500.0 | 8.0000000 | 0.0000041 |
| 10 | 0.3000205 | 6.6306694 | ø, andades | 0.0039018 | 8.6469112 | 900000000 | 8,0006043 | 0,0000122 |
| 10 | 0.e000407 | 0.8909380 | 0.0003512 | 0.0031264 | 0.0000964 | 0.0000243 | 0,0000433 | 0.0074971 |
| 11 | 0.09002a2 | 8.000068.8 | 0.09003 | 0.0000261 | 0,0000103 | 0,0000032 | 0.0000000 | 0.0000336 |
| 1.1 | 0.6000001 | 0.6590186 | ø.oogodeī | 0.0000044 | 0.000003 | ଉ . ଓଡ଼ଓଟମୀ ଡ | ଉକ୍ଷୟକ୍ଷର | 6,6000123 |
| 1.1 | ଜ୍ଞ୍ଚ୍ଚ୍ଚ୍ଚ୍ଚ୍ଚ୍ଚ୍ଚ୍ଚ୍ | g.89300Ag | 0.0000160 | ପ ୍ଷରପ୍ରଜନ୍ ତ | 8.6400A3 | 1000000.0 | ୭୭୦୬୦୪୦ ଡ | 0.0000032 |
| 11 | ଉପ୍ରଧ୍ନ ପ୍ରଧ୍ନ ପ୍ରଧ୍ନ | o.୧୬୯୭୯ ୦ | 0,0000000 | 0.3029130 | ଡ.ଜଉପରଥ2ୀ | 0.0000003 | .0 | 8,000000.0 |
| 11 | 100000000 | ପ. ଅଷ୍ଟନ୍ଧରପ୍ତ | 6,0000000 | 0.ตผบผลสาย | 0.0004527 | 50000000 | ଡ•ପର୍ଜ୍ଧର • ପ | 0 , 0 0 0 0038 |
| 11 | 0.688888 | 0. | .•0 | 6.000000 | 6.000aaa | 0.8004611 | • 0 | 76066666 |
| :: | ଜ ଉପ୍ରସମ୍ପର୍ଶ | 3,000000 | ០. ២៥២១២២៤ | 0.0000000 | ଓ.ଓଏଉଉପଉ2 | 3.0000001 | 0.0000147 | 6,0000025 |
| 11 | 0.000003 | 3. 6900992 | 0,0000002 | 0,0040236 | 99000000 | 0.0000016 | ଉ.ଖନ୍ତନ୍ତନ2 | 0,0015209 |

W. 00370094 0.00260754 8.02643778 0.00925996 0,00234785 M. WERZ77838 8,91296828 M. UU186774 0.00052619 M. 95146/25 0.01196439 0.00983916 0.00741443 0,10187909 0.02584964 0,02477416 0,02729856 0.01197326 0,01588553 0.46946326 n. 00209124 N.1324019W 0.00486789 0.17226114 0,31413245 0.01118607 0,00326481 8,00403621 P. 84532641 P. 03373816 0.00200100 0.00068514 0,00018428 0.94116640 0.02324552 0.01296796 0.00162915 0.00038864 P. MONS1892 0.63414356 0.95922756 0.03620549 0.00452027 0.00055947 0.01956283 0.05583540 0.00671392 0.00232778 0.00254598 3.00122868 N.84455448 P.06707194 0.12651385 0.01315558 9.68654236 0.40323952 0.58881840 R.11251964 P. 01655211 A. 00696531 9. Mea71445 8. JOUSS495 691933125 0.00030732 0.00033174 0.00579612 8.60914328 0.004595%2 0.04114068 8.00130413 M.001320466 A.027C4012 0.00866895 0.00337597 0.00109436 8.00076527 0.95359361 755595969 0.00023777 9.00024933 G.01181301 8.9572578.8 0.91639596 0.00165727 0.02007842 0.09810990 0.00337285 N.80963403 0.00253697 B.04643744 Caucas 0.00750230 0.00811288 2.00112412 0.89593565 A.03026253 0.20613894 0.02873648 0.00083403 0.du5pa962 0.73767353 W. W.1779155 0.10476645 0.02427962 0.01657109 0.55753422 0.00424578 0.00060261 0.62354043 6.0302022 19564565 0.00387433 0.78165597 0.00163849 0.06126793 8.224012062 0.05153487 0.00845467 0.03473223 0.10783450 0.00184491 0.00437591 Kazakh 6.92601174 p.80470382 0.85654199 A.00125195 0,02949239 0.00334014 0.03249060 0.00030266 0.0002163A 96503776 C. 00018775 0.06221904 0.01165038 6.012440B4 0,04057503 P. MJ492672 6.67848724 M.0463832 81814566.0 8.00026781 2.01377844 0.01536557 001025234 0,00375658 699989999 2.01191599 8.03186463 0.98179127 0.15137477 0.02811541 e.00211771 Cent. A 0.00772510 6.00019545 0.82390W76 0.65299046 0.01020303 0.09570225 0.91842556 0.00102729 0.00194887 0.00545848 6.02352159 0.02136248 0.00736924 0.30006533 0.01141412 8,00015995 11.11.11.11.55.5 0.40302848 0.00437118 0.61046879 0.615629320 0.15730655 0.05708690 0.01820864 0.02681884 0.00952468 0.94413525 0.00475527 0.02473237 0.NG128787 0.07356881 0.00329431 Byelo. 0.15787835 P.6965A945 0.20087755 0.NU4580N50 0.00583789 0. PE141509 C. 05113785 8.92282715 A.01932070 896503550 0.00A75184 0.00156845 2.01.724843 8.04.097474 200167144.0 0.07079336 E.85176197 0.00324887 8. MO278409 6,95717818 ©.и0923946 A.0116812U 0.10015299 0.02442562 0.93116790 0.00107380 0.00492127 0.90183027 0,00217133 0.00056471 0.00439271 0,00115151 δ Ø M.36426214 0.00287124 0.8346.0565 \$56£6P60°3 0.60310655 0.03161128 0.00% 0.00% 0.00% 0.66114620 9.69322259 0.00055555 0,00168846 0.87162534 6.02564612 0.00457156 0.00817375 0.00322475 2377724 0.00885174 0.01516523 P. 01751277 0.00.496492 8.90652034 0.03466435 0.93047685 0.96270043 6,30198922 3011851508 9.01102477 0.01158271 0.62499387 0.N5246211 92946631 RSFSR Group Age ちちちかり まままままままる こうこうこうこう

.3 The S-submatrices

| Age | | | | | | | | |
|------------|-----------|------------------|-------------|-------------------|-----------|------------------|-------------------|----------------|
| Group | RSFSR | UK & Mo | Byelo. | Cent. A. | Kazakh | Caucas. | Baltic | Rural |
| ı, | 7655543 | 1500302 | 1506396 | 1698277 | 2363906 | 1043571 | 1042010 | 412936 |
| ı u | 3522138 | 6849458 | 94707150 | 80165 | F502033 | .0278388 | 0286257 | 1516012 |
| ıv | 9277700 | 0071153 | 6429289 | . 000461357 | 3073255 | - MU29365 | 0104694 | 8311196 |
| , U | 0163220 | BCR2437 | . gu716 | 6321308 | 6444513 | .0101035 | 0048553 | 0336293 |
| | 21855.16 | 0109033 | . MO95643 | 0333321 | 5093796 | 676651JM* | 0059136 | 0367171 |
| · u | 95,496.81 | 6043299 | .0028155 | N146134 | .0039412 | .7892991 | 0024839 | 8182889 |
| ٠ د | 9067302 | .0056372 | .0193705 | .0032731 | 31141376 | .0026338 | 7133336 | 021CES1 |
| יט ני | 1177708 | .1197948 | .1138319 | 1238828 | 1368945 | . 4542923 | 1229783 | 5635716 |
| | 86:3716 | . 20,90,295 | .6769666 | .0856669 | 1352366 | .0555616 | 6166659 | 2138855 |
|) . | D268564 | .8429952 | .0231541 | .0124722 | 8256055 | . W139872 | 0102531 | 8658598 |
| | 9035531 | . 0031002 | .8346837 | .0014381 | 1175809 | . 0012158 | 0638945 | 0152274 |
| | 0.164373 | .0033957 | .0.31410 | 7683474 | 9250559 | . 9055284 | 0015118 | W175698 |
| | 0103935 | 6259800. | .094/1803 | .0244710 | 7085048 | .0029662 | ,0015521 | 0196756 |
| | 7,25881 | .0019819 | .0011785 | .0021838 | 1018355 | .8839445 | .0068711 | 0017282 |
| | 0035359 | .0025150 | -0115515 | 0013657 | 0018263 | .0012637 | 8730036 | 0116753 |
| • | 0721601 | . 8642964 | .0674668 | .0773796 | 8668598 | . M287983 | ,0596641 | 6365273 |
| , ~ | 9221118 | 3969650 | .0457731 | . M472936 | 18736681 | , N256312 | 0256339 | 0945666 |
| . ^ | V128107 | .9621614 | -0129767 | . 80265022 | .0132697 | .0061286 | ,0662116 | W275274 |
| . ^ | 066100 | 47741UG. | .87981352 | 88899999 | MO15604 | .0004732 | 0020642 | 55533 |
| | 6.4322 | 580611n. | .0010305 | 8752453 | N129787 | .0024464 | 6696699 | 0073651 |
| . ^ | 30.53353 | .0028551 | 0027429 | .0110665 | 8327123 | .0014114 | 0010428 | NOB5956 |
| . ^ | 0012045 | .0010627 | . 3000575 | .0013448 | 0309436 | 9406150 | ,0005356 | ,4029963 |
| | 869160 | 6013651 | 40065494 | .0007140 | 4526600 | .0305620 | 9131421 | ,0850396 |
| - ^ | 0361781 | .0366436 | .0398311 | . 0422336 | 0472838 | . W133423 | .0374669 | ,8299418 |
| - a | 9230691 | .0364750 | .0435261 | 69434646 | 95561170 | . W228557 | .0214204 | ,0822566 |
| . « | 010213 | 9033315 | 0111773 | _au52167 | M113738 | . 0048998 | .004605 | , 0215561 |
| o | 0012111 | . AU12507 | 6799359 | .0005346 | NU12843 | .0003715 | .0016288 | WW4473 |
|) a | 6037338 | 6316894 | . MO16096 | .8773280 | 0123428 | .0028948 | . 6267115 | ,0861626 |
|) c | 8797978 | .0025955 | .0025465 | .0145426 | .8332218 | .0012284 | .0001966 | 637534 |
| . « | 0010348 | •9n6ang• | . RLUS 719 | 51 26000 | .00000406 | .9424441 | .0064328 | 602513 |
|) «C | 0.113553 | .0011271 | . 6US7364 | . WOUS 478 | 6037788 | - WHA4372 | ,9194161 | 603815 |
| • | 333425 | .9352015 | .0394561 | .0465853 | .6467730 | . 0120958 | .033502 | , 845876 |
| . 0 | 931406 | <u>"೧</u> ೭30566 | .n309564 | .0324713 | . 8515385 | .0176207 | .015659 | 054947 |
| C | 0069301 | .9234615 | .0076759 | .0038334 | .008065 | .0036597 | 603309 | ,0158219 |
| • • | 0269CA | • 60001 • 29 | 99139759 | . 888308 | 0000149 | .0002781 | .631162 | , NW2899 |
| • 0• | 832587 | .0013556 | .0u11355 | .8926311 | .909122t | . DU15847 | , 856,808. | ,004169 |
| • • | 0.32838 | .0016687 | . net 600.R | _B077637 | .862533 | .0609487 | . @^@5886 | 016500 |
| • • | 2000734 | .00006696 | 0124530 | .0437152 | 00006633 | .9426447 | .0003546 | . 601768 |
| . c | 0109434 | 37667 | 42978 | 811848 | 0305 | 10362 | 'n | 0.00267878 |
| ۰, ۵ | | .322075 | .02768 | 5660053 | 0338584 | .0193U77 | . 624298 | 879860 |
| • | | | | | | | | |

| 2611 | | | | | | | | |
|---------------------------|------------------|--------------------|------------|------------------|------------|------------|-------------|---------------------|
| Group | RSFSR | Uk & Mo | Byelo. | Cent. A. | Kazakh | Caucas. | Baltic | Rural |
| 1.0 | .9168816 | 0217412 | ~ | 0316574 | | .0178100 | .0146896 | .8524571 |
| 13 | .037.261 | 9112968 | 91.3 | 0039231 | 0.00876254 | BM3931 | 0.00332238 | |
| 10 | .00007423 | 0.070902 | • | .00003486 | | . 4032584 | P. 00135678 | 0025549 |
| 10 | 96#20% | 5600 | 75601110 | | | 888 | . 665486 | 0.00407067 |
| 10 | .0.333279 | 5759100 | 0.40184816 | 5 | | 11012 | M.00036337 | 0.00563520 |
| 10 | .8397988 | 00000763 | • | \$78,000 | 0.00072467 | 146 | 0.80033722 | 0.00177846 |
| 16 | 99%6000 | 7917809, | • | . ศกคศ212 | | 50. | 0.91361791 | 0.00256571 |
| 1.0 | .0221169A | 9210315 | | .0296964 | | 43 | 0.02309435 | 0.86543401 |
| 11 | . 9235178 | 0109510 | • | 0225349 | | 116 | 0.01099635 | 0.03613546 |
| 11 | .0451936 | 2125616 | • | 0528491 | | 3 | A. 80257647 | 0.01015874 |
| 11 | . 20134844 | ,600,4565 | | , 90c2157 | 0.00061547 | 91 | 605873509 | W. 00170244 |
| 11 | .0317372 | ,ოვვაბნსშ | - | .8940521 | | 166 | 0.40034673 | 0.00277341 |
| 11 | .0324080 | 7771 | • | P0159243 | | 116 | 0.00041435 | 0.00352780 |
| 11 | . 0036928 | , GU∂51 7 4 | • | .0005099 | | 26 | 0.00025475 | 0.00127897 |
| 11 | , GG 7 9 7 4 | 068228b | • | ,000291 6 | | 962 | 0.91696477 | 0.00188478 |
| 11 | •0159056 | 3153430 | • | . 6214967 | | 83 | 0.01768335 | 0.89474532 |
| 12 | .9154221 | ,0135411 | • | .0205951 | | -15 | 6.01003992 | 0.02753568 |
| 12 | . 9.345499 | ,9115313 | • | . 4026465 | | 54 | 0.83235303 | 0. WO778980 |
| 12 | .0394178 | 9365.000 | • | 7705000. | | 21 | 0.20066196 | 0.00127489 |
| 12 | .0012753 | 8634838 | • | .8877869 | | 68 | 0.03029453 | ท.ผย 1 82153 |
| 12 | .0319103 | 3000362 | • | 0606500 | | 146 | 0.00635515 | 0.00246753 |
| 12 | .0303597 | 0.075661 | • | .06933395 | | 903 | 9.0010100 | 0.00071130 |
| 12 | .00006932 | .182000. | • | . 2003136 | | 69 | 0.91232264 | 0.N0164370 |
| 12 | .6139248 | .013485 | • | .0197166 | | 74 | 0.01628795 | 9.96985477 |
| 13 | .8771427 | .0149649 | • | .0225403 | | 96 | 0.01023977 | 0.02689369 |
| 13 | .0353412 | .8718438 | • | .0028887 | | 52 | 0.00239355 | 0.00768579 |
| 13 | . 4354943 | .0034656 | • | .000-2363 | | 372 | 0.00072632 | 0.00133514 |
| 13 | • n.112526 | . 00004756 | • | .8518788 | | 394 | M. NUB27344 | 0.00157103 |
| 13 | .0020454 | .0212006 | • | . ผม52426 | | Sr18 | 0.00034861 | 0.00251951 |
| 13 | . RJ72951 | .00002471 | • | - 0005000 | | 500 | 0.63006475 | 0.06353769 |
| 13 | . 2309987 | .0006518 | • | .0004327 | | 114 | 0.88325761 | 0.00194627 |
| 13 | . ^156672 | .015.1358 | • | .0218939 | | 174 | 0.01685079 | 0.87464351 |
| 14 | .8261877 | .0136274 | • | .0209751 | | 334 | 0.69857386 | 0.02253665 |
| 14 | . 0346841 | .8237431 | • | .0027723 | | 375 | 0.00201787 | 0.00658394 |
| 14 | .0025056 | 61004627 | • | .0002431 | | 362 | 0.00064027 | 0.00122631 |
| 14 | . 0212146 | .0000 | ٠ | .8166197 | | £. | P. PUN23171 | 0.00136968 |
| 14 | .e019738 | .0000411 | • | .0553439 | | \sim | 0.00028717 | 0.002nm432 |
| 14 | . 2002847 | . CE 92.336 | | 8751100 | | 128 | A.08467396 | p.us346386 |
| 7 7 | _0033842 | MC9734 | • | .00044463 | | 4 | 0.85185053 | 0.00185,142 |
| 14 | .3144817 | .0135956 | • | , 8202334 | | 8.00627930 | 0.01375648 | _ |
| | | | | | | | | |

| Age | i i | | 0.00 | F
1 | 7. | | | |
|----------|-------------|-------------|------------|----------------|-------------|-------------|-------------|----------------|
| Group | KOT OK | UK & PO | DYELO. | cent. A. | Nazavii | caucas. | Darcic | untat |
| 2 | 1548974 | M.01173368 | | 018451 | 933914 | .0101082 | 0.00681323 | 0.41858913 |
| ر
1 - | | 7497353 | • | 06256 | 175499 | 0.00255707 | 0.00170636 | 0,00571899 |
| 51 | 8,63247942 | 9,80043124 | 0.74912775 | Ø_000252A3 | 600153 | 0.00418696 | 6,00056295 | 0,00110533 |
| . C. | 01100 | P. GUD4U924 | • | 759553 | M. 2050488M | 0.00068387 | 0.00029587 | M. CO117717 |
| . C | #C47100 | 0.31932610 | | ัดเรสราย | 0,71808183 | 0,409355858 | 0.00624017 | D. W0168585 |
| 5 | 332634 | 6,06921739 | , C | eguide. | 0.30428657 | W.77321887 | 80560M08*B | 0.00040257 |
| 5 | 2.63395526 | 6,00470544 | • | | P.09065345 | M. Op038447 | 0.75487709 | 0.00168773 |
| 2 | 6120584 | 0.21159485 | • | 017611 | 0.02285885 | A. NOS45837 | 0.01121177 | 94665641 |
| 9 - | 0.65161747 | 0.01926649 | ٠ | 0,01628582 | 0.02973787 | A.00887039 | 0.00595435 | 0.01629492 |
| 16 | 0.5393320 | 64677229 | • | | 0.00551734 | 0.00225493 | 0.06147749 | 0,60501149 |
| 9 - | .0334235 | 0.00037889 | • | @_00023511 | P.64055592 | 0.00016856 | 0.00048738 | M. Pipti 97660 |
| 5. | 0.0.0007.53 | 0.60035386 | ٠, | 0.66931490 | 0.00444415 | 0.60464766 | M. 66618351 | 8.00184159 |
| 16 | 0.03154855 | 6.88977479 | • | 585504110.0 | 8,62465948 | 0.0264040.0 | 0.05020012 | B. GN14848N |
| 16 | 0.0322AFD | C. MCP19336 | • | 6,00025303 | 0.389826556 | 0.67598689 | P. NBUCR978 | 0,00035443 |
| 16 | 0.03383528 | _ | 0 | P. BUR 33644 | 0.00056461 | 0.00033252 | 0.65118200 | p.00147792 |
| 16 | A 91139449 | 0.01024787 | 0.01593937 | 0.01574257 | 0.02011663 | .0047849 | 0.09983683 | 0,64863569 |
| 17 | A \$64 \$15 | 6.424,33554 | 0.04790542 | 0.04216684 | 0.06972251 | 0.02224498 | 2 | 0.03835720 |
| 17 | €. | ىت | • 013175 | G_00A94640 | 0.01326458 | M11569D | 0.035 | 0.01181849 |
| 1.1 | .a.11.854 | 0.00009641 | 0.91624266 | Ø . 00006 4193 | 0,00145635 | BDB4944 | NG13 | 0.00246631 |
| | 5 | 6_HU009972 | 0.00162453 | 6,96022135 | 0,01146213 | .0015530 | .0005 | 0. MU273901 |
| | .0336595 | 0.00177695 | 6,46773070 | 0.01031791 | 8.80241281 | 9013351 | C.00051154 | 0.00554134 |
| 17 | • | 8.82.14B34C | 0100000000 | 9.00001152 | P. 00F59650 | P. 94352794 | 41674 | 0.00099379 |
| 17 | C | ن | 0.01139576 | 862460000 | 6,00145587 | . 4669833 | 83 | 0.00350210 |
| 17 | | 8.02416587 | 0.64015175 | 8.0400HB94 | 0.84772224 | 0.01232108 | M. 02315760 | 0.83842230 |
| | | | | | | | | |

APPENDIX C: INPUT DATA OF THE ROGERS MODEL OF THE 1970 BRITISH FEMALE POPULATION

C.1 Initial Population (in persons)

| Age
Group | North | E.Midland | W.Midland | E.A. | S.E. | S.W. | Wales | Scotland |
|--------------|---------|-----------|-----------|--------|----------|---------|---------|----------|
| 0-4 | 0450 | 7.0 | (.) | 7.0 | 350 | 4400 | 0330 | ر
ان |
| 5-9 | 633133. | 140300. | 213900. | 55200. | 655500. | 151400. | 112400. | 231300. |
| 10-14 | 4020 | Ġ | 183100. | (O) | 3320 | 4.0 | 0 7 3 | 273 |
| 15-19 | 0030 | 100 | 530 | 3.0 | 5230 | 340 | 6 | 910C |
| 20-24 | 4310 | 05 ć | 650 | 330 | 0230 | 4020 | 860 | 1239 |
| 25-29 | 7333 | Q Ö | 350 | 27.0 | 7100 | 5.50 | 260 | 526C |
| 30-34 | 3710 | 030 | 5 | 0.30 | 2140 | 0660 | 202 | 0565 |
| 35-39 | 2550 | 300 | ć. · | 9 | 0410 | 0340 | 67(| 4830 |
| 40-44 | .0000t4 | 250 | 153900. | 710 | 515409. | 6.7 | 10 | 5530 |
| 45-49 | 9713 | 91C | .+ | 6 | 3550 | 7.2.7 | - | 57C |
| 50-54 | 3850 | j C | 147,430. | 9.0 | 2320 | 3960 | 80100. | 5910 |
| 55-59 | 6700 | 190 | 550 | 250 | 7470 | 260 | 30 | 55 |
| 60-64 | 5 1 | Û | U | 010 | 3460 | 250 | 4 | 53 |
| 69-69 | 0350 | 450 | 110 | 540 | 5570 | 130 | 5 | 7 |
| 70-74 | 2750 | 040 | 430 | 999 | 8140 | 210 | 5 | 3,4 |
| 75-79 | 7622 | 323 | 940 | 760 | 3167 | 546 | 25 | Q. |
| 80-84 | 3675 | 933 | 037 | 8 2 ć | 3777 | 303 | 53 | 37 |
| 85+ | 79396. | J | 24624. | 253 | <u>~</u> | 903 | 8 7 | 36 |

C.2 The \tilde{B} -submatrices

| Age
Group | North | E.Midland | W.Midland | E.A. | च.
ऽ | S.W. | Wales | Scotland |
|--------------|---|-----------|-----------|-----------|------------|------------|-----------|------------|
| 10 | £625e59*C | 867280010 | 0.0319759 | 0.0017179 | 0.0013918 | 0.3016330 | 0.0020847 | 0.0017327 |
| m | 0,0003109 | 0.0536495 | 0.3311911 | 0.6012264 | 0.0057314 | 0.0006743 | 2767000.0 | 900200000 |
| ~1 | 0.0607378 | 0.0014375 | 0.0558953 | 0.0008309 | 5.0006173 | 0.0012962 | 0.9311446 | 0.0005123 |
| ۲٦ | 17 CO | 665600010 | 0.0003889 | 0.0474743 | 0,0003047 | 0.0004130 | 0.0002025 | 0.0001768 |
| " | 0.0000175 | 0.0027232 | 0.0022340 | 0.0352701 | 0.0456730 | 0.3054277 | 0.0021673 | 0.0020265 |
| r | 0.3036153 | 6.9000715 | 5.00100.0 | 0.3010598 | 0.0013396 | 0.5473774 | 5.0012073 | 0.0005201 |
| ۲۱ | 0.0004549 | 0.0003327 | 9775000*0 | 0.0353134 | 0.0003101 | 0.2005331 | 0.0554784 | 0.0001584 |
| ın | 0.3034553 | 0.0005936 | 0.3032502 | 0.0005293 | 0.0004413 | 0.0005426 | 0.0003122 | 3.0511467 |
| 4 | 3.2792422 | 0.0153330 | 0.0088760 | 0.0035432 | 0.0074483 | 0.69760.0 | 0.0104650 | 0.0081509 |
| - † | 6.60-1197 | 0.2085153 | 0.0055528 | 0.0059622 | 0.0037017 | 0.0029128 | 0.0024026 | 0.5021718 |
| 7 | 0.3037337 | 0.6052720 | 0.2142390 | 0.0038254 | 0.0031160 | 0.0055731 | 0.0052546 | 0.0024296 |
| r | 3.0016280 | 0.0033251 | 0.0011340 | 0.1946982 | 0.033170 | 0.3019361 | 0.0011834 | 0.0010243 |
| r | 3.0110092 | 0.0140353 | 3.0112248 | 0.0256401 | 0.1900413 | 0.0273474 | 0.0126477 | 0.0103139 |
| 4 | 2,030332 | 0.0040777 | 0.0043252 | 0.0046726 | 0.0064808 | 0.1923912 | 0.3359063 | 0.0026058 |
| \† | 9.0321259 | 0.0014619 | 0.0025822 | 0.5014751 | C.3C15792 | 0.0025670 | 0.2185027 | 0.00000000 |
| 7 | 0.0224558 | 0.0026262 | 0.3012317 | 0.0024392 | 0.002200.0 | 0.002500.0 | 0,0015023 | 0.2145544 |

| Crown | Morth | Widlerd | Widlend | 6 | ŭ | 3 | 201-19 | 621 |
|------------|-----------|-------------|-------------|-----------|-----------|-----------|-----------|-----------|
| dronb | INOT CIT | בינודחדמוות | W.Fitutaiid | | | | матер | SCOCTAIN |
| " " | 0.3493030 | 0.0170472 | 0.0102175 | 0.0110945 | 0.0090563 | 0.0102499 | 0.0123951 | 0.0107436 |
| 5 | 0.0051007 | 0.1729563 | 0.0072356 | 0.0080791 | 0.0043638 | 0.0034541 | 0.0033075 | 0.0031355 |
| 10 | 0.0043327 | 0.092405 | 0,3293859 | 0.0052094 | 7750730.0 | 0.0067384 | 0.3963324 | 0.0032015 |
| Ŋ | 0.0520373 | 0.0044130 | 0.0214157 | 0.3031110 | 0.0052331 | 0.0024894 | 0.3017481 | 0.0011557 |
| w | 6.0134151 | 0.0170933 | 0.0133363 | 0.0353964 | 0.3082981 | 0.0365321 | 0.0151837 | 0.0141229 |
| W | 0.0037294 | 0.3951901 | 0.0052274 | 0.0063123 | 0.0034146 | 0.3048721 | 0.0069537 | 0.0032561 |
| U\ | 5.0325112 | 0.0512176 | 0.0031439 | 0.0017134 | 0.0018001 | 0.0032263 | 0.3258533 | 0.0009532 |
| " | 0.0032415 | 0.0735109 | 5.0016317 | 0,0037741 | 0.0029663 | 0492800*0 | 0.3924598 | 0.3395090 |
| ن٠ | 0.2530336 | 0.0105593 | 0.0057185 | 0.3963147 | 0.0048518 | 0.0058113 | 0.0066671 | 0.0066934 |
| S | 0.3624112 | 0.2554413 | 0,0037640 | 0.0043585 | 0.0025165 | 0.0018355 | 0.0016697 | 0.0017844 |
| v) | 0.0024034 | 0.0047323 | 0.2575132 | 0.0031375 | 0.0021826 | 0.0035972 | 0.0030291 | 0.0013459 |
| ·ɔ | 6.0010103 | 0.9925163 | 6.0007522 | 0.2291712 | 0.0029691 | 0.0011838 | 0.0008565 | 0.0005781 |
| 9 | 0.3050693 | 0.5678467 | 0.7251528 | 0.0185098 | 0.2562955 | 0.0181394 | 0.0058943 | 0.0073528 |
| ę | 0.0012431 | 9.0029116 | 0.0327965 | 0,0033940 | 0.0045735 | 0.2385471 | 0.3031570 | 0.9017757 |
| o | 0.0014504 | 5.0011644 | 0.0316490 | 0.0010397 | 0.0038376 | 0.0018175 | 0.2441652 | 0.0004935 |
| ۰.0 | 0.3317518 | 0.0021030 | 0.0008185 | 0.0022867 | C.0C15592 | 0.0022879 | 0.0914227 | 0.2763413 |
| 7 | 0.1313571 | 0.0042892 | 0.3324509 | 0.0025010 | 0.0017907 | 6.0022103 | 0.3328818 | 0.0029486 |
| 2 | 3.0000936 | 0.1173425 | 0.9915700 | 0.0017341 | 5.0010014 | 0.0007178 | 0.3336189 | 0.0007537 |
| 7 | 0.0010239 | 3.0920057 | 0.1393010 | 0.0012378 | 0.0009138 | 0.0015477 | 0.3012951 | 0.0007928 |
| | | | | | | | | |

| Age
Group | North | E.Midland | W.Midland | E.A. | S.E. | S.W. | Wales | Scotland |
|---------------|-----------|-----------|-----------|-------------|-----------|-----------|-----------|-----------|
| 2 | 0.0004171 | 0.3910626 | 0.0003352 | 0.1023341 | 0.0012656 | 0.0004525 | 0.0003212 | 0.0002640 |
| ۲- | 6.3023335 | 7290860*0 | 0.0025395 | 0.3363256 | 0.1274165 | 0.0369477 | 0.0023152 | 0.0030485 |
| 2 | 0.0000.0 | 3.0011505 | 0.3312056 | 0.0014177 | 0.0018696 | 0.1107627 | 0.3012631 | 0.0007793 |
| ~ | 0.0035235 | 0.3004528 | 6.3006.3 | 0.0004193 | 0.0003473 | 6,0006549 | 0.1205251 | 0.0051791 |
| ~ | 0.0007161 | 0,2003440 | 0.0003170 | 0.0008455 | 0.0006419 | 0.0009100 | 0.0005185 | 0.1455821 |
| ъ | 0.0523054 | 0.0013075 | 0.0038471 | 0.0307421 | 0.0006127 | 0.0006345 | 0.0009235 | 0.0399707 |
| ю | 0.0003330 | 3.0448193 | 0.0905372 | 0.0005437 | 0.0003134 | 0.0002182 | 0.0002131 | 0.0002606 |
| ני | 4.66000.0 | 0.C035947 | 6.0559155 | 0.033337 | 0.0002788 | 0.0004707 | 0.0004180 | 0.0002645 |
| νο. | 0.0301400 | 0.0003344 | 0.0001162 | 0.0333152 | 0.0004128 | 0.0051424 | 0.0001069 | 0.0000820 |
| 10 | 3.0007487 | 4724000.0 | 0,0008243 | 0.0020972 | 0.0473169 | 0.0321353 | 0.0007232 | 0.0009523 |
| າງ | 600200010 | 0.000058 | 0.0004075 | \$59\$CC3*0 | 0.0005338 | 5.0410742 | 0.3304270 | 0.0002569 |
| נח | 0.0001940 | 0.0001242 | 0.0003343 | 0.0001132 | 0.0001038 | 0.0001393 | 0.0461008 | 0.0000551 |
| 70 | 0.0002243 | 0.3702756 | 0.0001207 | 0.0002858 | 0,0001945 | 0.6302746 | 0.3301719 | 0.0563433 |
| | 0.0115352 | 5.6562517 | 0,0001620 | 0,0001348 | 0,0001080 | 0,0001109 | 0,0001679 | 0,6001777 |
| œ | 0,0000652 | 3.0100505 | 0,3031332 | 0.0001038 | 6850000*0 | 0,0000380 | 0,9300492 | 2670000*0 |
| o, | 0,0000655 | 0.0001104 | 0,0128944 | 0,0000705 | 0.000000 | 0,0033811 | 0,0000710 | 0.0000514 |
| : > | 0.0000172 | 0.3000653 | 0.0000222 | 0.0733328 | C.0C00771 | 6.9000257 | 0.0003197 | 6,0000149 |
| . | 0.0001375 | 0.2031785 | 3.0001541 | 0.0003359 | 5.0098717 | 0.0003332 | 0.0001259 | 0.0001805 |
| 5 | 0.0000514 | 0.3000716 | 6820000*0 | 0.0000824 | 0.0001063 | 0.0033184 | 6.0000301 | 767000010 |

| Age
Group | North | E.Midland | W.Midland | E.A. | S.E. | S.W. | Wales | Scotland |
|--------------|------------|------------|-----------|-----------|-----------|-----------|-----------|------------|
| o. | \$ 20000°C | 0.0909253 | 0.0000473 | 0.0000213 | 0.0000136 | 0.5300347 | 797466.0 | 0.000100 |
| () | 0.0000441 | 0.0000568 | 0.0000154 | 0.0000529 | 0.0000346 | 0.0000497 | 0.0900319 | 0.0120425 |
| 13 | 0.0005589 | 0.0007168 | 0.1000110 | 2.0000017 | 0.0553058 | 0.0000071 | 0.000000 | 6.00000.0 |
| 10 | 0.0000035 | 0.0006992 | 0.0000074 | 0,0000000 | 0.0000032 | 0.3000024 | 0.3900625 | 0.0000028 |
| 10 | 0.000035 | 0.0000073 | 0.0009116 | 0.0000041 | 0.0000026 | 0.00000.0 | 0.0000042 | 0.0000029 |
| 10 | 3.0000015 | 0.0337344 | 0.0000015 | 0.0105029 | 0.0000042 | 0.0330316 | 0.000012 | 0.0000000 |
| 5 | 0.0000074 | 0.0000119 | 0.0003103 | 0.0000223 | 0.0005562 | 2,2000.0 | 0.0000076 | 0.0000101 |
| 10 | 6.000003 | 0.0000647 | 0.0000052 | 0.0000047 | 0.0000055 | 0.3035977 | 0.0000049 | 0,00000028 |
| 16 | 5.0000021 | 0.0000517 | 0,3000032 | 0.0000012 | 0.0000010 | 0.0000022 | 0.0066251 | 0.000000 |
| 10 | 0.0000024 | \$£00000*0 | 0.0000010 | 0.000031 | 0.0000018 | 0.0000032 | 0.0000000 | 0.0006968 |

| Age | | | | | | ; | | , |
|----------|------------|------------|------------|------------|------------|------------|------------|------------|
| Group | North | E.Midland | W.Midland | E.A. | S.E. | S.W. | Wales | Scotland |
| - | 9294305 | 0320250 | .0203027 | .0239003 | .0167745 | .0196368 | .0239204 | .0225036 |
| , | .0039933 | 3713469 | .0133577 | .0175774 | .0092468 | .0072020 | .0054432 | .0076242 |
| - | 0030260 | 0173037 | .9107872 | .0114295 | .0071756 | .0125576 | .0113559 | .0059793 |
| - | .0041710 | .0115623 | .003500. | .8385462 | .0122107 | .0050922 | .0026325 | .0018753 |
| - | .0235711 | .0233347 | .0213336 | .0711387 | .9190741 | .0653913 | .0201485 | .0243322 |
| _ | .0070935 | .0121649 | .0110576 | .0105072 | .0183296 | .8663713 | .0127321 | .3064124 |
| - | .3052126 | .0337123 | .0058663 | .0032309 | .0030933 | .0055130 | .9085326 | .0013135 |
| - | .0057405 | .0031553 | .0025043 | .0035700 | .0057213 | .0088009 | .0048769 | .9194962 |
| 2 | .9533084 | .0254535 | .0160922 | .0164978 | .0120322 | .0152587 | .0142255 | .0150132 |
| 2 | .0355373 | 7686806. | .0109552 | .0108503 | .0066433 | .0064485 | .0029270 | .0064326 |
| 2 | .0050300. | .0127492 | . 3239332 | .0066155 | .0047415 | .0085989 | .0092490 | .0035403 |
| 2 | .0033382 | .0099082 | .0035537 | .8923636 | .0084722 | .0045921 | .0012161 | .0013010 |
| 2 | .0175034 | .0232276 | .0203646 | .0521687 | .9447763 | .0494063 | .0152271 | .0179799 |
| 2 | .0052292 | .0100120 | .0102223 | .0133390 | .0149126 | .9049321 | .0095874 | .0044035 |
| 2 | .0637703 | .0024573 | .0045523 | .0017658 | .0026368 | .0036926 | .9421501 | .0010709 |
| 2 | .0038341 | .0049110 | .0030421 | .0046002 | .0046037 | .0055003 | .0031642 | .9437376 |
| ~ | 0.93982732 | 0.03161889 | 0.01960049 | 0.61454820 | 0.01370590 | 0.01521528 | 0.01776015 | 0.01543420 |
| 2 | .0079034 | .8389954 | .0117665 | .0104636 | .0074246 | .0073316 | .0041619 | .0046554 |
| ~ | .0063226 | .0136555 | .9126056 | .0073937 | .0059396 | .0123740 | .0120042 | .0045570 |
| 'n | .0032301 | .0110237 | .0032450 | .8859109 | .0083525 | .0047252 | .0014042 | .0018964 |
| ٣ | .0262495 | .3345922 | .0365533 | .0025913 | .9376918 | .0685328 | .0287392 | .0250789 |
| 3 | .0063397 | .0104632 | .0113624 | .0105267 | .0167252 | .8800350 | .0137637 | .0054466 |
| ~ | .0043230 | .0030932 | .0055638 | .3030368 | .0036299 | .0055891 | .9183266 | .0018305 |
| ~ | .0343569 | .0050656 | .0031354 | .0039800. | .0650179 | .0048242 | .0022182 | .9395452 |
| 4 | .8358441 | .0535220 | .0304276 | .0262426 | .0265352 | .0264149 | .0332747 | .0248793 |
| 7 | .0151531 | .8178393 | .0205054 | .0192536 | .0139299 | .0107099 | .0080415 | .0067695 |
| 7 | .0134336 | .0223539 | .3574748 | .0116507 | .0118154 | .0213556 | .0205382 | .0031920 |
| 7 | .0056334 | .9137277 | .3041324 | .8078507 | .0134672 | .0073057 | .0035652 | .0033259 |
| 7 | .0514565 | .0643032 | .0540365 | .1067519 | .8915461 | .1223323 | .0613763 | .0477825 |
| 7 | .0103305 | .0141113 | .0163731 | .0150196 | .0258250 | .7934315 | .0231548 | .0093781 |
| .1 | .0371245 | .0046859 | .0095251 | .0051250 | .0063338 | .0095359 | .8435252 | .0031512 |
| 4 | .0334716 | .0076291 | ,0053674 | .0063979 | .0034050 | .0075662 | .0039962 | .8938300 |

C.3 The S-submatrices

| Age | : | | : | | | ; | | , |
|---------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Group | North | E.Midland | W.Midland | Е.А. | S.E. | S.W. | Wales | Scotland |
| 5 | 8730319 | .0535191 | .0343436 | .0346053 | .0323717 | .0357286 | 0387451 | .0330192 |
| | 0175973 | .7995730 | .0249457 | .0238140 | .0163941 | .0112185 | .0104920 | .0394718 |
| Š | 0156290 | .0251323 | .8440293 | .0139293 | .0135433 | .022205 | ,0213378 | .0093465 |
| 2 | 0070185 | .0134371 | .0044970 | .7670354 | .0172055 | .0085485 | ,0058542 | .0039129 |
| . 50 | 0530101 | .0544452 | .0533406 | .1243161 | .8695333 | .1364644 | ,0623256 | .0516308 |
| · v | 0122497 | .0162189 | .0184932 | .0185863 | .0306173 | .7603913 | .0246701 | .0103832 |
| . 10 | .0087528 | .0056714 | .0115334 | .0053832 | .0071930 | .0120665 | .3262161 | .0038132 |
| ۰ ۷ | 0103204 | .0037962 | .0064251 | .0396736 | .0101633 | .0137397 | ,0072229 | .8758235 |
| | 9150303 | .0489958 | .0253692 | .0232340 | .0225731 | .0303064 | .0273638 | .0290429 |
| o v o | 0115795 | . \$511664 | .0151745 | .0130491 | .0117521 | .0091392 | .0076421 | .0075314 |
| • • | 1990010 | .0213053 | .3383775 | .0126735 | .0394371 | .0155003 | .0137150 | .0068313 |
| | .0350665 | .0113333 | .0035277 | .8210951 | .0137395 | .0059469 | .0045207 | .0028454 |
| · · c | 0312585 | .0372365 | .0327673 | .0899620 | .9025578 | .0892396 | ,0303384 | .0354837 |
| | 0036585 | .0139036 | .0143318 | .0139515 | .0243779 | 8271694 | .0146952 | .0077244 |
| | 0069900 | .0051193 | .0331629 | .0653323 | .0043367 | .0105338 | .8926236 | .0530171 |
| . 43 | 0376353 | .0065831 | .0348129 | .0079815 | .0074373 | .0091739 | .0059720 | .9036513 |
| . ~ | 9392526 | .0342084 | .0130466 | .0207504 | .0153601 | .0201295 | .0206235 | .0205164 |
| - 1 | 0072437 | 5903322 | .0121947 | .0137462 | .0074555 | .0068933 | .0036290 | .0046485 |
| ۰, | C06e025 | .0168543 | .9131053 | .0381760 | .0064439 | .0129328 | .0102735 | .0039570 |
| ٠, | 0032304 | .0097633 | .0030300 | . 5738385 | .0096899 | .0039093 | .0023298 | .0025695 |
| . ^ | .0227047 | .0263239 | .0239367 | .0577847 | .9312166 | .0697381 | .0209797 | .0235426 |
| . ^ | 0361078 | .0097724 | .0116613 | .0126150 | .0175289 | .8784177 | .0092577 | .0055374 |
| - ^ | .0043565 | .9042162 | .0950707 | .0043493 | .0031690 | .0063318 | .925267 | .0015070 |
| . ^ | 0049329 | . 3033747 | .0034683 | .0043148 | .0045527 | .0064313 | .0027368 | .9311839 |
| _ 0 | 9517467 | .0221242 | .0142357 | .0123725 | .0195521 | .0123694 | .0141396 | .0151067 |
| מינ | .0057231 | .9213400 | .0079436 | .0032473 | .0042398 | .0050519 | .0030148 | .0037663 |
|) X | 0041473 | .0112315 | .9320955 | .0043336 | .0042956 | .0099965 | .0087349 | .0025469 |
| 3 0 | .032214 | .0069320 | .0020505 | .9105072 | .0073351 | .0031766 | .0018393 | .0017456 |
|) a | .0164351 | .0181235 | .0183391 | .0396953 | .9464636 | .0429347 | .0163413 | .0137235 |
|) (4 | .0346149 | .0073135 | .0094732 | .0115134 | .0132930 | .9110958 | .0077189 | .0038012 |
|) α | .0031713 | .0017417 | .0039064 | .0320434 | .0022121 | .0040334 | .9374331 | .0011324 |
| o x | .0028692 | .0026115 | .0033333 | .0038902 | .0032137 | .0043486 | .0020957 | . 3479532 |
| 0 | 9541685 | .0145139 | .0099920 | .0090613 | .0078333 | .0078682 | .0034430 | .0093522 |
| ۰ ٥ | .0044228 | .9382413 | .0055018 | .0052353 | .0035990 | .003002 | .0023720 | .0027474 |
| ۰ ۵ | .0032101 | .0066932 | .9405435 | .0025435 | .0035705 | .0070799 | .0057260 | .0019480 |
| • 0 | .0017337 | .0045056 | .0021135 | .9289638 | .0062958 | .0022311 | .0009400 | .0012302 |
| • 0 | .0112771 | .0136633 | .0136158 | .0299520 | .9480589 | .0323253 | .011535 | .0093556 |
| • 0 | 0039980 | .0052924 | 9032064 | .0070211 | .0128744 | .9236464 | .0063652 | .0027420 |
| ۰ ۰ | 0.00325351 | 0.00151529 | 0.00410202 | 0.00207936 | 0.00209652 | 0.00354408 | 0.94675285 | 0.00098737 |
| > (| 0004000 | 567500 | 200700 | 20021917 | .0027937 | 0026090 | 0012780 | .9538608 |
| ٥. | | | | | | | , | |
| | | | | | | | | |

| מאַנ | | | | | | | | |
|------------|------------|-------------|------------|---|------------|------------|-----------------|------------|
| Group | North | E.Midland | W.Midland | E.A. | S.E. | S.W. | Wales | Scotland |
| 10 | 0.95109856 | 0.01256779 | 0.00742708 | 0.00915993 | 0.03619257 | 0.00619670 | 0.00653281 | 0.00513298 |
| 2 0 | 0000000 | V 54 50 7 V | 0.040643 | 7 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y | | 0677700 | 7 C 7 D 7 D C • | 76.47.00 |
| - - | .0014635 | 4908500 | 0013365 | 9235067 | .0053694 | 0021373 | .0004184 | .0008528 |
| 0 | .0078709 | 0137943 | 0110321 | 0311231 | .9443395 | .0323878 | .0080709 | .0060757 |
| 10 | .0036374 | 0050503 | 0078259 | 0055304 | .0133871 | .9250327 | .0056457 | .0019961 |
| 10 | .0033135 | 0017207 | 0045739 | 0027206 | .0021746 | .0033895 | .9472541 | .0008601 |
| 10 | .0021760 | 0012005 | 0014386 | 0.015076 | .0025587 | .0013365 | .0007344 | .9535462 |
| - | .3427538 | 0112716 | 0063351 | 0072004 | .0062205 | .0053177 | .0060265 | .0042393 |
| = | .0031340 | 9237400 | 0035631 | 0051304 | .0027116 | .0013237 | .0017953 | .0015960 |
| 1 | .0021855 | 0043575 | 9331326 | 0015312 | .00200. | .0053336 | .0035430 | .0011399 |
| | .3012535 | ,0035152 | 0017080 | 9259783 | .0061443 | .0019403 | .0004233 | .0007100 |
| 1 | .0065327 | 0120023 | 0093327 | 0245733 | .9345735 | .0281054 | .0079853 | 0046520 |
| | .0030947 | .0046854 | 0075263 | 0043719 | .0137983 | .9227035 | .0053924 | .0015540 |
| | .0028176 | 0015236 | 0041305 | ,0022254 | .0021760 | .0033733 | .9385134 | .0006539 |
| 7 | .0018334 | ,0011545 | 0.014135 | .0011531 | .0026500 | .0015047 | .0006592 | .9440309 |
| 12 | .9255303 | ,0109185 | 0072557 | .0346663 | .0066344 | .0033326 | .0055638 | *966800 |
| 12 | .0030376 | .9145745 | 0031793 | .0033667 | .0026949 | .0011153 | .0011514 | .0010391 |
| 12 | .0020337 | 0030470 | 9132121 | ,0022301 | .0017926 | .0027397 | .0037677 | .0009898 |
| 12 | .0010327 | .0033027 | 001411 | 9241433 | .0057303 | .0013715 | .0009313 | .0006229 |
| 12 | .0055353 | .0085466 | ,0085119 | .0169396 | .9175595 | .0231545 | .0086790 | .0046327 |
| 12 | .0029196 | .0050870 | 010452 | ,0020244 | .0143232 | .9154733 | .0058305 | .0011307 |
| 12 | .0229761 | .0013233 | .004331 | .0319912 | .0020438 | .0029396 | .9189330 | .0004729 |
| 12 | .0015495 | .0015920 | ,302327 | .0003352 | .0023459 | .0013546 | .0003701 | .9254928 |
| 13 | 8933392 | .0109473 | .005275 | .0047685 | .0055319 | .0043131 | .0050258 | .0032213 |
| 13 | .0031533 | . 3640979 | ,0023290 | .0040085 | .0027849 | .0012478 | .0006383 | .0005391 |
| 13 | .0025854 | .003297 | 886333 | 602696 | .0020039 | .0029764 | .0037493 | .0006746 |
| 13 | .0008562 | .0040109 | 000952 | .892563 | .0051109 | .0019562 | .0012413 | .0003742 |
| 13 | .0057432 | .0071034 | .036139 | .0132637 | .8912338 | .0235515 | .0070593 | .0039312 |
| 13 | .0025653 | .0052195 | .010619 | 002332 | .0149405 | .8850925 | .0053603 | .0008039 |
| 13 | .0024970 | .001641 | .003713 | .0015136 | .0015393 | .0025522 | .8896771 | .0003553 |
| 13 | .0012742 | .0014390 | .00200 | .030759 | .0013513 | .0013505 | .0002259 | 8959674 |
| 14 | .8402329 | .0023793 | .003200 | .0051510 | .0342753 | .0045169 | .0053162 | .0023537 |
| 14 | .0025093 | .5335961 | .502166. | .005463 | .0023779 | .0014301 | .0003205 | .0004637 |
| 14 | .0019367 | .0033999 | .343219 | .001985 | .0013274 | .0041492 | .0040957 | .3004672 |
| 14 | .0007276 | .0031337 | .000493 | 8415918 | .0041142 | .0614379 | .0011405 | .0001774 |
| 14 | .0059533 | .0067447 | .003225 | .0199891 | .8531635 | .0237774 | .0054909 | .0030746 |
| 14 | .332200. | .004763 | .005517 | .003638 | .0117369 | .8394272 | .0039544 | .0006533 |
| 14 | .0015851 | .031672 | .001915 | .0006314 | .0012563 | .0017315 | .8377104 | .0003736 |
| 14 | .0009928 | .000084 | .001030 | .0006291 | .0013686 | .0011173 | .0004841 | .8442995 |
| | | | | | | | | |

| מלע | | | | | | | | |
|-------|------------|-----------|------------|------------|------------|------------|------------|------------|
| Group | North | E.Midland | W.Midland | E.A. | S.E. | S.W. | Wales | Scotland |
| 15 | .762129 | .007517 | 0.00235104 | .0045473 | .0031043 | 0.00391435 | 0.00675257 | \$65200 |
| 15 | .032372 | .765030 | .0508670 | .004824 | | • | 0.00099888 | 0.00053257 |
| 15 | 015 | 032754 | .773512 | 0.00175344 | 0.00132583 | | 0.00467793 | .000533 |
| 15 | .300644 | .0027618 | 0.00034655 | .77695 | 0.00303675 | 0012733 | 0.00133319 | 0.000216 |
| 15 | .0051102 | .005704 | .002299 | _ | | ٠, | 0.00632970 | |
| 15 | .0019141 | .0040355 | 0.00392907 | _ | | ~ | 0.00452781 | |
| 15 | .0013474 | .0014932 | 0.33135120 | _ | | ٠. | 0.75409222 | |
| 15 | 08704 | .0005455 | 0.00075900 | - | | ٠, | 0.00054595 | 0.75355839 |
| 16 | .6476339 | .0061083 | 0.00225814 | _ | | 0 | 0.00610351 | 0.00252142 |
| 16 | .0020545 | . 5575654 | 0.00036635 | _ | | ٠. | 0.00087336 | 0.00049133 |
| 16 | .0314255 | .0027086 | 0.65737524 | _ | | ٠. | 0.00424770 | 0.00049091 |
| 16 | .0005356 | .0022921 | 0.00032281 | _ | | ٥. | 0.00123443 | 0.00322852 |
| 10 | .0045335 | .9947413 | 6.00225448 | _ | | ٠. | 0.00578546 | 0.00320911 |
| 16 | .0010757 | .0033331 | 0.00385583 | - | | ٧. | 0.00410368 | 0.00069978 |
| 16 | 11 | .001174 | 0.00130311 | - | | ٠. | 0.64003307 | 0.00037684 |
| 16 | .0006115 | 3.6 | 0.00075865 | _ | | ٠. | 0.00047938 | 0.63779616 |
| 17 | .6506343 | .0103840 | 0.00366293 | - | | ٠. | 0.00950089 | 0.00463057 |
| 17 | .0035667 | .7012264 | 0.00135101 | - | | ੶ | 0.03147589 | 0.00074701 |
| 17 | .0323824 | .0047283 | 0.63534517 | - | | ਼ | 0.00689068 | 0.30350591 |
| 17 | 1233 | 043304 | 0.00075257 | _ | | • | 0.00239176 | 0.00036524 |
| 17 | .0033423 | .0035753 | | - | | ٠. | 0.01004298 | 0.00622775 |
| 17 | .0029340 | .0058452 | .006751 | - | | | 0.00093448 | .001316 |
| 17 | .0017904 | .0020810 | .00216 | _ | | ٧. | 0.64415801 | .000640 |
| 17 | 0.00141276 | .0010163 | 0.00119282 | 0.00037819 | | 0.00129367 | 0.00097518 | 0.63566618 |

REFERENCES

- Andersson, A.E., and I. Holmberg (1980) Migration and Settlement: 3. Sweden. RR-80-5. Laxenburg, Austria: International Institute for Applied Systems Analysis.
- Coale, A.J. (1972) The Growth and Structure of Human Populations: A Mathematical Investigation. Princeton, N.J.: Princeton University Press.
- Feeney, G.M. (1970) Stable Age by Region Distribution. Demography 7:341-348.
- Gantmacher, F.R. (1960) The Theory of Matrices. New York: Chelsea Publishing Company.
- Keyfitz, N. (1968) Introduction to the Mathematics of Population. Reading, Massachusetts: Addison-Wesley Publishing Company.
- Liaw, K.L. (1978a) Derivation and characterization of the analytic solution of the generalized Rogers model of interregional demographic growth. Unpublished paper, Department of Geography, McMaster University, Hamilton, Ontario, Canada.
- Liaw, K.L. (1978b) Dynamic Properties of the 1966-1971 Canadian Population System. *Environment and Planning A* 10:389-398.
- Liaw, K.L. (1979) Implications of Eliminating Foreign Migration upon the Dynamic Properties of the Canadian Interregional Population System. *Modeling and Simulation*. Proceedings of the Tenth Annual Pittsburgh Conference, University of Pittsburgh, Vol. 10, Part 4, pp. 1369-1375.

- Liaw, K.L. (1980a) Multistate Dynamics: the Convergence of an Age-by-Region Population System. *Environment and Planning A* 12:589-613.
- Liaw, K.L. (1980b) The Robustness of the Analytic Solution of a Time-Homogeneous Spatial Population System: A Canadian Case Study. Part 4: Social Economic Systems. Modeling and Simulation, Vol. 11. Proceedings of the Eleventh Annual Pittsburgh Conference, University of Pittsburgh, pp. 1253-1258.
- Liaw, K.L., V. Aresta, and K. George (1979) Major Cyclical Components of the 1966-1971 Canadian Interregional Population System. *Geographical Analysis* 11:109-119.
- Rees, P.H. (1979) Migration and Settlement: 1. United Kingdom. RR-79-3. Laxenburg, Austria: International Institute for Applied Systems Analysis.
- Rogers, A. (1975) Introduction to Multiregional Mathematical Demography. New York: John Wiley & Sons.
- Rogers, A. (1979) Migration Patterns and Population Redistribution. Regional Science and Urban Economics 9:275-310.
- Soboleva, S. (1980) Migration and Settlement: 8. Soviet Union. RR-80-36. Laxenburg, Austria: International Institute for Applied Systems Analysis.
- Theil, H. (1971) Principles of Econometrics. New York: John Wiley and Sons.

RELATED IIASA PUBLICATIONS

- Andrei Rogers (editor), Migration and Settlement: Selected Essays. RR-78-6. Reprinted from a special issue of Environment and Planning A.
- Andrei Rogers and Frans Willekens, Migration and Settlement:
 Measurement and Analysis. RR-78-13.
- Frans Willekens and Andrei Rogers, Spatial Population Analysis:
 Methods and Computer Programs. RR-78-18.
- Andrei Rogers, Migration Patterns and Population Redistribution. RR-80-7. Reprinted from Regional Science and Urban Economics.
- Andrei Rogers (editor), Essays in Multistate Mathematical Demography. RR-80-10. Reprinted from a special issue of Environment and Planning A.
- Nathan Keyfitz, Multidimensionality in Population Analysis. RR-80-33. Reprinted from Sociological Methodology 1980.
- Andrei Rogers (editor), Advances in Multiregional Demography. RR-81-6.