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1. Additional information on methods 31 
1.1 Population  32 

For 2015, the state-level population by age group is obtained from the data visualization platform 33 
of GBD India Compare1. We calculate the population with 5-year age intervals by dividing all-cause 34 
deaths by all-cause death rates in each state. For 2040, we use projections from the Shared Socioeconomic 35 
Pathways #2 (SSP2) gridded population data2 and estimate state-total population by aggregating the 36 
gridded data within each state. We further assume the same age structure across the country in 2040 by 37 
applying the national-level age structure projection of SSP2 to all states.  38 

Specifically, Table S1-3 summarizes: 1) the state-total population in 2015 and 2040, 2) age 39 
structure in 2015 by state, and 3) age structure in 2040 at the national level.  40 

 41 
Table S1 Summary of the state-level population in 2015 and projection for 2040 42 

GAINS-South Asia 
Region 

States Population (million) 
2015 2040 

INDI_ANPR Andhra Pradesh 92.54 120.14 
INDI_ASSA Assam 34.74 41.50 
INDI_BENG West Bengal 99.47 125.60 
INDI_BIHA Bihar 118.75 131.57 
INDI_CHHA Chhattisgarh 29.26 33.59 
INDI_DELH Delhi 18.15 17.91 
INDI_EHIM North East (excl. Assam)1 15.89 20.08 
INDI_GOA Goa 1.48 1.74 
INDI_GUJA Gujarat 67.37 79.48 
INDI_HARY Haryana 28.29 35.52 
INDI_HIPR Himachal Pradesh 7.40 8.59 
INDI_JHAR Jharkhand 37.21 44.52 
INDI_KARN Karnataka 66.72 85.32 
INDI_KERA Kerala 35.26 46.83 
INDI_MAHA Maharashtra2 122.09 147.09 
INDI_MAPR Madhya Pradesh 83.03 98.61 
INDI_ORIS Orissa 46.63 59.16 
INDI_PUNJ Punjab3 30.27 41.48 
INDI_RAJA Rajasthan 78.01 92.06 
INDI_TAMI Tamil Nadu4 79.65 96.01 
INDI_UTAN Uttaranchal 11.04 12.62 
INDI_UTPR Uttar Pradesh 227.44 269.45 
INDI_WHIM Jammu and Kashmir 13.28 19.12 

  43 

 
1 North East region consists of 7 small north eastern states (viz. Arunachal Pradesh, Manipur, Meghalaya, Mizoram, 
Nagaland, Sikkim and Tripura). 
2 Including Dadra-Nagar Haveli and Daman and Diu (Union Territories - UTs) 
3 Including Chandigarh (UT) 
4 Including The Andaman and Nicobar Islands, Lakshadweep and Pondicherry (UTs) 
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Table S2 Summary of the age structure in Indian states, 2015 44 
State Sex 0-4 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 

Andhra Pradesh Both 8.0% 8.9% 8.5% 7.6% 6.8% 5.9% 4.8% 4.0% 3.7% 
Assam Both 10.6% 8.7% 8.2% 7.1% 6.1% 5.1% 4.0% 3.1% 2.4% 

West Bengal Both 8.2% 8.9% 8.3% 7.4% 6.7% 6.0% 5.0% 4.1% 3.3% 
Bihar Both 12.3% 7.2% 7.0% 6.2% 5.1% 4.1% 3.2% 2.8% 2.7% 
Delhi Both 8.6% 9.7% 9.3% 7.8% 6.7% 5.6% 4.5% 3.6% 3.0% 

Arunachal Pradesh Both 11.5% 8.7% 7.9% 6.8% 5.6% 4.6% 3.4% 2.4% 1.7% 
Goa Both 6.4% 8.7% 8.7% 8.6% 8.0% 7.1% 6.0% 5.2% 4.5% 

Gujarat Both 9.4% 8.8% 8.2% 7.3% 6.3% 5.5% 4.6% 3.8% 3.1% 
Haryana Both 10.4% 9.0% 8.1% 6.8% 6.0% 5.0% 4.0% 3.3% 3.0% 

Himachal Pradesh Both 7.9% 8.5% 8.3% 7.7% 6.9% 6.1% 5.2% 4.4% 3.7% 
Jharkhand Both 13.5% 8.0% 7.7% 6.5% 5.4% 4.6% 3.7% 3.1% 2.9% 
Karnataka Both 8.5% 9.4% 8.7% 7.5% 6.6% 5.7% 4.6% 3.8% 3.3% 

Kerala Both 7.6% 7.2% 7.3% 7.2% 7.2% 6.9% 6.4% 5.7% 4.9% 
Maharashtra Both 8.2% 9.2% 8.5% 7.4% 6.5% 5.6% 4.6% 3.8% 3.4% 

Madhya Pradesh Both 3.9% 8.1% 7.4% 6.5% 5.8% 4.9% 3.9% 3.0% 2.7% 
Punjab Both 8.2% 9.0% 8.4% 7.2% 6.5% 5.7% 4.7% 4.1% 3.8% 

Rajasthan Both 11.8% 8.2% 7.2% 6.3% 5.5% 4.7% 3.8% 3.0% 2.5% 
Tamil Nadu Both 8.1% 8.5% 8.5% 7.9% 7.2% 6.5% 5.5% 4.6% 3.9% 

Uttar Pradesh Both 11.9% 7.7% 6.8% 6.1% 5.3% 4.3% 3.4% 2.8% 2.6% 
Jammu and 

Kashmir Both 9.1% 8.8% 8.2% 0.7% 6.1% 5.1% 4.0% 3.1% 2.5% 

Nagaland Both 9.9% 8.7% 8.2% 7.0% 5.9% 4.7% 3.5% 2.6% 1.9% 
Manipur Both 9.6% 9.4% 8.6% 7.4% 6.3% 5.5% 4.6% 3.7% 2.8% 
Mizoram Both 9.7% 9.3% 8.5% 7.2% 5.9% 4.9% 4.2% 3.4% 2.4% 
Tripura Both 8.5% 9.3% 8.6% 7.5% 6.7% 5.8% 4.7% 3.7% 2.8% 

Meghalaya Both 11.0% 8.7% 7.6% 6.0% 4.9% 4.2% 3.3% 2.4% 1.8% 
Sikkim Both 7.9% 10.4% 9.6% 7.8% 6.3% 5.2% 4.2% 3.4% 2.6% 

Telangana Both 8.5% 9.5% 8.8% 7.6% 6.4% 5.2% 4.1% 3.5% 3.2% 
Chhattisgarh Both 11.2% 8.3% 7.8% 6.7% 5.9% 5.2% 4.1% 3.2% 2.7% 

Odisha Both 9.8% 8.2% 8.0% 7.0% 6.2% 5.6% 4.7% 3.9% 3.6% 
Uttarakhand Both 9.1% 8.6% 7.9% 6.7% 5.8% 5.0% 4.1% 3.5% 3.1% 

 45 
Table S2 (Continuted) 46 

State 65-69 70-74 75-79 80-84 85-89 90-94 95+ 80+ > 25 > 30 
Andhra Pradesh 3.0% 2.0% 1.2% 0.6% 0.3% 0.1% 0.0% 1.0% 57.4% 48.4% 
Assam 1.7% 1.2% 0.9% 0.4% 0.1% 0.0% 0.0% 0.6% 49.0% 40.3% 
West Bengal 2.3% 1.6% 1.1% 0.6% 0.2% 0.0% 0.0% 0.8% 55.6% 46.7% 
Bihar 2.1% 1.3% 0.7% 0.4% 0.1% 0.0% 0.0% 0.6% 43.1% 35.9% 
Delhi 2.1% 1.4% 1.0% 0.6% 0.2% 0.0% 0.0% 0.8% 55.5% 45.8% 
Arunachal Pradesh 1.1% 0.8% 0.7% 0.4% 0.1% 0.0% 0.0% 0.5% 44.1% 35.5% 
Goa 3.4% 2.4% 1.7% 1.0% 0.4% 0.1% 0.0% 1.4% 65.8% 57.1% 
Gujarat 2.1% 1.6% 1.3% 0.7% 0.2% 0.1% 0.0% 1.0% 53.6% 44.8% 
Haryana 2.3% 1.5% 1.0% 0.6% 0.3% 0.1% 0.0% 0.9% 51.1% 42.0% 
Himachal Pradesh 2.6% 2.0% 1.5% 1.0% 0.4% 0.1% 0.0% 1.5% 58.2% 49.7% 
Jharkhand 2.1% 1.3% 0.7% 0.4% 0.1% 0.0% 0.0% 0.5% 46.4% 38.4% 
Karnataka 2.5% 1.8% 1.2% 0.6% 0.2% 0.1% 0.0% 0.9% 56.0% 46.6% 
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State 65-69 70-74 75-79 80-84 85-89 90-94 95+ 80+ > 25 > 30 
Kerala 3.4% 2.5% 1.9% 1.2% 0.5% 0.1% 0.0% 1.8% 62.4% 55.3% 
Maharashtra 2.7% 2.0% 1.4% 0.7% 0.3% 0.1% 0.0% 1.1% 56.2% 47.0% 
Madhya Pradesh 2.0% 1.5% 1.0% 0.5% 0.2% 0.0% 0.0% 0.7% 47.3% 39.2% 
Punjab 2.8% 1.9% 1.3% 0.8% 0.4% 0.1% 0.0% 1.3% 56.8% 47.8% 
Rajasthan 1.9% 1.4% 1.0% 0.5% 0.2% 0.0% 0.0% 0.8% 46.1% 37.9% 
Tamil Nadu 2.8% 1.9% 1.3% 0.7% 0.2% 0.0% 0.0% 1.0% 59.8% 51.3% 
Uttar Pradesh 2.0% 1.4% 0.9% 0.4% 0.2% 0.0% 0.0% 0.6% 43.9% 36.1% 
Jammu and Kashmir 1.9% 1.5% 1.2% 0.7% 0.2% 0.1% 0.0% 1.0% 44.2% 35.3% 
Nagaland 1.4% 1.1% 0.9% 0.5% 0.2% 0.0% 0.0% 0.8% 46.8% 38.1% 
Manipur 1.8% 1.3% 0.9% 0.5% 0.2% 0.1% 0.0% 0.8% 53.3% 43.8% 
Mizoram 1.7% 1.2% 0.9% 0.5% 0.2% 0.0% 0.0% 0.8% 50.5% 41.2% 
Tripura 2.0% 1.5% 1.2% 0.7% 0.2% 0.1% 0.0% 0.9% 54.7% 45.4% 
Meghalaya 1.3% 0.9% 0.7% 0.4% 0.1% 0.0% 0.0% 0.6% 42.4% 33.7% 
Sikkim 1.8% 1.4% 1.1% 0.6% 0.2% 0.0% 0.0% 0.8% 54.5% 44.1% 
Telangana 2.6% 1.9% 1.4% 0.7% 0.2% 0.0% 0.0% 1.0% 55.2% 45.7% 
Chhattisgarh 2.1% 1.5% 1.1% 0.5% 0.2% 0.0% 0.0% 0.7% 49.4% 41.1% 
Odisha 2.5% 1.8% 1.2% 0.6% 0.2% 0.0% 0.0% 0.9% 53.6% 45.4% 
Uttarakhand 2.5% 1.6% 1.1% 0.6% 0.2% 0.0% 0.0% 0.9% 51.0% 42.4% 

 47 
Table S3 Share of different age groups in national total population in 2040 48 

Age Ratio Age Ratio 
0-4 3.6% 60-64 6.3% 
5-9 3.9% 65-69 7.7% 

10-14 4.3% 70-74 7.1% 
15-19 4.6% 75-79 4.6% 
20-24 5.0% 80-84 2.9% 
25-29 5.2% 85-89 1.7% 
30-34 6.0% 90-94 0.5% 
35-39 6.2% 95+ 0.1% 
40-44 7.0% 80+ 5.2% 
45-49 7.6% >25 78.6% 
50-54 8.6% >30 73.3% 
55-59 7.1% 15-64 63.7% 

  49 
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1.2 Baseline mortality rates 50 
In our main results, we use 2015 state-level, age- and disease-specific baseline mortality rates 51 

from GBD India Compare1 to calculate deaths in both 2015 and 2040. However, baseline mortality rates 52 
often decrease over time with growing income levels and better healthcare systems. We hence conduct a 53 
sensitivity test by updating 2040 baseline mortality rates based on projections from GBD Foresight3 (see 54 
the health results presented in Section 4). Note that we choose not to change baseline mortality rates in 55 
our main results due to a few limitations of GBD Foresight projection data, including: i) the projected 56 
mortality rate is only available at the national level; ii) it does not provide projected PM2.5 concentrations 57 
to help understand natural death rates, i.e., death rates when all other risk factors except for PM2.5 58 
exposure are considered. As such, we calculate the state-level baseline mortality rates for 2040 by 59 
multiplying the 2040 national-level mortality rate from GBD Foresight by state-specific scale factors 60 
calculated as the ratio of the state-level to national-level mortality rate in 2015. 61 

The 2015 and 2040 baseline mortality rates used in this study are summarized in Table S4. The 62 
age- and disease-specific mortality rates are projected to decline from 2015-2040. However, due to the 63 
effect of population aging, for some diseases, the all-age mortality rates increase from 2015 to 2040. 64 
Similarly, all-cause baseline mortality rates for the adult population (30+) are projected to be slightly 65 
higher in 2040 than in 2015. 66 
 67 

Table S4 Summary of state-level baseline mortality data used in this study* 68 
Region Lung cancer 

(All age) 
LRI 

(All age) 
COPD 

(All age) 
Diabetes mellitus type2 

(All age) 
Year 2015 2040 2015 2040 2015 2040 2015 2040 
INDI_ANPR 5.3 11.4 25.5 22.9 58.5 81.9 14.5 29.1 
INDI_ASSA 5.2 11.1 43.9 39.4 56.8 79.5 10.3 20.6 
INDI_BENG 7.7 16.6 27.9 25.0 55.6 77.8 7.6 15.2 
INDI_BIHA 4.7 10.1 45.3 40.6 49.1 68.7 7.6 15.3 
INDI_CHHA 5.6 11.9 55.1 49.5 56.5 79.1 13.2 26.6 
INDI_DELH 7.7 16.5 21.0 18.8 26.4 37.0 13.0 26.1 
INDI_EHIM 8.4 18.0 38.4 34.5 42.6 59.6 9.9 20.0 
INDI_GOA 6.4 13.7 26.4 23.7 41.2 57.6 27.5 55.3 
INDI_GUJA 5.5 11.7 30.1 27.0 74.3 103.9 10.9 21.9 
INDI_HARY 5.8 12.4 33.7 30.3 78.6 109.9 12.4 24.9 
INDI_HIPR 7.1 15.2 29.6 26.5 112.9 157.9 8.3 16.6 
INDI_JHAR 3.8 8.1 37.2 33.4 42.6 59.6 9.8 19.7 
INDI_KARN 6.3 13.6 28.1 25.2 82.8 115.9 22.9 46.0 
INDI_KERA 15.1 32.5 21.9 19.6 64.1 89.7 25.2 50.6 
INDI_MAHA 5.3 11.4 28.7 25.7 63.1 88.3 13.0 26.2 
INDI_MAPR 5.1 10.9 51.0 45.7 74.1 103.7 9.5 19.1 
INDI_ORIS 5.4 11.5 48.4 43.4 30.7 42.9 9.4 18.8 
INDI_PUNJ 5.4 11.5 26.4 23.7 33.4 46.7 23.5 47.2 
INDI_RAJA 4.8 10.3 59.0 52.9 107.9 151.1 4.5 9.1 
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INDI_TAMI 6.4 13.6 26.4 23.7 44.9 62.8 40.8 82.1 
INDI_UTAN 7.5 16.2 42.3 37.9 103.6 145.0 13.4 26.9 
INDI_UTPR 4.5 9.6 58.3 52.3 89.8 125.6 7.9 15.9 
INDI_WHIM 7.4 15.9 31.6 28.3 67.0 93.8 6.0 12.1 

Table S4 (Continued) 69  
Stroke 

(Older than 25) 
IHD 

(Older than 25) 
All Causes 

(Older than 30) 
Region 2015 2040 2015 2040 2015 2040 
INDI_ANPR 87.1 66.1 232.7 197.3 1366.6 1368.5 
INDI_ASSA 146.1 110.8 90.1 76.4 1375.6 1377.5 
INDI_BENG 190.6 144.6 183.5 155.6 1255.0 1256.7 
INDI_BIHA 76.3 57.9 154.7 131.2 1263.2 1265.0 
INDI_CHHA 210.1 159.4 171.6 145.5 1813.1 1815.6 
INDI_DELH 42.9 32.6 172.5 146.3 941.3 942.6 
INDI_EHIM 103.7 78.7 102.0 86.5 1192.4 1194.1 
INDI_GOA 82.4 62.5 203.3 172.4 1034.5 1035.9 
INDI_GUJA 57.9 43.9 228.8 194.1 1289.6 1291.4 
INDI_HARY 56.5 42.8 245.4 208.1 1433.4 1435.4 
INDI_HIPR 49.3 37.4 166.8 141.4 1236.5 1238.3 
INDI_JHAR 75.8 57.5 158.4 134.3 1310.5 1312.3 
INDI_KARN 105.1 79.7 267.0 226.4 1590.2 1592.4 
INDI_KERA 124.1 94.1 293.5 248.9 1388.1 1390.0 
INDI_MAHA 91.8 69.7 209.1 177.3 1181.1 1182.8 
INDI_MAPR 107.7 81.7 186.0 157.7 1531.4 1533.5 
INDI_ORIS 148.1 112.3 88.9 75.4 1457.6 1459.6 
INDI_PUNJ 57.1 43.3 303.0 257.0 1213.6 1215.3 
INDI_RAJA 59.3 45.0 140.1 118.8 1391.1 1393.0 
INDI_TAMI 70.0 53.1 310.0 262.9 1453.4 1455.4 
INDI_UTAN 62.6 47.4 187.4 158.9 1495.4 1497.4 
INDI_UTPR 58.1 44.1 156.8 133.0 1591.2 1593.4 
INDI_WHIM 61.9 47.0 192.6 163.3 1220.1 1221.8 

*Note: For stroke, IHD and all-cause mortality, the mortality data for population with age “older than 25” or 70 
“older than 30” are calculated based on original mortality and population data with 5-year intervals. 71 
 72 
1.3 CO2 emissions from non-electricity sectors in 2015 73 

We use the GAINS-South Asia model to estimate state-level CO2 emisisons in 2015 for the 74 
electricity and non-electricity sectors. National total CO2 emissions are estimated to be 2275 million tons. 75 
The power sector contributes to 47% of all-sector CO2 emissions, followed by the industry sector (35%), 76 
transportation sector (12%) and residential sector (7%).  77 
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 78 
Figure S1. CO2 emissions in 2015 by sector, estimated using GAINS-South Asia. 79 

 80 
1.4 WRF-CMAQ simulation domain 81 

Here we show the WRF-CMAQ simulation domain over India. The spatial resolution is 36 × 36 82 
km2. The color scale in Figure S2 is based on the population density in 2015 for each grid box4. 83 

 84 
Figure S2. Design of 36 × 36 km2 domain over India with the color scale representing the population 85 
density in 2015 in each grid (original figure see supplementary materials in Guo et al. 20185).  86 
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1.5 Three groups of states with a low, medium, and high socio-demographic index (SDI) 87 
We summarize in Table S5 and Figure S3 the states with a low, medium and high socio-88 

demographic index, following the categorization in Balakrishnan 20196. The SDI is developed based on a 89 
variety of factors, including per-capita income, mean education level and total fertility rate. 90 

 91 
Table S5 States with low-, medium- and high-SDI 92 

Low-SDI states Bihar, Madhya Pradesh, Jharkhand, Uttar Pradesh, Rajasthan, Chhattisgarh, Odisha, Assam 

Medium-SDI states Andhra Pradesh, West Bengal, Tripura, Arunachal Pradesh, Meghalaya, Karnataka, 

Telangana, Gujarat, Manipur, Jammu and Kashmir, Haryana 

High-SDI states Uttarakhand, Tamil Nadu, Mizoram, Maharashtra, Punjab, Sikkim, Nagaland, Himachal 

Pradesh, Union Territories (excluding Delhi), Kerala, Delhi, Goa 

 93 
Figure S3. States with low (red), medium (yellow) and high (blue) socio-demographic index. The 94 
inserted figure on the bottom right shows each type of states’ shares in the national total population in 95 
2015 and 2040 (based on data in Table S1).  96 
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2. Additional results 97 
2.1 Electricity generation and CO2 emissions by coal power generation technologies 98 

We present electricity generation and CO2 emissions by different coal plant types in WEO-CLE, 99 
BAU-CLE and AMB-CLE (Figure S4 and S5). Note that the fuel mix and technology choices in WEO-100 
DEL and WEO-FRO are the same as in WEO-CLE. Since we do not consider the efficiency penalty to 101 
operate end-of-control devices, the CO2 emissions in WEO-DEL and WEO-FRO are also the same as 102 
those in WEO-CLE. 103 

As the total amount of supercritical and ultra-supercritical coal power generation gradually 104 
increases over time (blue bars in Figure S4), associated CO2 emissions also increase substantially from 105 
2015 to 2040 across all three scenarios (blue bars in Figure S5). Since BAU-CLE and AMB-CLE allow 106 
for the addition of new subcritical units, these two scenarios lead to a large increase in CO2 emissions 107 
from subcritical units (orange and red bars) from 2015 to 2022. Due to these new additions in BAU-CLE 108 
and AMB-CLE and the long lifetime of coal units, by 2040 the generation and associated CO2 emissions 109 
from subcritical units are greater than they were in 2015, and lower than they were in 2022. In contrast, 110 
the WEO-CLE scenario assumes successful implementation of policies to increase the efficiency of newly 111 
built coal-fired power plants. It hence projects a noticeable decrease in power generation and associated 112 
CO2 emissions from subcritical units between 2020 to 2040. This is because no new subcritical units are 113 
added after 2015 and CO2 emissions only come from existing subcritical plants that operate until the end 114 
of their lifetime.  115 

 116 
Figure S4. Coal power generation by plant type in: a) WEO-CLE, b) BAU-CLE and c) AMB-CLE 117 
scenario. 118 
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 119 
Figure S5. CO2 emissions by coal power generation technologies in a) WEO-CLE, b) BAU-CLE and 120 
c) AMB-CLE scenario.  121 
 122 
2.2 Simulated PM2.5 concentrations in 2040 123 

Here we present annual mean PM2.5 concentrations for each of the five scenarios in 2040. Given 124 
the significant variations across different regions in India, the relative differences across scenarios are 125 
difficult to see using the color scale in Figure S6 that covers the range for absolute concentrations. Thus 126 
in the main text, we present the differences between scenarios in Figure 3b.  127 
 128 

 129 
Figure S6. Spatial distribution of annual mean ambient PM2.5 concentrations (unit: 𝝁g/m3) in 2040. 130 
The annual mean concentrations are estimated by taking the average of monthly mean concentrations for 131 
four representative months (i.e., January, April, July and October). 132 
 133 
2.3 State-average PM2.5 concentrations  134 

We highlight two observations. First, in WEO-CLE, the annual mean PM2.5 concentration is 135 
similar in 2015 and 2040, both in terms of scale and spatial distribution. Second, comparing other 136 
scenarios to WEO-CLE,  the annual mean PM2.5 concentration increases by 0-5 𝜇g/m3 throughout the 137 
country in WEO-DEL, BAU-CLE and AMB-CLE, while the pollution level increases by more than 138 



  S12 

5𝜇g/m3 in most provinces in WEO-FRO. As a result, we also observe the greatest increase in PM2.5-139 

related deaths in WEO-FRO, with the highest death toll observed in north and central India. 140 

 141 
Figure S7. State-averaged annual mean PM2.5 concentrations: a) in WEO-CLE: 2015 and 2040; b) 142 
in 2040: changes in each scenario relative to WEO-CLE. 143 
 144 

2.4 Co-control of CO2 emissions and air pollution-related health impacts 145 

Given the dual challenge of simultaneously curbing CO2 emissions and air pollution, we provide 146 
a comprehensive perspective by comparing the percentage change in CO2 and air pollution impacts. Since 147 
air pollution impacts are affected by all-sector emissions, we present the 2015 to 2040 changes as: i) all-148 
sector CO2 emissions (i.e., 2040 power sector emissions plus 2015 non-power emissions); ii) total PM2.5-149 
related deaths as a result of all-sector air pollutant emissions. Non-power emissions are kept at 2015 150 
levels and estimated using the GAINS-South Asia model with proper validation (Supplementary Figure 151 
S1). 152 

Nationally, for the five scenarios examined, we find much greater cross-scenario variations in all-153 
sector CO2 impacts (i.e., 40-80% higher than 2015 across 5 scenarios) than total air pollution impacts 154 
(i.e., 50-57% higher than 2015 across 5 scenarios). This is because while CO2 impacts are directly 155 
affected by the amount of fossil fuel generation in the future, some level of air pollution control always 156 
exists (even in the delayed or frozen air pollution policy scenarios) since some measures are already being 157 
taken today.  158 
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With huge subnational heterogeneity in socioeconomic development levels, we further 159 
demonstrate unequal impacts across states with a low, medium or high socio-demographic index (SDI) 160 
(see Supplementary Table S5 and Figure S3 for categorization of low-, medium- and high-SDI states). 161 
The low-, medium-, and high-SDI states represent 47%, 29% and 24% of the total population in 2015, 162 
and we assume that this population pattern largely persists in 2040. This subnational perspective is 163 
relevant not only for addressing environmental justice concerns, but also for policy considerations 164 
regarding the enforcement of policies given the cross-state variations in institutional capacity.  165 

For changes in PM2.5-related deaths from 2015 to 2040, across all five scenarios, we observe the 166 
smallest percentage increase in high-SDI states and the largest percentage increase in medium-SDI states. 167 
These cross-region differences are driven by a variety of socioeconomic and policy factors, including 168 
cross-state variations in pollution levels, age structure, and baseline mortality rates. For CO2 emissions, 169 
since energy pathways are the key to determine CO2 impacts, the largest CO2 increase occurs in medium-170 
SDI states under the WEO energy projection, while the largest increase occurs in high-SDI states under 171 
the BAU and AMB energy projections. Such differences are driven by the different geographic patterns of 172 
renewable energy deployment at the subnational level as projected in WEO and BAU/AMB.  173 

Despite the differences across states with different SDIs, our main findings remain robust in all 174 
three groups of states, namely: i) limited enforcement of air pollution policies results in more health 175 
damage from air pollution but has a limited impact on CO2 emissions; and ii) limited enforcement of 176 
energy policies leads to significantly more CO2 emissions, but results in only slightly more PM2.5-related 177 
deaths.  178 
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 179 
Figure S8. Increases in all-sector CO2 emissions and total PM2.5-related deaths in 2040 relative to 180 
2015 for: a) National total; b) Low-SDI states; c) Medium-SDI states; d) High-SDI states.  181 

 182 
 183 
3. Sensitivity analyses on different exposure-response functions 184 
 The choice of the exposure-response functions (ERFs) often affects the health impact assessment 185 
results in a substantial way 7–9. We use non-linear relative risk (RR) functions from GBD for six diseases 186 
(ischemic heart disease (IHD), stroke, chronic obstructive pulmonary disease (COPD), lung cancer (LC), 187 
lower respiratory tract infections (LRI) and diabetes) in the main results, which are denoted as integrated 188 
exposure-response (IER) functions. Here, we further consider: a) GEMM: Mortality from five diseases 189 
(i.e., COPD, IHD, Lung Cancer, Stroke, LRI) based on the exposure-response functions from the Global 190 
Exposure Mortality Model (GEMM)10, and b) Log-linear: All-cause mortality estimated using the log-191 
linear relative risk function based on Pope et al. (2002)11. Note that IER and GEMM functions consider 192 
specific PM2.5-related diseases, whereas the log-linear function targets all-cause mortality. This 193 
assumption makes GEMM results more directly comparable with IER results than log-linear results. 194 
Furthermore, non-linear RR functions are more consistent with recent epidemiological evidence that the 195 
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marginal mortality risks decrease with increasing PM2.5 concentrations at high levels. Detailed methods 196 

are presented in Table S9. 197 
 198 
3.1 National total mortality 199 

In most scenarios, national total PM2.5-related deaths are greater when using the GEMM or log-200 
linear functions than when using the IER functions (Figure S9 and Table S6). Quantitatively, in 2015, 201 
premature mortality is estimated to be 0.86 million (95% CI: 0.55-1.13 million), 1.33 million (0.97-1.60 202 
million) and 1.65 million (0.62-2.66 million), when using IER, GEMM and log-linear functions, 203 
respectively. In the 2040 scenarios, the central estimates of the national total mortality increase to 1.29-204 
1.35 million based on the IER functions, 2.27-2.39 million based on GEMM functions, and 2.51-2.81 205 
million based on the log-linear functions. However, under all ERFs, the lowest mortalities are observed in 206 
the WEO-CLE scenario and the highest are observed in the WEO-FRO scenario. 207 

 208 
Figure S9 Sensitivity of the total mortality in India under three different exposure-response 209 
functions. Note: IER: six causes; GEMM: five causes; log-linear: all-cause.  210 
 211 

Table S6. National total mortality estimated using different ERFs (unit: million) 212 
  IER (six diseases) GEMM (five diseases) log-linear (all-cause) 
Year Scenario central low high central low high central low high 
2015 / 0.857 0.555 1.129 1.325 0.968 1.602 1.653 0.619 2.655 
2040 WEO-CLE 1.289 0.807 1.740 2.272 1.692 2.732 2.511 0.936 4.052 

WEO-FRO 1.348 0.855 1.806 2.394 1.787 2.870 2.811 1.058 4.487 
WEO-DEL 1.303 0.819 1.756 2.300 1.715 2.764 2.587 0.967 4.160 
AMB-CLE 1.295 0.812 1.747 2.285 1.702 2.747 2.542 0.948 4.097 
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BAU-CLE 1.298 0.814 1.750 2.290 1.706 2.753 2.557 0.954 4.118 
Note: The “central” estimates are the central estimates from the ERF; the “low” and “high” estimates represent the 213 
95% confidence intervals of mortality estimates considering the uncertainty range of the ERF parameters. 214 
 215 
 The shape of the ERF functions is likely the main driver of higher mortality estimates under 216 
GEMM when compared to IER. GEMM integrates the results of many up-to-date large-scale 217 
epidemiological cohort studies across the world, including one Chinese male cohort study with high long-218 
term ambient PM2.5 exposure level. As such, GEMM provides more up-to-date estimates for RR at high 219 
PM2.5 ranges, resulting in higher RR than IER10.  220 

To provide a quantitative perspective, in Figure S10 we plot the RR curves and the population 221 
attributable fraction (PAF) as a function of rising PM2.5 concentration for IER and GEMM (Figure S9). 222 
We choose to plot IHD and COPD, one as an example of age-specific RR (IHD) that is available from 223 
GEMM and the other as an example of aggregated RR for populations older than 25. It is clear that the 224 
relative risks and PAFs are significantly higher under the GEMM functions than in the IER functions.  225 

 226 
Figure S10. Relative risk and population attributable fraction of (a) IHD (b) COPD mortality as a 227 
function of increasing PM2.5 concentration, for different ERFs. 228 
 229 
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 However, the choice of ERFs does not affect our main finding that unsucecessful implementation 230 
of energy or air pollution control policies would lead to more deaths, although it does affect the absolute 231 
and percentage differences across scenarios (Figure S11). Regardless of the choice of ERFs, in 2040, the 232 
lowest deaths occur under the WEO-CLE scenario and the highest deaths occur in the WEO-FRO 233 
scenario. The differences across scenarios are smallest under the IER functions. This implies that our 234 
main results are likely conservative estimates for PM2.5-related deaths, and hence conservative estimates 235 
for the benefits of successful policy implementation on human health.  236 

  237 
Figure S11. PM2.5-related premature mortality in India based on different ERFs: (a) total PM2.5-238 
related premature mortality in all scenarios, (b) absolute change in 2040 relative to WEO-CLE, and 239 
(c) relative change in 2040 relative to WEO-CLE. 240 
  241 
3.2 State-level mortality 242 
 Differences due to the choice of ERFs vary across states (Figure S12 and Table S7). In most 243 
states, the estimated mortality using the IER function is smaller than when using the log-linear or GEMM 244 
functions. However, in some states the IER results can be higher than the log-linear results. For states 245 
with concentration levels higher than 40μg/m3 in 2040 under the WEO-CLE scenario (including 246 
INDI_DELH, INDI_BENG, INDI_BIHA, INDI_UTPR, INDI_HARY, INDI_PUNJ, INDI_JHAR, 247 
INDI_ORIS, and INDI_CHHA), we find that applying the log-linear functions always yields the highest 248 
deaths, followed by GEMM and then IER. This pattern could be explained by: (i) log-linear RR functions 249 
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are applied to all-cause mortality that includes more diseases; and (ii) the RR increases rapidly at high 250 
PM2.5 concentration ranges, especially for GEMM functions. 251 

  252 
Figure S12. PM2.5-related premature mortality in Indian states, under the WEO-CLE scenario  253 
Note: INDI_MAHA is the abbreviation for the region Maharashtra-Dadra-Nagar Haveli-Daman-Diu. 254 
Same for the other figures. 255 
 256 

Table S7. PM2.5 level and PM2.5-related deaths in 2040 for WEO-CLE, by state*  257 
Region PM2.5 

(μg/m3) 
PM2.5-related premature mortality (million) 

IER 
(six diseases) 

GEMM 
(five disease) 

Log-linear 
(all-cause) 

India 33.02 1.29 2.27 2.51 
INDI_ANPR 32.45 0.08 0.14 0.12 
INDI_ASSA 79.77 0.03 0.04 0.04 
INDI_BENG 76.84 0.12 0.27 0.30 
INDI_BIHA 45.16 0.11 0.20 0.30 
INDI_CHHA 95.17 0.03 0.06 0.06 
INDI_DELH 28.62 0.01 0.03 0.04 
INDI_EHIM 27.34 0.01 0.02 0.01 
INDI_GOA 25.57 0.00 0.00 0.00 
INDI_GUJA 63.17 0.05 0.08 0.05 
INDI_HARY 19.57 0.03 0.07 0.08 
INDI_HIPR 57.88 0.00 0.01 0.00 
INDI_JHAR 22.96 0.03 0.06 0.08 
INDI_KARN 27.56 0.07 0.10 0.06 
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Region PM2.5 

(μg/m3) 
PM2.5-related premature mortality (million) 

IER 
(six diseases) 

GEMM 
(five disease) 

Log-linear 
(all-cause) 

INDI_KERA 38.81 0.03 0.05 0.04 
INDI_MAHA 34.91 0.10 0.18 0.15 
INDI_MAPR 46.56 0.08 0.13 0.12 
INDI_ORIS 58.88 0.03 0.06 0.09 
INDI_PUNJ 31.10 0.04 0.07 0.07 
INDI_RAJA 20.99 0.07 0.10 0.08 
INDI_TAMI 25.49 0.07 0.10 0.05 
INDI_UTAN 72.82 0.01 0.01 0.01 
INDI_UTPR 18.75 0.26 0.48 0.75 
INDI_WHIM 33.02 0.01 0.01 0.01 

*Note: (1) Only the central estimates are shown; (2) “India” results are calculated by adding up the results 258 
of all the states.  259 
 260 
 Similar to national-level results, different ERFs lead to different additional deaths due to policy 261 
failures (Figure S13). However, the choice of ERF does not affect the relative size of deaths across policy 262 
failure scenarios: the WEO-FRO scenario always leads to the highest PM2.5-related premature mortality, 263 
while mortality under the three other policy failure scenarios is similar (i.e., ~1% more deaths than WEO-264 
CLE scenario under IER and GEMM functions for most states, and ~5% more deaths under the log-linear 265 
functions). 266 

 267 
Figure S13. Differences in state-level mortality in 2040 compared with WEO-CLE scenario, under 268 
the three ERFs.  269 
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4. Sensitivity analyses on baseline mortality rates 270 
Here we consider changing baseline mortality rates from 2015 to 2040 based on projections from 271 

GBD Foresight and current cross-state variations (see Table S4). For IER and GEMM results, we find 272 
lower 2040 PM2.5-related deaths in all scenarios when applying projected 2040 age- and disease-specific 273 
baseline mortality rates than applying 2015 rates. The percentage decreases are greater under GEMM than 274 
IER. Log-linear functions, in comparison, only consider all-cause mortality for the adult population aged 275 
30 years or above. With population aging, the all-age baseline mortality rate is projected to increase 276 
slightly in 2040 when compared to 2015. As such, when log-linear functions are used, we find a minimal 277 
increase in the death estimates using 2040 baseline mortality rates instead of the 2015 ones. 278 

However, the changes in PM2.5-related deaths in the policy failure scenarios when compared to 279 
WEO-CLE are not significantly affected by the choice of baseline mortality rates. For instance, with RR 280 
functions from IER (i.e., our main results), the WEO-DEL, WEO-FRO, BAU-CLE, AMB-CLE scenarios 281 
lead to 1.2%, 4.8%, 0.7% and 0.5% more deaths than WEO-CLE in 2040 when using projected 2040 282 
baseline mortality rates (Figure S14). Those numbers are only marginally different from results using 283 
2015 baseline mortality rates, i.e, 1.1%, 4.6%, 0.7% and 0.5%, respectively. This finding remains robust 284 
when GEMM or log-linear RR functions are used.  285 

 286 
Table S8. National PM2.5-related deaths in 2040 calculated using the 2015 (Main) and 2040 baseline 287 

mortality rates (Updated). Unit: Million deaths. 288 

  WEO-CLE WEO-DEL WEO-FRO 

IER  
Main 1.29 0.81 1.74 1.30 0.82 1.76 1.35 0.85 1.81 

Updated 1.18 0.75 1.55 1.19 0.76 1.56 1.23 0.80 1.61 
% Diff -9% -7% -11% -9% -7% -11% -9% -7% -11% 

GEMM  
Main 2.27 1.69 2.73 2.30 1.71 2.76 2.39 1.79 2.87 

Updated 1.61 1.15 1.98 1.63 1.16 2.00 1.70 1.21 2.07 
% Diff -29% -32% -28% -29% -32% -28% -29% -32% -28% 

Log-linear 
Main 2.51 0.94 4.05 2.59 0.97 4.16 2.81 1.06 4.49 

Updated 2.51 0.94 4.06 2.59 0.97 4.17 2.81 1.06 4.49 
% Diff 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 

Table S8 (continued) 289 

  BAU-CLE AMB-CLE 

IER  
Main 1.30 0.81 1.75 1.29 0.81 1.75 

Updated 1.18 0.76 1.56 1.18 0.75 1.55 
% Diff -9% -7% -11% -9% -7% -11% 

GEMM  
Main 2.29 1.71 2.75 2.28 1.70 2.75 

Updated 1.62 1.16 1.99 1.62 1.15 1.99 
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% Diff -29% -32% -28% -29% -32% -28% 

Log-
linear 

Main 2.56 0.95 4.12 2.54 0.95 4.10 
Updated 2.56 0.96 4.12 2.55 0.95 4.10 
% Diff 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 

 290 

 291 
Figure S14. National total PM2.5-related deaths with changing baseline mortality rates from 2015 to 292 
2040: a) for 2015 and 2040 in WEO-CLE, and b) changes in other scenarios relative to WEO-CLE 293 
in 2040.  Here the estimates are based on the IER relative risk functions, consistent with our main results.   294 
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Appendix: Introduction to the IMED|HEL model 295 
 296 
 In this study, the sensitivity analyses on alternative exposure-response functions are conducted 297 
using the IMED|HEL model. It assesses the health impacts by using different PM2.5 exposure-response 298 
functions (in this study, log-linear, non-linear IER, and non-linear GEMM  functions) to estimate the 299 
relative risk of PM2.5 pollution and excess mortality under certain scenarios. By comparing the health 300 
assessment results of different scenarios, the model can be used to analyze the human health benefits of 301 
air pollution control policies and energy policies. The IMED|HEL model is compatible with both gridded 302 
and regional exposure data, and can be used to estimate the health impacts at gridded, regional and 303 
national levels.  304 
 The detailed underlying methods in the IMED|HEL model to estimate the PM2.5-related health 305 
impacts are presented in Table S9. More information about the IMED|HEL model can be found in prior 306 
work published using this model 12–15 and the online documentation 16.  307 
 308 

Table S9 Methods to estimate the health impacts using the IMED|HEL model 309 
Health endpoint Methods 

Mortality The general method for mortality risk assessment is the same as that in the main text, but 

with some differences in the formula for different ERFs. The excess mortality (∆𝑀𝑜𝑟𝑡) is 

estimated using the following formula: 

∆𝑀𝑜𝑟𝑡 ='
(𝑅𝑅(𝐶)! − 1)
𝑅𝑅(𝐶)!

· 𝐼 · 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛	
!

	 

Where I is the reported death rate for a specific disease, and 𝑅𝑅(𝐶)! is the relative risk of 

mortality for disease e under the PM2.5 pollution level C: 

𝑅𝑅(𝐶)!	 =

⎩
⎪
⎨

⎪
⎧

1																		, 𝑤ℎ𝑒𝑛	𝐶 − 𝐶# ≤ 0		
𝑒$!(&'&")					, 𝑤ℎ𝑒𝑛	𝐶 − 𝐶#＞0			(𝑙𝑜𝑔 − 𝑙𝑖𝑛𝑒𝑎𝑟	𝑚𝑜𝑑𝑒𝑙)				
1 + 𝛼!	[1 − 𝑒')!(&'&")

#]		, 𝑤ℎ𝑒𝑛	𝐶 − 𝐶#＞0			(𝐼𝐸𝑅	𝑚𝑜𝑑𝑒𝑙)

𝑒[+!,-./
$%$"
&!

012]/[10!%
$%$"%'

( ]	, 𝑤ℎ𝑒𝑛	𝐶 − 𝐶#＞0		(𝐺𝐸𝑀𝑀	𝑚𝑜𝑑𝑒𝑙)

  

Note that the threshold concentrations, C0, are different in the three ERFs. For log-

linear function we take 10μg/m3, for IER function it ranges between 2.4-5.8μg/m3, and for 

the GEMM function the threshold is 2.4μg/m3. For the log-linear model, we only consider 

the all-cause mortality (i.e. there is only one kind of mortality endpoint —“all-cause”) in 

adults aged 30 or above. In this study, the IMED|HEL model is used for estimating the 

mortality under the linear and GEMM functions to be compared with the IER results in the 

main text. 

 310 
 311 
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