1	Supplementary information for "The critical role of policy enforcement in achieving health,
2	air quality and climate benefits of India's clean electricity transition"
3	
4	Wei Peng*, Hancheng Dai, Hao Guo, Pallav Purohit, Johannes Urpelainen, Fabian Wagner, Yazhen
5	Wu , Hongliang Zhang
6	
7	*Corresponding author. School of International Affairs and Department of Civil and Environmental
8	Engineering, Penn State university, weipeng@psu.edu
9	
10	24 pages
11	14 figures
12	9 tables

13	This supplementary information includes the following contents:
14	
15	1. Additional information for methods
16	a. Population
17	b. Baseline mortality rates
18	c. CO ₂ emissions from non-electricity sectors in 2015
19	d. WRF-CMAQ domain
20	e. Three groups of states with low, medium and high SDI
21	2. Additional results
22	a. Share of advanced coal technologies and CO ₂ emissions by coal power generation
23	technologies
24	b. Simulated PM _{2.5} concentrations in 2040
25	c. State-average PM _{2.5} concentrations
26	d. Co-control of CO ₂ emissions and air pollution-related health impacts
27	3. Sensitivity analyses on different exposure-response functions
28	4. Sensitivity analyses on changing baseline mortality rate
29	
30	Appendix: Introduction to the IMED HEL model

31 **1.** Additional information on methods

32 1.1 Population

For 2015, the state-level population by age group is obtained from the data visualization platform

of GBD India Compare¹. We calculate the population with 5-year age intervals by dividing all-cause

deaths by all-cause death rates in each state. For 2040, we use projections from the Shared Socioeconomic

36 Pathways #2 (SSP2) gridded population data² and estimate state-total population by aggregating the

37 gridded data within each state. We further assume the same age structure across the country in 2040 by

38 applying the national-level age structure projection of SSP2 to all states.

39 Specifically, Table S1-3 summarizes: 1) the state-total population in 2015 and 2040, 2) age

- 40 structure in 2015 by state, and 3) age structure in 2040 at the national level.
- 41 42

 Table S1 Summary of the state-level population in 2015 and projection for 2040

GAINS-South Asia	States	Population	n (million)
Region		2015	2040
INDI_ANPR	Andhra Pradesh	92.54	120.14
INDI_ASSA	Assam	34.74	41.50
INDI_BENG	West Bengal	99.47	125.60
INDI_BIHA	Bihar	118.75	131.57
INDI_CHHA	Chhattisgarh	29.26	33.59
INDI_DELH	Delhi	18.15	17.91
INDI_EHIM	North East (excl. Assam) ¹	15.89	20.08
INDI_GOA	Goa	1.48	1.74
INDI_GUJA	Gujarat	67.37	79.48
INDI_HARY	Haryana	28.29	35.52
INDI_HIPR	Himachal Pradesh	7.40	8.59
INDI_JHAR	Jharkhand	37.21	44.52
INDI_KARN	Karnataka	66.72	85.32
INDI_KERA	Kerala	35.26	46.83
INDI_MAHA	Maharashtra ²	122.09	147.09
INDI_MAPR	Madhya Pradesh	83.03	98.61
INDI_ORIS	Orissa	46.63	59.16
INDI_PUNJ	Punjab ³	30.27	41.48
INDI_RAJA	Rajasthan	78.01	92.06
INDI_TAMI	Tamil Nadu ⁴	79.65	96.01
INDI_UTAN	Uttaranchal	11.04	12.62
INDI_UTPR	Uttar Pradesh	227.44	269.45
INDI_WHIM	Jammu and Kashmir	13.28	19.12

¹ North East region consists of 7 small north eastern states (viz. Arunachal Pradesh, Manipur, Meghalaya, Mizoram, Nagaland, Sikkim and Tripura).

² Including Dadra-Nagar Haveli and Daman and Diu (Union Territories - UTs)

³ Including Chandigarh (UT)

⁴ Including The Andaman and Nicobar Islands, Lakshadweep and Pondicherry (UTs)

Table 52 Summary of the age structure in Indian states, 2015										
State	Sex	0-4	25-29	30-34	35-39	40-44	45-49	50-54	55-59	60-64
Andhra Pradesh	Both	8.0%	8.9%	8.5%	7.6%	6.8%	5.9%	4.8%	4.0%	3.7%
Assam	Both	10.6%	8.7%	8.2%	7.1%	6.1%	5.1%	4.0%	3.1%	2.4%
West Bengal	Both	8.2%	8.9%	8.3%	7.4%	6.7%	6.0%	5.0%	4.1%	3.3%
Bihar	Both	12.3%	7.2%	7.0%	6.2%	5.1%	4.1%	3.2%	2.8%	2.7%
Delhi	Both	8.6%	9.7%	9.3%	7.8%	6.7%	5.6%	4.5%	3.6%	3.0%
Arunachal Pradesh	Both	11.5%	8.7%	7.9%	6.8%	5.6%	4.6%	3.4%	2.4%	1.7%
Goa	Both	6.4%	8.7%	8.7%	8.6%	8.0%	7.1%	6.0%	5.2%	4.5%
Gujarat	Both	9.4%	8.8%	8.2%	7.3%	6.3%	5.5%	4.6%	3.8%	3.1%
Haryana	Both	10.4%	9.0%	8.1%	6.8%	6.0%	5.0%	4.0%	3.3%	3.0%
Himachal Pradesh	Both	7.9%	8.5%	8.3%	7.7%	6.9%	6.1%	5.2%	4.4%	3.7%
Jharkhand	Both	13.5%	8.0%	7.7%	6.5%	5.4%	4.6%	3.7%	3.1%	2.9%
Karnataka	Both	8.5%	9.4%	8.7%	7.5%	6.6%	5.7%	4.6%	3.8%	3.3%
Kerala	Both	7.6%	7.2%	7.3%	7.2%	7.2%	6.9%	6.4%	5.7%	4.9%
Maharashtra	Both	8.2%	9.2%	8.5%	7.4%	6.5%	5.6%	4.6%	3.8%	3.4%
Madhya Pradesh	Both	3.9%	8.1%	7.4%	6.5%	5.8%	4.9%	3.9%	3.0%	2.7%
Punjab	Both	8.2%	9.0%	8.4%	7.2%	6.5%	5.7%	4.7%	4.1%	3.8%
Rajasthan	Both	11.8%	8.2%	7.2%	6.3%	5.5%	4.7%	3.8%	3.0%	2.5%
Tamil Nadu	Both	8.1%	8.5%	8.5%	7.9%	7.2%	6.5%	5.5%	4.6%	3.9%
Uttar Pradesh	Both	11.9%	7.7%	6.8%	6.1%	5.3%	4.3%	3.4%	2.8%	2.6%
Jammu and Kashmir	Both	9.1%	8.8%	8.2%	0.7%	6.1%	5.1%	4.0%	3.1%	2.5%
Nagaland	Both	9.9%	8.7%	8.2%	7.0%	5.9%	4.7%	3.5%	2.6%	1.9%
Manipur	Both	9.6%	9.4%	8.6%	7.4%	6.3%	5.5%	4.6%	3.7%	2.8%
Mizoram	Both	9.7%	9.3%	8.5%	7.2%	5.9%	4.9%	4.2%	3.4%	2.4%
Tripura	Both	8.5%	9.3%	8.6%	7.5%	6.7%	5.8%	4.7%	3.7%	2.8%
Meghalaya	Both	11.0%	8.7%	7.6%	6.0%	4.9%	4.2%	3.3%	2.4%	1.8%
Sikkim	Both	7.9%	10.4%	9.6%	7.8%	6.3%	5.2%	4.2%	3.4%	2.6%
Telangana	Both	8.5%	9.5%	8.8%	7.6%	6.4%	5.2%	4.1%	3.5%	3.2%
Chhattisgarh	Both	11.2%	8.3%	7.8%	6.7%	5.9%	5.2%	4.1%	3.2%	2.7%
Odisha	Both	9.8%	8.2%	8.0%	7.0%	6.2%	5.6%	4.7%	3.9%	3.6%
Uttarakhand	Both	9.1%	8.6%	7.9%	6.7%	5.8%	5.0%	4.1%	3.5%	3.1%

Table S2 Summary of the age structure in Indian states, 2015

44

Table S2 (Continuted)

State	65-69	70-74	75-79	80-84	85-89	90-94	95+	80+	> 25	> 30
Andhra Pradesh	3.0%	2.0%	1.2%	0.6%	0.3%	0.1%	0.0%	1.0%	57.4%	48.4%
Assam	1.7%	1.2%	0.9%	0.4%	0.1%	0.0%	0.0%	0.6%	49.0%	40.3%
West Bengal	2.3%	1.6%	1.1%	0.6%	0.2%	0.0%	0.0%	0.8%	55.6%	46.7%
Bihar	2.1%	1.3%	0.7%	0.4%	0.1%	0.0%	0.0%	0.6%	43.1%	35.9%
Delhi	2.1%	1.4%	1.0%	0.6%	0.2%	0.0%	0.0%	0.8%	55.5%	45.8%
Arunachal Pradesh	1.1%	0.8%	0.7%	0.4%	0.1%	0.0%	0.0%	0.5%	44.1%	35.5%
Goa	3.4%	2.4%	1.7%	1.0%	0.4%	0.1%	0.0%	1.4%	65.8%	57.1%
Gujarat	2.1%	1.6%	1.3%	0.7%	0.2%	0.1%	0.0%	1.0%	53.6%	44.8%
Haryana	2.3%	1.5%	1.0%	0.6%	0.3%	0.1%	0.0%	0.9%	51.1%	42.0%
Himachal Pradesh	2.6%	2.0%	1.5%	1.0%	0.4%	0.1%	0.0%	1.5%	58.2%	49.7%
Jharkhand	2.1%	1.3%	0.7%	0.4%	0.1%	0.0%	0.0%	0.5%	46.4%	38.4%
Karnataka	2.5%	1.8%	1.2%	0.6%	0.2%	0.1%	0.0%	0.9%	56.0%	46.6%

State	65-69	70-74	75-79	80-84	85-89	90-94	95+	80+	> 25	> 30
Kerala	3.4%	2.5%	1.9%	1.2%	0.5%	0.1%	0.0%	1.8%	62.4%	55.3%
Maharashtra	2.7%	2.0%	1.4%	0.7%	0.3%	0.1%	0.0%	1.1%	56.2%	47.0%
Madhya Pradesh	2.0%	1.5%	1.0%	0.5%	0.2%	0.0%	0.0%	0.7%	47.3%	39.2%
Punjab	2.8%	1.9%	1.3%	0.8%	0.4%	0.1%	0.0%	1.3%	56.8%	47.8%
Rajasthan	1.9%	1.4%	1.0%	0.5%	0.2%	0.0%	0.0%	0.8%	46.1%	37.9%
Tamil Nadu	2.8%	1.9%	1.3%	0.7%	0.2%	0.0%	0.0%	1.0%	59.8%	51.3%
Uttar Pradesh	2.0%	1.4%	0.9%	0.4%	0.2%	0.0%	0.0%	0.6%	43.9%	36.1%
Jammu and Kashmir	1.9%	1.5%	1.2%	0.7%	0.2%	0.1%	0.0%	1.0%	44.2%	35.3%
Nagaland	1.4%	1.1%	0.9%	0.5%	0.2%	0.0%	0.0%	0.8%	46.8%	38.1%
Manipur	1.8%	1.3%	0.9%	0.5%	0.2%	0.1%	0.0%	0.8%	53.3%	43.8%
Mizoram	1.7%	1.2%	0.9%	0.5%	0.2%	0.0%	0.0%	0.8%	50.5%	41.2%
Tripura	2.0%	1.5%	1.2%	0.7%	0.2%	0.1%	0.0%	0.9%	54.7%	45.4%
Meghalaya	1.3%	0.9%	0.7%	0.4%	0.1%	0.0%	0.0%	0.6%	42.4%	33.7%
Sikkim	1.8%	1.4%	1.1%	0.6%	0.2%	0.0%	0.0%	0.8%	54.5%	44.1%
Telangana	2.6%	1.9%	1.4%	0.7%	0.2%	0.0%	0.0%	1.0%	55.2%	45.7%
Chhattisgarh	2.1%	1.5%	1.1%	0.5%	0.2%	0.0%	0.0%	0.7%	49.4%	41.1%
Odisha	2.5%	1.8%	1.2%	0.6%	0.2%	0.0%	0.0%	0.9%	53.6%	45.4%
Uttarakhand	2.5%	1.6%	1.1%	0.6%	0.2%	0.0%	0.0%	0.9%	51.0%	42.4%

Table S3 Share of different age groups in national total population in 2040

Age	Ratio	Age	Ratio
0-4	3.6%	60-64	6.3%
5-9	3.9%	65-69	7.7%
10-14	4.3%	70-74	7.1%
15-19	4.6%	75-79	4.6%
20-24	5.0%	80-84	2.9%
25-29	5.2%	85-89	1.7%
30-34	6.0%	90-94	0.5%
35-39	6.2%	95+	0.1%
40-44	7.0%	80+	5.2%
45-49	7.6%	>25	78.6%
50-54	8.6%	>30	73.3%
55-59	7.1%	15-64	63.7%

50 **1.2 Baseline mortality rates**

51 In our main results, we use 2015 state-level, age- and disease-specific baseline mortality rates 52 from GBD India Compare¹ to calculate deaths in both 2015 and 2040. However, baseline mortality rates 53 often decrease over time with growing income levels and better healthcare systems. We hence conduct a 54 sensitivity test by updating 2040 baseline mortality rates based on projections from GBD Foresight³ (see 55 the health results presented in Section 4). Note that we choose not to change baseline mortality rates in 56 our main results due to a few limitations of GBD Foresight projection data, including: i) the projected 57 mortality rate is only available at the national level; ii) it does not provide projected $PM_{2.5}$ concentrations 58 to help understand natural death rates, i.e., death rates when all other risk factors except for PM_{2.5} 59 exposure are considered. As such, we calculate the state-level baseline mortality rates for 2040 by 60 multiplying the 2040 national-level mortality rate from GBD Foresight by state-specific scale factors 61 calculated as the ratio of the state-level to national-level mortality rate in 2015.

The 2015 and 2040 baseline mortality rates used in this study are summarized in Table S4. The age- and disease-specific mortality rates are projected to decline from 2015-2040. However, due to the effect of population aging, for some diseases, the all-age mortality rates increase from 2015 to 2040. Similarly, all-cause baseline mortality rates for the adult population (30+) are projected to be slightly higher in 2040 than in 2015.

~	'
6	8

Table S4 Summary of state-level baseline mortality data used in this study*

Region	Lung	cancer	L	RI	C)PD	Diabetes me	llitus type2
	(All	age)	(Al	l age)	(Al	age)	(All a	age)
Year	2015	2040	2015	2040	2015	2040	2015	2040
INDI_ANPR	5.3	11.4	25.5	22.9	58.5	81.9	14.5	29.1
INDI_ASSA	5.2	11.1	43.9	39.4	56.8	79.5	10.3	20.6
INDI_BENG	7.7	16.6	27.9	25.0	55.6	77.8	7.6	15.2
INDI_BIHA	4.7	10.1	45.3	40.6	49.1	68.7	7.6	15.3
INDI_CHHA	5.6	11.9	55.1	49.5	56.5	79.1	13.2	26.6
INDI_DELH	7.7	16.5	21.0	18.8	26.4	37.0	13.0	26.1
INDI_EHIM	8.4	18.0	38.4	34.5	42.6	59.6	9.9	20.0
INDI_GOA	6.4	13.7	26.4	23.7	41.2	57.6	27.5	55.3
INDI_GUJA	5.5	11.7	30.1	27.0	74.3	103.9	10.9	21.9
INDI_HARY	5.8	12.4	33.7	30.3	78.6	109.9	12.4	24.9
INDI_HIPR	7.1	15.2	29.6	26.5	112.9	157.9	8.3	16.6
INDI_JHAR	3.8	8.1	37.2	33.4	42.6	59.6	9.8	19.7
INDI_KARN	6.3	13.6	28.1	25.2	82.8	115.9	22.9	46.0
INDI_KERA	15.1	32.5	21.9	19.6	64.1	89.7	25.2	50.6
INDI_MAHA	5.3	11.4	28.7	25.7	63.1	88.3	13.0	26.2
INDI_MAPR	5.1	10.9	51.0	45.7	74.1	103.7	9.5	19.1
INDI_ORIS	5.4	11.5	48.4	43.4	30.7	42.9	9.4	18.8
INDI_PUNJ	5.4	11.5	26.4	23.7	33.4	46.7	23.5	47.2
INDI_RAJA	4.8	10.3	59.0	52.9	107.9	151.1	4.5	9.1

INDI_TAMI	6.4	13.6	26.4	23.7	44.9	62.8	40.8	82.1	
INDI_UTAN	7.5	16.2	42.3	37.9	103.6	145.0	13.4	26.9	
INDI_UTPR	4.5	9.6	58.3	52.3	89.8	125.6	7.9	15.9	
INDI_WHIM	7.4	15.9	31.6	28.3	67.0	93.8	6.0	12.1	
		Strok	ĸe		IHD		All Causes		
		(Older the	an 25)	(0)	lder tha	n 25)	(Older than 30)		
Region		2015	2040	2015		2040	2015	2040	
INDI_ANPH	2	87.1	66.1	232.7		197.3	1366.6	1368.5	
INDI_ASSA		146.1	110.8	90.1		76.4	1375.6	1377.5	
INDI_BENO	J	190.6	144.6	183.5	5	155.6	1255.0	1256.7	
INDI_BIHA	L	76.3	57.9	154.7	1	131.2	1263.2	1265.0	
INDI_CHH	A	210.1	159.4	171.6	<u>,</u>	145.5	1813.1	1815.6	
INDI_DELH	I	42.9	32.6	172.5	146.3		941.3	942.6	
INDI_EHIM	1	103.7	78.7	102.0)	86.5	1192.4	1194.1	
INDI_GOA		82.4	62.5	203.3	;	172.4	1034.5	1035.9	
INDI_GUJA	1	57.9	43.9	228.8	;	194.1	1289.6	1291.4	
INDI_HARY	Y	56.5	42.8	245.4	ŀ	208.1	1433.4	1435.4	
INDI_HIPR		49.3	37.4	166.8	3	141.4	1236.5	1238.3	
INDI_JHAF	ł	75.8	57.5	158.4	Ļ	134.3	1310.5	1312.3	
INDI_KAR	N	105.1	79.7	267.0)	226.4	1590.2	1592.4	
INDI_KERA	4	124.1	94.1	293.5	5	248.9	1388.1	1390.0	
INDI_MAH	A	91.8	69.7	209.1		177.3	1181.1	1182.8	
INDI_MAP	R	107.7	81.7	186.0)	157.7	1531.4	1533.5	
INDI_ORIS		148.1	112.3	88.9		75.4	1457.6	1459.6	
INDI_PUNJ	ſ	57.1	43.3	303.0)	257.0	1213.6	1215.3	
INDI_RAJA	1	59.3	45.0	140.1		118.8	1391.1	1393.0	
INDI_TAM	[70.0	53.1	310.0)	262.9	1453.4	1455.4	
INDI_UTAN	N	62.6	47.4	187.4	ŀ	158.9	1495.4	1497.4	
INDI_UTPF	ł	58.1	44.1	156.8	3	133.0	1591.2	1593.4	
INDI_WHI	М	61.9	47.0	192.6)	163.3	1220.1	1221.8	

*Note: For stroke, IHD and all-cause mortality, the mortality data for population with age "older than 25" or

71 "older than 30" are calculated based on original mortality and population data with 5-year intervals.

73 **1.3 CO₂ emissions from non-electricity sectors in 2015**

74

We use the GAINS-South Asia model to estimate state-level CO₂ emisisons in 2015 for the

- relectricity and non-electricity sectors. National total CO₂ emissions are estimated to be 2275 million tons.
- 76 The power sector contributes to 47% of all-sector CO₂ emissions, followed by the industry sector (35%),
- transportation sector (12%) and residential sector (7%).

⁷²

1.4 WRF-CMAQ simulation domain

- 82 Here we show the WRF-CMAQ simulation domain over India. The spatial resolution is 36×36
- km^2 . The color scale in Figure S2 is based on the population density in 2015 for each grid box⁴.

density in 2015 in each grid (original figure see supplementary materials in Guo et al. 2018⁵).

87 **1.5** Three groups of states with a low, medium, and high socio-demographic index (SDI)

- 88 We summarize in Table S5 and Figure S3 the states with a low, medium and high socio-
- 89 demographic index, following the categorization in Balakrishnan 2019⁶. The SDI is developed based on a
- 90 variety of factors, including per-capita income, mean education level and total fertility rate.
- 91
- 92

Table S5 States with low-, medium- and high-SDI

Low-SDI states	Bihar, Madhya Pradesh, Jharkhand, Uttar Pradesh, Rajasthan, Chhattisgarh, Odisha, Assam
Medium-SDI states	Andhra Pradesh, West Bengal, Tripura, Arunachal Pradesh, Meghalaya, Karnataka,
	Telangana, Gujarat, Manipur, Jammu and Kashmir, Haryana
High-SDI states	Uttarakhand, Tamil Nadu, Mizoram, Maharashtra, Punjab, Sikkim, Nagaland, Himachal
	Pradesh, Union Territories (excluding Delhi), Kerala, Delhi, Goa

93

95 inserted figure on the bottom right shows each type of states' shares in the national total population in

96 2015 and 2040 (based on data in Table S1).

97 **2.** Additional results

98 2.1 Electricity generation and CO₂ emissions by coal power generation technologies

We present electricity generation and CO₂ emissions by different coal plant types in WEO-CLE,

100 BAU-CLE and AMB-CLE (Figure S4 and S5). Note that the fuel mix and technology choices in WEO-

101 DEL and WEO-FRO are the same as in WEO-CLE. Since we do not consider the efficiency penalty to

102 operate end-of-control devices, the CO₂ emissions in WEO-DEL and WEO-FRO are also the same as

103 those in WEO-CLE.

104 As the total amount of supercritical and ultra-supercritical coal power generation gradually 105 increases over time (blue bars in Figure S4), associated CO₂ emissions also increase substantially from 106 2015 to 2040 across all three scenarios (blue bars in Figure S5). Since BAU-CLE and AMB-CLE allow 107 for the addition of new subcritical units, these two scenarios lead to a large increase in CO₂ emissions 108 from subcritical units (orange and red bars) from 2015 to 2022. Due to these new additions in BAU-CLE 109 and AMB-CLE and the long lifetime of coal units, by 2040 the generation and associated CO₂ emissions 110 from subcritical units are greater than they were in 2015, and lower than they were in 2022. In contrast, 111 the WEO-CLE scenario assumes successful implementation of policies to increase the efficiency of newly 112 built coal-fired power plants. It hence projects a noticeable decrease in power generation and associated 113 CO_2 emissions from subcritical units between 2020 to 2040. This is because no new subcritical units are 114 added after 2015 and CO₂ emissions only come from existing subcritical plants that operate until the end 115 of their lifetime.

117 Figure S4. Coal power generation by plant type in: a) WEO-CLE, b) BAU-CLE and c) AMB-CLE

118 scenario.

120 Figure S5. CO₂ emissions by coal power generation technologies in a) WEO-CLE, b) BAU-CLE and

- 121 c) AMB-CLE scenario.
- 122

123 2.2 Simulated PM_{2.5} concentrations in 2040

Here we present annual mean PM_{2.5} concentrations for each of the five scenarios in 2040. Given the significant variations across different regions in India, the relative differences across scenarios are difficult to see using the color scale in Figure S6 that covers the range for absolute concentrations. Thus in the main text, we present the differences between scenarios in Figure 3b.

128

Figure S6. Spatial distribution of annual mean ambient $PM_{2.5}$ concentrations (unit: $\mu g/m^3$) in 2040. The annual mean concentrations are estimated by taking the average of monthly mean concentrations for four representative months (i.e., January, April, July and October).

133

129

134 2.3 State-average PM_{2.5} concentrations

We highlight two observations. First, in WEO-CLE, the annual mean $PM_{2.5}$ concentration is similar in 2015 and 2040, both in terms of scale and spatial distribution. Second, comparing other scenarios to WEO-CLE, the annual mean $PM_{2.5}$ concentration increases by 0-5 μ g/m³ throughout the

138 country in WEO-DEL, BAU-CLE and AMB-CLE, while the pollution level increases by more than

- 139 $5\mu g/m^3$ in most provinces in WEO-FRO. As a result, we also observe the greatest increase in PM_{2.5}-
- 140 related deaths in WEO-FRO, with the highest death toll observed in north and central India.

142 Figure S7. State-averaged annual mean PM_{2.5} concentrations: a) in WEO-CLE: 2015 and 2040; b)

- 143 in 2040: changes in each scenario relative to WEO-CLE.
- 144

145 2.4 Co-control of CO₂ emissions and air pollution-related health impacts

146 Given the dual challenge of simultaneously curbing CO₂ emissions and air pollution, we provide 147 a comprehensive perspective by comparing the percentage change in CO₂ and air pollution impacts. Since 148 air pollution impacts are affected by all-sector emissions, we present the 2015 to 2040 changes as: i) all-149 sector CO₂ emissions (i.e., 2040 power sector emissions plus 2015 non-power emissions); ii) total PM_{2.5}-150 related deaths as a result of *all-sector* air pollutant emissions. Non-power emissions are kept at 2015 151 levels and estimated using the GAINS-South Asia model with proper validation (Supplementary Figure 152 S1). 153 Nationally, for the five scenarios examined, we find much greater cross-scenario variations in all-154 sector CO₂ impacts (i.e., 40-80% higher than 2015 across 5 scenarios) than total air pollution impacts 155 (i.e., 50-57% higher than 2015 across 5 scenarios). This is because while CO₂ impacts are directly 156 affected by the amount of fossil fuel generation in the future, some level of air pollution control always 157 exists (even in the delayed or frozen air pollution policy scenarios) since some measures are already being

158 taken today.

159 With huge subnational heterogeneity in socioeconomic development levels, we further 160 demonstrate unequal impacts across states with a low, medium or high socio-demographic index (SDI) 161 (see Supplementary Table S5 and Figure S3 for categorization of low-, medium- and high-SDI states). 162 The low-, medium-, and high-SDI states represent 47%, 29% and 24% of the total population in 2015, 163 and we assume that this population pattern largely persists in 2040. This subnational perspective is 164 relevant not only for addressing environmental justice concerns, but also for policy considerations 165 regarding the enforcement of policies given the cross-state variations in institutional capacity. 166 For changes in PM_{2.5}-related deaths from 2015 to 2040, across all five scenarios, we observe the 167 smallest percentage increase in high-SDI states and the largest percentage increase in medium-SDI states. 168 These cross-region differences are driven by a variety of socioeconomic and policy factors, including 169 cross-state variations in pollution levels, age structure, and baseline mortality rates. For CO₂ emissions, 170 since energy pathways are the key to determine CO_2 impacts, the largest CO_2 increase occurs in medium-171 SDI states under the WEO energy projection, while the largest increase occurs in high-SDI states under 172 the BAU and AMB energy projections. Such differences are driven by the different geographic patterns of 173 renewable energy deployment at the subnational level as projected in WEO and BAU/AMB. 174 Despite the differences across states with different SDIs, our main findings remain robust in all 175 three groups of states, namely: i) limited enforcement of air pollution policies results in more health

176 damage from air pollution but has a limited impact on CO₂ emissions; and ii) limited enforcement of

energy policies leads to significantly more CO_2 emissions, but results in only slightly more $PM_{2.5}$ -related deaths.

Figure S8. Increases in all-sector CO₂ emissions and total PM_{2.5}-related deaths in 2040 relative to
2015 for: a) National total; b) Low-SDI states; c) Medium-SDI states; d) High-SDI states.

179

183

184 **3.** Sensitivity analyses on different exposure-response functions

185 The choice of the exposure-response functions (ERFs) often affects the health impact assessment results in a substantial way 7-9. We use non-linear relative risk (RR) functions from GBD for six diseases 186 187 (ischemic heart disease (IHD), stroke, chronic obstructive pulmonary disease (COPD), lung cancer (LC), 188 lower respiratory tract infections (LRI) and diabetes) in the main results, which are denoted as integrated 189 exposure-response (IER) functions. Here, we further consider: a) GEMM: Mortality from five diseases 190 (i.e., COPD, IHD, Lung Cancer, Stroke, LRI) based on the exposure-response functions from the Global 191 Exposure Mortality Model (GEMM)¹⁰, and b) Log-linear: All-cause mortality estimated using the loglinear relative risk function based on Pope et al. (2002)¹¹. Note that IER and GEMM functions consider 192 193 specific PM_{2.5}-related diseases, whereas the log-linear function targets all-cause mortality. This 194 assumption makes GEMM results more directly comparable with IER results than log-linear results. 195 Furthermore, non-linear RR functions are more consistent with recent epidemiological evidence that the

196 marginal mortality risks decrease with increasing $PM_{2.5}$ concentrations at high levels. Detailed methods 197 are presented in Table S9.

198

199 **3.1 National total mortality**

200 In most scenarios, national total $PM_{2,5}$ -related deaths are greater when using the GEMM or log-201 linear functions than when using the IER functions (Figure S9 and Table S6). Quantitatively, in 2015, 202 premature mortality is estimated to be 0.86 million (95% CI: 0.55-1.13 million), 1.33 million (0.97-1.60 203 million) and 1.65 million (0.62-2.66 million), when using IER, GEMM and log-linear functions, 204 respectively. In the 2040 scenarios, the central estimates of the national total mortality increase to 1.29-205 1.35 million based on the IER functions, 2.27-2.39 million based on GEMM functions, and 2.51-2.81 206 million based on the log-linear functions. However, under all ERFs, the lowest mortalities are observed in 207 the WEO-CLE scenario and the highest are observed in the WEO-FRO scenario.

- 210 **functions.** Note: IER: six causes; GEMM: five causes; log-linear: all-cause.
- 211
- 212

Table S6. National total mortality estimated using different ERFs (unit: million)

		IER (six o	diseases)		GEMM (five disea	ses)	log-linear (all-cause)		
Year	Scenario	central	low	high	central	low	high	central	low	high
2015	/	0.857	0.555	1.129	1.325	0.968	1.602	1.653	0.619	2.655
2040	WEO-CLE	1.289	0.807	1.740	2.272	1.692	2.732	2.511	0.936	4.052
	WEO-FRO	1.348	0.855	1.806	2.394	1.787	2.870	2.811	1.058	4.487
	WEO-DEL	1.303	0.819	1.756	2.300	1.715	2.764	2.587	0.967	4.160
	AMB-CLE	1.295	0.812	1.747	2.285	1.702	2.747	2.542	0.948	4.097

- **BAU-CLE** 1.298 0.814 1.750 2.290 1.706 2.753 2.557 0.954 4.118 213 Note: The "central" estimates are the central estimates from the ERF; the "low" and "high" estimates represent the 214 95% confidence intervals of mortality estimates considering the uncertainty range of the ERF parameters. 215 216 The shape of the ERF functions is likely the main driver of higher mortality estimates under
- 217 GEMM when compared to IER. GEMM integrates the results of many up-to-date large-scale
- 218 epidemiological cohort studies across the world, including one Chinese male cohort study with high long-
- 219 term ambient PM_{2.5} exposure level. As such, GEMM provides more up-to-date estimates for RR at high
- 220 $PM_{2.5}$ ranges, resulting in higher RR than IER¹⁰.
- 221 To provide a quantitative perspective, in Figure S10 we plot the RR curves and the population
- attributable fraction (PAF) as a function of rising $PM_{2.5}$ concentration for IER and GEMM (Figure S9).
- 223 We choose to plot IHD and COPD, one as an example of age-specific RR (IHD) that is available from
- GEMM and the other as an example of aggregated RR for populations older than 25. It is clear that the
- relative risks and PAFs are significantly higher under the GEMM functions than in the IER functions.(a) IHD

227 Figure S10. Relative risk and population attributable fraction of (a) IHD (b) COPD mortality as a

228 function of increasing PM_{2.5} concentration, for different ERFs.

However, the choice of ERFs does not affect our main finding that unsuccessful implementation of energy or air pollution control policies would lead to more deaths, although it does affect the absolute and percentage differences across scenarios (Figure S11). Regardless of the choice of ERFs, in 2040, the lowest deaths occur under the WEO-CLE scenario and the highest deaths occur in the WEO-FRO scenario. The differences across scenarios are smallest under the IER functions. This implies that our main results are likely conservative estimates for PM_{2.5}-related deaths, and hence conservative estimates

236 for the benefits of successful policy implementation on human health.

237

Figure S11. PM_{2.5}-related premature mortality in India based on different ERFs: (a) total PM_{2.5}-

```
related premature mortality in all scenarios, (b) absolute change in 2040 relative to WEO-CLE, and
```

241

242 **3.2 State-level mortality**

243 Differences due to the choice of ERFs vary across states (Figure S12 and Table S7). In most 244 states, the estimated mortality using the IER function is smaller than when using the log-linear or GEMM 245 functions. However, in some states the IER results can be higher than the log-linear results. For states 246 with concentration levels higher than 40µg/m³ in 2040 under the WEO-CLE scenario (including

- 247 INDI_DELH, INDI_BENG, INDI_BIHA, INDI_UTPR, INDI_HARY, INDI_PUNJ, INDI_JHAR,
- 248 INDI_ORIS, and INDI_CHHA), we find that applying the log-linear functions always yields the highest
- 249 deaths, followed by GEMM and then IER. This pattern could be explained by: (i) log-linear RR functions

^{240 (}c) relative change in 2040 relative to WEO-CLE.

are applied to all-cause mortality that includes more diseases; and (ii) the RR increases rapidly at high

251 PM_{2.5} concentration ranges, especially for GEMM functions.

253 Figure S12. PM_{2.5}-related premature mortality in Indian states, under the WEO-CLE scenario

Note: INDI_MAHA is the abbreviation for the region Maharashtra-Dadra-Nagar Haveli-Daman-Diu.
 Same for the other figures.

256

252

Table S7. PM_{2.5} level and PM_{2.5}-related deaths in 2040 for WEO-CLE, by state*

Region	PM2.5	PM _{2.5} -related premature mortality (million)							
	$(\mu g/m^3)$	IER	GEMM	Log-linear					
		(six diseases)	(five disease)	(all-cause)					
India	33.02	1.29	2.27	2.51					
INDI_ANPR	32.45	0.08	0.14	0.12					
INDI_ASSA	79.77	0.03	0.04	0.04					
INDI_BENG	76.84	0.12	0.27	0.30					
INDI_BIHA	45.16	0.11	0.20	0.30					
INDI_CHHA	95.17	0.03	0.06	0.06					
INDI_DELH	28.62	0.01	0.03	0.04					
INDI_EHIM	27.34	0.01	0.02	0.01					
INDI_GOA	25.57	0.00	0.00	0.00					
INDI_GUJA	63.17	0.05	0.08	0.05					
INDI_HARY	19.57	0.03	0.07	0.08					
INDI_HIPR	57.88	0.00	0.01	0.00					
INDI_JHAR	22.96	0.03	0.06	0.08					
INDI_KARN	27.56	0.07	0.10	0.06					

Region	PM2.5	PM _{2.5} -related p	remature mortal	ortality (million)			
	$(\mu g/m^3)$	IER	GEMM	Log-linear			
		(six diseases)	(five disease)	(all-cause)			
INDI_KERA	38.81	0.03	0.05	0.04			
INDI_MAHA	34.91	0.10	0.18	0.15			
INDI_MAPR	46.56	0.08	0.13	0.12			
INDI_ORIS	58.88	0.03	0.06	0.09			
INDI_PUNJ	31.10	0.04	0.07	0.07			
INDI_RAJA	20.99	0.07	0.10	0.08			
INDI_TAMI	25.49	0.07	0.10	0.05			
INDI_UTAN	72.82	0.01	0.01	0.01			
INDI_UTPR	18.75	0.26	0.48	0.75			
INDI_WHIM	33.02	0.01	0.01	0.01			

*Note: (1) Only the central estimates are shown; (2) "India" results are calculated by adding up the results
of all the states.

Similar to national-level results, different ERFs lead to different additional deaths due to policy failures (Figure S13). However, the choice of ERF does not affect the relative size of deaths across policy failure scenarios: the WEO-FRO scenario always leads to the highest $PM_{2.5}$ -related premature mortality, while mortality under the three other policy failure scenarios is similar (i.e., ~1% more deaths than WEO-CLE scenario under IER and GEMM functions for most states, and ~5% more deaths under the log-linear functions).

267

268 Figure S13. Differences in state-level mortality in 2040 compared with WEO-CLE scenario, under

269 the three ERFs.

270 **4. Sensitivity analyses on baseline mortality rates**

271 Here we consider changing baseline mortality rates from 2015 to 2040 based on projections from 272 GBD Foresight and current cross-state variations (see Table S4). For IER and GEMM results, we find 273 lower 2040 PM_{2.5}-related deaths in all scenarios when applying projected 2040 age- and disease-specific 274 baseline mortality rates than applying 2015 rates. The percentage decreases are greater under GEMM than 275 IER. Log-linear functions, in comparison, only consider all-cause mortality for the adult population aged 276 30 years or above. With population aging, the all-age baseline mortality rate is projected to increase 277 slightly in 2040 when compared to 2015. As such, when log-linear functions are used, we find a minimal 278 increase in the death estimates using 2040 baseline mortality rates instead of the 2015 ones.

However, the changes in PM_{2.5}-related deaths in the policy failure scenarios when compared to
WEO-CLE are not significantly affected by the choice of baseline mortality rates. For instance, with RR
functions from IER (i.e., our main results), the WEO-DEL, WEO-FRO, BAU-CLE, AMB-CLE scenarios
lead to 1.2%, 4.8%, 0.7% and 0.5% more deaths than WEO-CLE in 2040 when using projected 2040
baseline mortality rates (Figure S14). Those numbers are only marginally different from results using
2015 baseline mortality rates, i.e., 1.1%, 4.6%, 0.7% and 0.5%, respectively. This finding remains robust
when GEMM or log-linear RR functions are used.

286

Table S8. National PM_{2.5}-related deaths in 2040 calculated using the 2015 (Main) and 2040 baseline mortality rates (Updated). Unit: Million deaths.

		WEO-CLE			W	EO-DEL		WEO-FRO		
	Main	1.29	0.81	1.74	1.30	0.82	1.76	1.35	0.85	1.81
IER	Updated	1.18	0.75	1.55	1.19	0.76	1.56	1.23	0.80	1.61
	% Diff	-9%	-7%	-11%	-9%	-7%	-11%	-9%	-7%	-11%
	Main	2.27	1.69	2.73	2.30	1.71	2.76	2.39	1.79	2.87
GEMM	Updated	1.61	1.15	1.98	1.63	1.16	2.00	1.70	1.21	2.07
	% Diff	-29%	-32%	-28%	-29%	-32%	-28%	-29%	-32%	-28%
	Main	2.51	0.94	4.05	2.59	0.97	4.16	2.81	1.06	4.49
Log-linear	Updated	2.51	0.94	4.06	2.59	0.97	4.17	2.81	1.06	4.49
	% Diff	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%
				Fable S8	(continu	ed)				

		B	AU-CLE		A	MB-CLE	
	Main	1.30	0.81	1.75	1.29	0.81	1.75
IER GEMM	Updated	1.18	0.76	1.56	1.18	0.75	1.55
	% Diff	-9%	-7%	-11%	-9%	-7%	-11%
	Main	2.29	1.71	2.75	2.28	1.70	2.75
	Updated	1.62	1.16	1.99	1.62	1.15	1.99

	% Diff	-29%	-32%	-28%	-29%	-32%	-28%
Log	Main	2.56	0.95	4.12	2.54	0.95	4.10
linear	Updated	2.56	0.96	4.12	2.55	0.95	4.10
	% Diff	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%

292 Figure S14. National total PM_{2.5}-related deaths with changing baseline mortality rates from 2015 to

293 2040: a) for 2015 and 2040 in WEO-CLE, and b) changes in other scenarios relative to WEO-CLE

Appendix: Introduction to the IMED|HEL model

297 In this study, the sensitivity analyses on alternative exposure-response functions are conducted 298 using the IMED HEL model. It assesses the health impacts by using different $PM_{2.5}$ exposure-response 299 functions (in this study, log-linear, non-linear IER, and non-linear GEMM functions) to estimate the 300 relative risk of PM_{2.5} pollution and excess mortality under certain scenarios. By comparing the health 301 assessment results of different scenarios, the model can be used to analyze the human health benefits of 302 air pollution control policies and energy policies. The IMED|HEL model is compatible with both gridded 303 and regional exposure data, and can be used to estimate the health impacts at gridded, regional and 304 national levels.

305 The detailed underlying methods in the IMED|HEL model to estimate the $PM_{2.5}$ -related health 306 impacts are presented in Table S9. More information about the IMED|HEL model can be found in prior 307 work published using this model ^{12–15} and the online documentation ¹⁶.

308309

		Table	e S9 M	ethods	to esti	mate t	the he	alth	impacts	s using	the	IMED	HEL	model
--	--	-------	--------	--------	---------	--------	--------	------	---------	---------	-----	------	-----	-------

Health endpoint	Methods
Mortality	The general method for mortality risk assessment is the same as that in the main text, but
	with some differences in the formula for different ERFs. The excess mortality ($\Delta Mort$) is
	estimated using the following formula:
	$\Delta Mort = \sum_{e} \frac{(RR(C)_{e} - 1)}{RR(C)_{e}} \cdot I \cdot Population$
	Where I is the reported death rate for a specific disease, and $RR(C)_e$ is the relative risk of
	mortality for disease e under the PM _{2.5} pollution level C:
	$(1, when C - C_0 \le 0)$
	$e^{\beta_e(C-C_0)}$, when $C-C_0 > 0$ (log – linear model)
	$RR(C)_e = \begin{cases} 1 + \alpha_e \left[1 - e^{-\gamma_e (C - C_0)^{\delta}}\right], when C - C_0 > 0 (IER \ model) \end{cases}$
	$\left(e^{\left[\theta_e \log\left(\frac{C-C_0}{\alpha_e}+1\right)\right]/\left[1+e^{-\frac{C-C_0-\mu}{\nu}}\right]}, when \ C-C_0 > 0 \ (GEMM \ model)\right)$
	Note that the threshold concentrations, C ₀ , are different in the three ERFs. For log-
	linear function we take $10\mu g/m^3$, for IER function it ranges between 2.4-5.8 $\mu g/m^3$, and for
	the GEMM function the threshold is $2.4\mu g/m^3$. For the log-linear model, we only consider
	the all-cause mortality (i.e. there is only one kind of mortality endpoint —"all-cause") in
	adults aged 30 or above. In this study, the IMED HEL model is used for estimating the
	mortality under the linear and GEMM functions to be compared with the IER results in the

main text.

312 **Reference**

- 313 (1) Indian Council of Medical Research; Public Health Foundation of India; Institute for Health
 314 Metrics and Evaluation. GBD India Compare Data Visualization. Available from
 315 http://vizhub.healthdata.org/gbd-compare/india 2017.
- Jones, B.; O'Neill, B. C. Global Population Projection Grids Based on Shared Socioeconomic
 Pathways (SSPs), 2010-2100. NASA Socioeconomic Data and Applications Center (SEDAC):
 Palisades, NY 2017.
- 319 (3) Institute for Health Metrics and Evaluation (IHME). GBD Foresight. Available from: *https://vizhub.healthdata.org/gbd-foresight/* 2018.
- 321 (4) UNITED NATIONS; DESA / POPULATION DIVISION. The World Population 2015. 2015.
- Guo, H.; Kota, S. H.; Chen, K.; Sahu, S. K.; Hu, J.; Ying, Q.; Wang, Y.; Zhang, H. Source
 Contributions and Potential Reductions to Health Effects of Particulate Matter in India. *Atmos. Chem. Phys.* 2018, *18* (20), 15219–15229. https://doi.org/10.5194/acp-18-15219-2018.
- 325 (6) Balakrishnan, K.; Dey, S.; Gupta, T.; Dhaliwal, R. S.; Brauer, M.; Cohen, A. J.; Stanaway, J. D.;
 326 Beig, G.; Joshi, T. K.; Aggarwal, A. N.; Sabde, Y.; Sadhu, H.; Frostad, J.; Causey, K.; Godwin,
 327 W.; Shukla, D. K.; Kumar, G. A.; Varghese, C. M.; Muraleedharan, P.; Agrawal, A.; Anjana, R.
- 328 M.; Bhansali, A.; Bhardwaj, D.; Burkart, K.; Cercy, K.; Chakma, J. K.; Chowdhury, S.;
- 329 Christopher, D. J.; Dutta, E.; Furtado, M.; Ghosh, S.; Ghoshal, A. G.; Glenn, S. D.; Guleria, R.;
- 330 Gupta, R.; Jeemon, P.; Kant, R.; Kant, S.; Kaur, T.; Koul, P. A.; Krish, V.; Krishna, B.; Larson, S.
- L.; Madhipatla, K.; Mahesh, P. A.; Mohan, V.; Mukhopadhyay, S.; Mutreja, P.; Naik, N.; Nair, S.;
 Nguyen, G.; Odell, C. M.; Pandian, J. D.; Prabhakaran, D.; Prabhakaran, P.; Roy, A.; Salvi, S.;
 Sambandam, S.; Saraf, D.; Sharma, M.; Shrivastava, A.; Singh, V.; Tandon, N.; Thomas, N. J.;
 Torre, A.; Xavier, D.; Yadav, G.; Singh, S.; Shekhar, C.; Vos, T.; Dandona, R.; Reddy, K. S.; Lim,
 S. S.; Murray, C. J. L.; Venkatesh, S.; Dandona, L. The Impact of Air Pollution on Deaths, Disease
 Burden, and Life Expectancy across the States of India: The Global Burden of Disease Study
- 337
 2017. The Lancet Planetary Health 2019, 3 (1), e26–e39. https://doi.org/10.1016/S2542

 338
 5196(18)30261-4.
- Lin, J.; Du, M.; Chen, L.; Feng, K.; Liu, Y.; V. Martin, R.; Wang, J.; Ni, R.; Zhao, Y.; Kong, H.;
 Weng, H.; Liu, M.; van Donkelaar, A.; Liu, Q.; Hubacek, K. Carbon and Health Implications of Trade Restrictions. *Nature Communications* 2019, *10* (1), 4947. https://doi.org/10.1038/s41467-019-12890-3.
- 343 (8) Dedoussi, I. C.; Eastham, S. D.; Monier, E.; Barrett, S. R. H. Premature Mortality Related to
 344 United States Cross-State Air Pollution. *Nature* 2020, 578 (7794), 261–265.
 345 https://doi.org/10.1038/s41586-020-1983-8.
- (9) Lelieveld, J.; Evans, J. S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The Contribution of Outdoor Air
 Pollution Sources to Premature Mortality on a Global Scale. *Nature* 2015, 525, 367.
- 348 Burnett, R.; Chen, H.; Szyszkowicz, M.; Fann, N.; Hubbell, B.; Pope, C. A.; Apte, J. S.; Brauer, (10)349 M.; Cohen, A.; Weichenthal, S.; Coggins, J.; Di, Q.; Brunekreef, B.; Frostad, J.; Lim, S. S.; Kan, 350 H.; Walker, K. D.; Thurston, G. D.; Hayes, R. B.; Lim, C. C.; Turner, M. C.; Jerrett, M.; Krewski, 351 D.; Gapstur, S. M.; Diver, W. R.; Ostro, B.; Goldberg, D.; Crouse, D. L.; Martin, R. V.; Peters, P.; 352 Pinault, L.; Tjepkema, M.; van Donkelaar, A.; Villeneuve, P. J.; Miller, A. B.; Yin, P.; Zhou, M.; 353 Wang, L.; Janssen, N. A. H.; Marra, M.; Atkinson, R. W.; Tsang, H.; Quoc Thach, T.; Cannon, J. 354 B.; Allen, R. T.; Hart, J. E.; Laden, F.; Cesaroni, G.; Forastiere, F.; Weinmayr, G.; Jaensch, A.; 355 Nagel, G.; Concin, H.; Spadaro, J. V. Global Estimates of Mortality Associated with Long-Term Exposure to Outdoor Fine Particulate Matter. Proc Natl Acad Sci USA 2018, 115 (38), 9592.
- Exposure to Outdoor Fine Particulate Matter. *Proc Natl Acad Sci*https://doi.org/10.1073/pnas.1803222115.
- (11) Pope III, C. A.; Burnett, R. T.; Thun, M. J.; Calle, E. E.; Krewski, D.; Ito, K.; Thurston, G. D.
 Lung Cancer, Cardiopulmonary Mortality, and Long-Term Exposure to Fine Particulate Air
 Pollution. *JAMA* 2002, 287 (9), 1132–1141. https://doi.org/10.1001/jama.287.9.1132.

- Xie, Y.; Dai, H.; Xu, X.; Fujimori, S.; Hasegawa, T.; Yi, K.; Masui, T.; Kurata, G. Co-Benefits of Climate Mitigation on Air Quality and Human Health in Asian Countries. *Environment International* 2018, *119*, 309–318. https://doi.org/10.1016/j.envint.2018.07.008.
- Xie, Y.; Dai, H.; Dong, H.; Hanaoka, T.; Masui, T. Economic Impacts from PM2.5 PollutionRelated Health Effects in China: A Provincial-Level Analysis. *Environ. Sci. Technol.* 2016, 50 (9),
 4836–4843. https://doi.org/10.1021/acs.est.5b05576.
- Kim, S. E.; Xie, Y.; Dai, H.; Fujimori, S.; Hijioka, Y.; Honda, Y.; Hashizume, M.; Masui, T.;
 Hasegawa, T.; Xu, X.; Yi, K.; Kim, H. Air Quality Co-Benefits from Climate Mitigation for
 Human Health in South Korea. *Environment International* 2020, *136*, 105507.
 https://doi.org/10.1016/j.envint.2020.105507.
- Xie, Y.; Dai, H.; Zhang, Y.; Wu, Y.; Hanaoka, T.; Masui, T. Comparison of Health and Economic
 Impacts of PM2.5 and Ozone Pollution in China. *Environment International* 2019, *130*, 104881.
 https://doi.org/10.1016/j.envint.2019.05.075.
- (16) Laboratory of Energy & Environmental Economics and Policy. IMEDIHEL Model Introduction.
 http://scholar.pku.edu.cn/hanchengdai/imedhel.
- 376