

Leveraging new open-source modelling tools to rapidly prototype pathways for achieving SDG7 and mid-century climate targets in Pakistan Monday, December 14th 2020

Muhammad Awais^{1,2} Simon Parkinson¹, Behnam Zakeri¹, Madeleine McPherson² and Keywan Riahi^{1,2}

¹International Institute for Applied Systems Analysis, Austria ²University of Victoria, Canada

Agenda

Modelling Framework

- Introduction to MESSAGEix & MESSAGE-GLOBIOM
- Country Prototype Process

Case Study: Pakistan

- Socioeconomic Overview
- Climate Vulnerability
- Energy System

Accounting for Access to Energy (SDG7)

- Electricity
- Clean Cooking Fuels

Investments & Emissions

Energy System Transformation

- Primary Energy
- Electricity Generation

The MESSAGE_{*i*x} framework

• transparency and reproducibility of research

Model documentation: https://docs.messageix.org/en/stable/

Message-GLOBIOM – Integrated Assessment Model Model documentation: <u>https://docs.messageix.org/projects/global/en/latest/index.html</u>

LAS

MESSAGE_{ix}: Rapidly prototyping a national scale Model

Pakistan - Socio-economic overview

Population

GDP

SSP5 (projected) 20,000 18,000 16,000 14,000 GDP (billion USD) 12,000 10,000 8000 6000 4000 2000 2010 2030 2200 8

Vear

Pakistan - Exposure to key risks

Exposure to key risks

1.5° 2.0° 3.0°

F

IIASA

Byers et al. 2018 More details at hotspot-explorer.org

Overview of Energy System

Highlights

- ✤ Reliance on oil and gas in the energy mix
- Under Utilization of renewable resources
- About 27% of the population lack access electricity and 71% of population lack access clean cooking facilities
- Circular Debt hampers smooth functioning of t system
- Nascent regulatory frameworks
- Weak governance of distribution companies
- Energy conservation and efficiency requir special emphasis
- Off-grid electricity solutions have yet r proliferated

Primary Energy Supply by Source (2016/17)

Source: Pakistan Energy Year Book 2017

Scenario Design

Energy Access – Electricity

Adjusted electricity demands in SDG scenario

LASA

¹⁰ *Bhatia, ₂M. & Angelou, N. Beyond Connections: Energy Access Redefined (2015)

Energy Access – Electricity

Baseline demands are the actual projected demands from model based on GDP, population and historical activities

SDG demands refer to adjusted from multi-tier demands framework

Year	% population w/o access to electricity
2020	77
2025	90
2030	0

ASA

Rapid increase in demands untill 2030 to provide 100% access to electricity

SDG demands match baseline demands around 2055

12 Cameron, C. *et al.* Policy trade-offs between climate mitigation and clean cook-stove access in South Asia. *Nat. Energy* **1**, 1–29 (2016)

Energy Access – Clean Cooking Fuels

- Non-traditional cookingenergy demand for SDG scenario increase rapidly due to provision of 100% access to clean cooking fuels in 2030 and vice versa for traditional cooking energy demand.
- Baseline scenario assumes 100% access to clean cooking fuels in 2050.

Energy Demands

- Significant increase in overall demands due to high population growth rates
- Residential/commerical is a major contribution due to increased temperatures & climate vulnerability

System Transformation Primary Energy

IASA

- Rapid transformation in prim mix from coal and gas to renewables in SDG scenario
- High solar & hydro potential in country

System Transformation CO₂ Emissions

- Rapid reductions of emissions in SDG scenario to be consistent with SDG goals and Paris Agreement
- Emissions from oil and coal are negligible in SDG scenario.
- Gas & cement have higher share in CO₂ in SDG scenario

System Transformation Costs

- 37 % increase in invesment costs & 13 % increase in operational costs
- SDG scenario saves investments in coal in the future years and reduce overall costs across horizon
- Costs transformation from coal & gas to distributed renewable sources in SDG scenario

Comments

• Suite of tools & functions for energy systems modelling

 $_{\odot}$ MESSAGEix – open source energy system model

 Pyam python package for analysing and visualizing input data and results of scenarios for energy systems analysis and sectoral studies.

- The process can be replicated to any country/region for energy transition analysis
- Results indicate;
 - $_{\odot}$ High potential for adopting solar and hydro for adopting renewables
 - $_{\odot}$ Investments for provision of 100% access to energy

 $_{\odot}$ Costs shifts towards renewables rather than coal & oil

Thanks for your attention!

Muhammad Awais

Energy Program

International Institute for Applied Systems Analysis / IIASA)

Laxenburg Austri