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Abstract 
 

Increasingly complex linkages of the global economy can be a channel for the propagation of 
negative climate-related shocks with the potential to deteriorate resilience and sustainability in 
societies. Given projected increases in disaster risks due to climate change, developing models that 
more accurately simulate the propagation of shocks through economic networks becomes crucial for 
designing effective prevention and recovery strategies. This study focuses on the short-term decision-
making process of economic agents in disaster aftermath and its implications for the propagation of 
disaster shocks. We develop a new recursive dynamic model, in which a key feature of economic 
agents’ behavior in disaster aftermath, making decisions with incomplete information, is introduced. 
We apply the model to study the propagation of economic impacts induced by stylized disasters and 
find that it can reproduce the theoretically expected decision-making process of economic agents 
under incomplete information in a rapidly changing economic environment. Besides the disruption of 
intermediate materials supply, it captures another important channel that causes indirect losses, i.e., 
the lack of information. On top of a more comprehensive risk assessment, the proposed approach 
provides a modeling framework for analyzing the relation between information and disaster 
propagation. 
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1. Introduction 
Natural disasters are one of the major risks faced by human societies and economic systems. With 

the increasingly complex supply-chain network of the global economy, the impact of natural disasters 

is not limited to direct damages to the human population and physical assets, they also disrupt the 

functioning of the overarching economic system, leading to additional losses through supply-chains, 

often referred to as indirect losses1,2. Evidence from studies on past natural disasters shows that 

indirect effects can represent a significant, or even dominant, share of total losses3,4. Given projected 

increases in disaster risk due to climate change5 and increases in complexity of the global supply 

chains6, a comprehensive understanding of the propagation of economic disaster shocks will be 

increasingly important for developing effective prevention and recovery strategies.  

Many methods have been proposed to analyze the propagation of negative shocks through economic 

networks in the existing literature, which can be mainly categorized into two strands. The first 

category comprises the models based on Input-Output (IO) analysis. A standard IO model can be 

described as a static linear model that presents the economy through sets of fixed relationships 

between sectors themselves (the producers) and others (the consumers)7. Therefore, IO models can 

capture the ripple effect triggered by supply constraints in the economic networks in a very 

straightforward way8,9, which makes it one of the most applied models to assess the indirect 

economic impacts of disasters2,10,11.  

The second type of model widely used in disaster impact assessment is Computable General 

Equilibrium (CGE) based models. A neoclassical CGE model is a system of equations that describes 

the behavior of firms and households and their interactions by functional relationships subject to 

prices and market clearing conditions12. Compared with IO models, CGE models consider the strategic 

behaviors of economic agents under the profit and utility maximization assumptions. CGE models, 

therefore, can better capture the adaptive response of economic agents to shocks2. However, due to 

their relative-prices adjustment mechanism, CGE models tend to be overly optimistic about market 

flexibility in short-term disaster aftermath2,8. Hence, IO models, with their more rigid structure, are 

often considered more suitable for short-term indirect disaster risk assessments, while CGE models 

are often considered more suitable for studies focus on long-term effects1,3,8,9,13.  

While the exiting research and studies, e.g. those mentioned above, have done a lot of work in 

applying economic models to the field of indirect disaster impact assessment, the modeling of the 

decision-making process of economic agents in disaster aftermath remains rather preliminary. The 

aftermaths of a disaster are marked by shortages and excesses, price heterogeneities, lack of 

information, over or under-reactions, etc. CGE models fail to capture these behaviors, because they 

posit that the economy remains at an equilibrium state. Information is ubiquitous and all quantities 

adjust instantaneously such that supply and demand remain equal. Some studies have tried to 

analyze economic dynamics out-of-equilibrium under the general equilibrium framework14-16 or agent-

based approach17,18.  

IO models offer a more flexible framework to simulate such out-of-equilibrium dynamics. But their 

representation of economic agents is extremely simplistic, such that multiple ad-hoc mechanistic rules 

need to be added to simulate how agents make decisions. These rules may be reasonable in certain 

situations, but not in others. For example, when modeling the distribution of inadequate resources in 

disaster aftermath, Hallegatte1,3 employ a rationing scheme in which business-to-business linkages 

are prioritized and the remaining resources are distributed to other agents in proportion of their 

demand. Instead, Zeng et al (2019)19 argue that priority should be given to human “basic demand” 

for severe disasters to make a more realistic representation. These specific rules limit the validity of 

such models and lead to challenges for general applications.  
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Another limitation of both approaches is the assumption of ubiquitous information, which is often 

implicit. Information is critical during a disaster aftermath, because it is often distorted (e.g., rumors) 

or missing (e.g., communication network breakdown). In global and complex supply chain networks, 

information does not flow well even in the absence of shocks, which has concrete consequences, for 

instance on price formation (bullwhip effect).  

To fill both gaps, we propose an IO-based model with a CGE-inspired agent behavior and an explicit 

modeling of information limitation. We introduce a local optimization principle to govern all relevant 

decisions of economic agents, e.g., firms decide on their production level by profit optimization and 

households distribute their income to commodity consumption and saving based on utility 

maximization. Agents choose their strategies according to their own situation and the expected 

situation of other agents. The local optimization principle, therefore, characterizes the strategic 

behaviors of agents in disaster aftermath, but not require all agents to reach a coordinated 

optimization situation simultaneously as in CGE models. The out-of-equilibrium dynamics in disaster 

aftermath are endogenously derived from the non-coordinated strategies of agents. Meanwhile, this 

modeling framework makes it easy for us to analyze the impact of information on disaster 

propagation. When agents form expectations of other agents’ situations and actions, we can very 

flexibly assume how much information it holds and check how this affects the dynamics of the 

system. 

We apply the model to study the propagation of economic impacts induced by stylized disaster 

shocks. We find that model results qualitatively reproduce the theoretically expected economic 

dynamics in a post-disaster phase. Also, it can capture the theoretically expected decision-making 

processes of economic agents in a situation of incomplete information in a rapidly changing economic 

environment. 

This report contributes to the research on disaster impact assessment tools. It goes beyond the 

current state of the literature by developing a model that is better able to represent the mechanism 

of the propagation of disaster shocks in supply-chain networks, by taking a closer look at the 

decision-making process of economic agents in disaster aftermath. Agents’ behavior is modeled 

according to one general assumption—namely, the local optimization principle—instead of multiple 

reasonable ad-hoc rules from experience. This approach avoids arbitrary rule-setting and thus 

provides a broader range of application. More importantly, we introduce the assumption of 

incomplete information, which is more realistic for economic agents in disaster aftermath than 

assuming perfect information. This extension not only allows us to capture the theoretically expected 

decision-making process of economic agents in settings of incomplete information, but also opens up 

the possibility to analyze the relation between information and disaster propagation. 

The report proceeds as follows. Section 2 reviews the relevant literature and discuss in how far our 

model differs from existing approaches. Section 3 describes the new proposed recursive dynamic 

model for assessing short-term indirect effects of natural disasters. Section 4 illustrates the model by 

assessing a hypothetical example of stylized disaster shocks. Finally, Section 5 summarizes our 

findings, highlights the pros and cons of the proposed modeling approach, and proposes insights for 

further research. 

 

2. Literature review 
Input-Output (IO) models and computable general equilibrium (CGE) models are the most popular 

approaches in disaster-induced economic risk analysis. IO is an effective tool to capture inter-linkages 

of sectors/industries within an economic system, and to represent economic relationships between 

providers and consumers. With consideration of bottlenecks on the of supply-side, IO is able to 

measure the impact of input scarcity on the final outputs through economic supply chains 
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(Oosterhaven, 1988)20. Many scholars have contributed to the measurement of disaster impacts 

through using IO model. Cochrane (1974)21 is one of the earliest studies to assess the influence of 

natural disasters by constructing an inter-industry model based on IO theory. Then, the Inoperability 

Input-Output Model (IIM) was constructed to measure the ripple economic losses caused by 

immediate shocks to the particular sectors22-24. Although IIM considers the inoperability of 

interconnected sectors within an economy, it neglects the influences like demand perturbations and 

labor constraints. Later, Post-disaster Imbalances Model was developed by Steenge and Bočkarjova 

(2007)25, in which a closed form IO model was introduced to consider the linkage between household 

demand and labor power in a disaster aftermath.  

Among IO models, the regional adaptive IO model (ARIO) built by Hallegatte (2008)1 made 

significant contributions to the development of IO analysis and natural disaster impact assessment. 

ARIO is a hybrid modelling method based on Brookshire et al. (1997)26. By incorporating the 

‘production capacity’ factor and adaptive behavior after the disaster, ARIO is able to analyze over-

production possibilities and import substitutions, as well as assess production bottlenecks and various 

substitution scenarios27. On this basis, Li et al. (2013)13 constructed a Basic Dynamic Inequalities 

Model (BDI) to assess an imbalanced economic recovery in a post-disaster period by integrating both 

capital and labor constraints. Koks et al. (2015)28 employed both the imbalanced BDI and ARIO model 

to simulate production loss and economic recovery after a disaster affecting the harbor area of 

Rotterdam (the Netherlands). A functional relationship between industrial value-added and total 

output of each sector was introduced in this study. More recently, Mendoza-Tinoco et al. (2017)11, 

Zeng et al., (2019)19 and Mendoza-Tinoco et al. (2020)29 developed a Flood Footprint Model based on 

the ARIO model to quantify the economic impact of floods within and across regions by considering 

factors like labor and capital constraints, supply bottlenecks, adaption of consumer behavior, recovery 

of economic imbalances, and rationing scheme of available resources. These model aspects were 

parameterized according to real events, in contrast to previous studies.  

Regarding CGE models, Shoven and Whalley (1992)30 explained this modeling class as a “multi-

market simulation model based on the simultaneous optimizing behavior of individual consumers and 

firms, subject to economic account balance and resource constraints”. A CGE model is able to analyze 

altering market conditions and behavioral response caused by input constraints by incorporating 

several policy factors and relative price influence31-33. In the literature of disaster risk assessments, 

Rose and Liao (2005)33 advanced CGE models by improving the behavioral parameters that link 

production functions and producer adaptations. More recently, Carreral et al. (2015)34 built an 

integrated approach by combining a CGE model with high resolution spatial damage data to track the 

economic consequences of the 2000 Po river flood in Italy. Meanwhile, Haddad and Teixeira (2015)35 

proposed a spatial CGE model to quantify the economic damage of flood in the São Paulo 

Metropolitan Region in Brazil. 

However, both IO (including ARIO) and CGE have certain disadvantages. The main challenge of IO is 

that the technological ties are rigid, resulting in a lack of responses to price and of substitutions in 

markets25. Alternative suppliers or inputs from external sources leads the IO model to overestimate 

economic losses. Although ARIO made improvement on the rigid ties of IO, it is still not able to 

consider factors like relative price changes and industrial production behavior. On the contrary, 

instantaneous adjustments of relative prices are allowed in CGE models, such that price effects can 

be reflected. Since flexible substitution possibilities are the basic assumption of CGE, market flexibility 

is overly optimistic in CGE compared with the adaptive capabilities of the real economy34,36. In 

addition, fewer sectors are generally represented in CGE models than in IO models because CGE 

models require more extensive data on cross-sectoral interactions, such as elasticities 1,3,9,31,33. Hence, 

due to its rigidity and simplicity in terms of parameterization, IO models are more widely used for 

short-term economic damage estimation of sudden-onset events 11,13,28; while CGE models are more 

suitable for assessing long-term processes, as both price and policy influence are taken into account. 
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As stated in the introduction, a common limitation of both approaches is the assumption of ubiquitous 

information, which is often implicit. However, post-disaster decision-making is often done with limited 

information37,38. Especially in complex supply chain networks, economic agents often do not have 

complete access to all the information of other players. The decision-making process under 

incomplete information is very different from the decision-making process under complete 

information37,39,40. The impact of information on the propagation of economic impact of disasters is 

worth investigating. 

In this study, we focus on this gap in the existing modeling literature and set out to model the 

decision-making process of economic agents in disaster aftermath. We develop a new dynamic 

recursive model that goes beyond the current state of literature in the following way: 1) all relevant 

decisions are governed by local optimization principles, e.g., firms decide on their production level by 

profit optimization and households distribute their income to commodity consumption and saving 

based on utility maximization; 2) incomplete information assumptions are made, i.e., economic 

agents may not know all the current information when they make decisions and they need to form 

expectations for others’ actions in that case. 

 

3. Model description 
This section presents the newly developed recursive dynamic model. In section 3.1, we introduce the 

general structure of the model, including the economic agents, their basic behaviors, and the 

interaction between them. Then, the dynamics of the model are presented in section 3.2. 

3.1 Base settings 

We consider an economy consisting of sub-economies distributed in different regions (see Figure 1). 

Each sub-economy consists of two types of agents, i.e., a set of representative firms producing 

different commodities and a representative household. We assume that time is discrete and indexed 

by 𝑡. 

We assume that each firm produces a unique commodity. To carry out its production process, firms 

needs intermediates inputs (i.e., commodities) supplied by other firms and primary inputs (e.g., labor 

and capital) supplied by households. As in Hallegatte (2014)3, we use an inventory system to model 

the dynamics of the intermediates hold by firms. Figure 1 gives out a schematic diagram of the 

production process of a firm. The firm distributes its products to its clients (i.e., other firms and 

households) according to the orders it received in the previous period, i.e., 𝑡 − 1. Meanwhile, the firm 

orders intermediate inputs from its suppliers.  

 
Figure 1 | A schematic diagram of the production process of a firm. Products flow from left 

to right (solid line), whereas orders flow in the opposite direction (dotted line). 
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We represent the production function of the firms with a sequence of nested Constant Elasticity of 

Substitution (CES) functions (in the form in Equation 141; please reach to Equation 9-12 for more 

detail of the nested structure) that aims to re-produce the substitution possibilities across the full set 

of inputs. The top-level nest is composed of two aggregate composite bundles—intermediate demand 

and value added. The second level nests decompose each of the two aggregate nests into their 

components: demand for individual intermediate goods and demand for individual factors. A final nest 

decomposes demand for the composite good into domestic and imported components41. 

1/

1

n

i i

i

y x



 
=

 
=  

 
                                           (Equation 1) 

Households obtain income, 𝑖𝑛𝑐𝑡, through collecting revenue from labor, 𝑤𝑙𝑡, and capital, 𝑤𝑘𝑡, and 

trade balance (net export), 𝑡𝑏𝑡, as shown in Equation 2. 

t t t tinc wl wk tb= + +                                            (Equation 2) 

Regional income is used for consumption and saving as shown in Equation 3, 

t t t tinc exp expc exps= = +                                     (Equation 3) 

where 𝑒𝑥𝑝𝑡 denotes the total expenditure in period 𝑡, 𝑒𝑥𝑝𝑐𝑡 and 𝑒𝑥𝑝𝑠𝑡 denote the money used for 

consumption and saving in period 𝑡, respectively. We assume that expenditure on consumption, 

𝑒𝑥𝑝𝑐𝑡, is non-negative, while expenditure on saving, 𝑒𝑥𝑝𝑠𝑡, can take negative values. A positive 𝑒𝑥𝑝𝑠𝑡 

means that the regional household increases its savings, while a negative 𝑒𝑥𝑝𝑠𝑡 means the regional 

household uses some of its saving to buy goods in period 𝑡. 

A top-level utility function, using a CES specification, governs the allocation of expenditure between 

consumption and savings. More specifically, households maximize utility: 

( )
1/

(1 )
u

u u

t u u t u tu uc us
   =  + −                            (Equation 4) 

where 𝑢𝑡 denotes the overall utility of the household, 𝑢𝑐𝑡 and 𝑢𝑠𝑡 denote the utility come from the 

commodity consumption and the saving (consumption in the future), respectively. Parameter 𝛼𝑢 and 

𝜌𝑢 denotes the share coefficient and substitution parameter of the utility function. Saving is a unitary 

good and we have the following relationship between 𝑢𝑠𝑡 and the saving in period 𝑡, 𝑠𝑎𝑣𝑡: 

t tus sav=                                                  (Equation 5) 

1t t tsav sav exps−= +                                          (Equation 6) 

For consumption, we also use nested CES form functions to relate overall sub-utility, 𝑢𝑐𝑡, to 

consumption of individual commodities. Final goods produced by different producers are treated as 

differentiated goods, and this model assumes that there is limited substitution instead of perfect 

substitution among different final goods. Hence, a two-level nested structure is used: the first level 

aggregates the different types of goods, and the second level aggregates each type of goods from 

different regions. 

The setting of such a utility system can reflect the three practically expected characteristics of 

consumer behavior in disaster aftermath: (i) When commodity prices increase significantly due to the 

disaster, consumers temporarily reduce consumption and increase savings; (ii) When income is 

reduced by the disaster, e.g., decrease in 𝑤𝑙𝑡 or 𝑤𝑘𝑡, consumers use part of their savings to 

consume; (iii) When product supply gradually recovers (commodity prices decrease), consumers that 

have made savings during the disaster (see behavior (i)) use such additional savings to purchase 

goods. The results will show a characteristic of "retaliatory consumption" in the recovery process. 
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3.2 Dynamics 

During each period 𝑡, the following sequence of events unfolds (Figure 2): 

⚫ Firms choose the production level that maximizes profits based on their own situation (the amount 
of inventory, labor, and capital available; and the corresponding cost) and the orders they received 
in previous period, i.e., 𝑡 − 1. 

⚫ Firms distribute products to their clients (other firms or households) pay wages and capital rent. 
Firms update their inventory, while households update their income and saving. 

⚫ Firms issue orders to their suppliers of intermediates on the basis of (1) the orders they expect to 
receive in the next period; (2) the expected supply-curve of other firms in the next period; and (3) 
inventories. Firms allocate orders to minimize costs. 

⚫ Households issue orders to their suppliers of final products. This process is governed by the utility-
maximizing problem. 

These steps are iterated, which constitutes the dynamics of the model. We descript each event in 

details in sections 3.2.1 to 3.2.3. 

 

Figure 2 | Sequence of events in one period for a firm. The orange line represents the flow of 

orders, while the blue line represents the flow of products. The red line represents the shocks. The 

grey line represents the flow of the information. The dashed arrows indicate the update of self-

account (not flow from one to another). The upstream represents the suppliers of the firm, while the 

downstream represents the clients of the firm. 

3.2.1 Commodity supply 

Commodity supply in each period is governed by the profit maximization problem of each firm. Before 

making its production decision, the information hold by firm 𝑖 includes: (1) the quantity of 

inventories; (2) the average cost of inventories; (3) the relationship between the amount of labor and 

the cost of labor (i.e. the wage rate); (4) the relationship between the amount of capital and the cost 

of capital; (5) the orders it received in previous period, defined by a tuple of the quantity demanded 

and its reservation price. 

Because we focus on the short-term dynamics after the disaster, we assume that labor and capital 

cannot flow freely between sectors. After a disaster, if a firm wants its workers and capital to work 

more hours, it needs to pay higher costs. Under these conditions, the commodity supply of the firm is 
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obtained at the intersection of the cost curve and the demand curve. An illustration can be found in 

Figure 3. The blue curve in Figure 3 represents the demand curve of a firm. In a general case (Figure 

3A), the orders received by the firm, form a stepped demand curve, while in the equilibrium case 

(Figure 3B), all reservation prices of the orders are equal to 1 and the demand curve is a horizontal 

line. The orange curve is the cost curve of the firm in the short term, which represents how variable 

costs increase with an increase in outputs. The intersect of the demand curve and the cost curve 

determines the profit-maximizing production level Q*. When a severe shortage of input occur, it may 

be impossible for firm to meet the demand (i.e., when the two curves no longer intersect). In this 

special case, the firm’s profit-maximizing commodity supply is the maximum quantity that it can 

produce (Fig.3C).  

  

 

Figure 3 | Illustration of how a firm determines its profit-maximizing production level (Q*) in 

disequilibrium situations arising in the disaster aftermath (A), in the equilibrium situation (B), and in 

the situation that the firm reaches the upper limit of overproduction capacity (C). The x-axis 

represents the quantity, the y-axis represents the price. The orange curve represents the cost curve 

of the firm and the blue curve represents the demand curve of the firm (all the orders received by the 

firm form a stepped demand curve in a disequilibrium situation and a horizontal line in an equilibrium 

situation).  

 

Technically, the complete optimization problem of a firm is as follows. The objective function 

maximizes the production level, 𝑄𝑡: 

max  tQ                                                      (Equation 7) 

The constraints can be categorized into four categories. The first category is the profitability 

constraint. It requires that the corresponding cost, 𝑃𝑡, to the supply level 𝑄𝑡 should not be greater 

than the corresponding demand price, 𝑃𝑑(𝑄𝑡)—the demand curve, under that supply level. 

( )d t tP Q P                                                     (Equation 8) 

The second category comprises the nested CES production functions (Equation 9-12) and the 

corresponding cost relationships (Equation 13-16). 

( )
1/

(1 )t t tQ b a QV a QM
 =  + −                                   (Equation 9) 

( )
1/

fac fac,fac

v
v

t tQV bv av QFE


=                                  (Equation 10) 

( )
1/

com com,com

m
m

t tQM bm am QFA


=                                (Equation 11) 

( )
com

com

1/

com, com com,reg com,reg,reg

s
s

t tQFA bs as QFAS



=                        (Equation 12) 
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t t t t t tP Q PV QV PM QM =  +                                       (Equation 13) 

fac, fac,fact t t tPV QV PFE QFE =                                   (Equation 14) 

com, com,comt t t tPM QM PFA QFA =                                (Equation 15) 

com, com, com,reg, com,reg,regt t t tPFA QFA PFAS QFAS =                     (Equation 16) 

Where 𝑓𝑎𝑐, 𝑐𝑜𝑚, 𝑟𝑒𝑔 denotes the production factor index (L and K), commodity index, and region 

index, respectively;  𝑄𝑡, 𝑄𝑉𝑡, 𝑄𝑀𝑡, 𝑄𝐹𝐸𝑓𝑎𝑐,𝑡, 𝑄𝐹𝐴𝑐𝑜𝑚,𝑡, 𝑄𝐹𝐴𝑆𝑐𝑜𝑚,𝑟𝑒𝑔,𝑡 denotes the total output of a 

firm, the value-added bundle, the intermediate demand bundle, the factor demand, the intermediate 

demand for composite commodity 𝑐𝑜𝑚 (sums of one commodities come from different regions), and 

the intermediate demand for commodity 𝑐𝑜𝑚 from region 𝑟𝑒𝑔, respectively; 𝑃𝑡, 𝑃𝑉𝑡, 𝑃𝑀𝑡, 𝑃𝐹𝐸𝑓𝑎𝑐,𝑡, 

𝑃𝐹𝐴𝑐𝑜𝑚,𝑡, 𝑃𝐹𝐴𝑆𝑐𝑜𝑚,𝑟𝑒𝑔,𝑡 denotes the price of the total output of a firm, the value-added bundle, the 

intermediate demand bundle, the factor demand, the intermediate demand for composite commodity 

𝑐𝑜𝑚, and the intermediate demand for commodity 𝑐𝑜𝑚 from region 𝑟𝑒𝑔, respectively. The other 

arguments in the above equations represent parameters for the various CES functions. 

The third category of constraints to the optimization problem of the firm comprises the relationships 

between factor demand and factor prices (Equation 17 and 18). 

, , ,( ) L

L t SW t L tQFE QL PFE =                              (Equation 17) 

, , ,( ) K

K t SW t K tQFE QK PFE =                            (Equation 18) 

where 𝑄𝐿𝑆𝑊,𝑡 and 𝑄𝐾𝑆𝑊,𝑡 denotes the amount of labor and productive capital hold by undamaged 

firms (denoted by subscript SW, which stands for “still working”) in period 𝑡, respectively.  

The fourth category of constraints to the optimization problem of the firm comprises constraints from 

inventories and factor input (Equation 19-21). 

com,reg, com,reg,t tQFAS QINV                            (Equation 19) 

, ,L t L SW tQFE QL                                   (Equation 20) 

, ,K t K SW tQFE QK                                  (Equation 21) 

where 
com,reg,tQINV  represents the amount of inventories the firm holds in period 𝑡. Parameters L  

and K  represent the upper limits of idle productivity, also called overproduction capacities1, that 

can be enabled of labor and capital, respectively. 

By solving the above problem, the firm obtains the optimal production level in period 𝑡. These 

products will be distributed to its clients (i.e., firms and households) according to their orders. Only 

orders with a reservation price higher than the current production cost of the firm will be filled (Fig.3) 

and the firm will charge the reservation price. Downstream firms will put the received goods into 

inventories for use as intermediates in subsequent production periods. Followed by this, the quantity 

of inventories held by firms and the corresponding average cost will be updated in the following way. 

com,reg, com,reg, 1 com,reg, com,reg,t t t tQINV QINV QFAS QODF−= − +  

com,reg, com,reg, 1 com,reg, 1 com,reg, com,reg, com,reg, com,reg,( ( ) ) /t t t t t t tPINV PINV QINV QFAS PODF QODF QINV− −= − +  
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where 𝑄𝑂𝐷𝐹𝑐𝑜𝑚,𝑟𝑒𝑔,𝑡 denotes the quantity of the received goods, while 𝑃𝑂𝐷𝐹𝑐𝑜𝑚,𝑟𝑒𝑔,𝑡 denotes the 

price of the received goods. 

3.2.2 Demand requests from firms 

Firms allocates orders in two steps. The first step is to estimate the output of the next period and the 

corresponding inputs required, based on (1) its current situation and (2) the order it expects to 

receive in the next period. The second step is to determine the price at which it will place the 

orders—i.e., , the reservation price—based on its predictions of the amount of intermediate products 

it needs in the next period, calculated in step (1), and its estimates of the supply curve of other firms. 

In the first step, firms solve the profit maximization problem again. The differences from optimization 

problem used to determine the production level, described in Section 3.2.1, are twofold.  

(1) The firm’s inventory, including quantity and price (average cost), has been updated. Such 

information conveys the supply and demand relationship of commodities in the market to the firm, 

enabling it to make corresponding adjustment; 

(2) The firm does not know how many orders it will receive and how much capital and labor will be 

available in the next period. The lack of these two information constraints the firm's optimization 

behavior.  

How much each firm knows about the situation of the other agents determines the accuracy of its 

estimates. By status, we mean: the quantity and price of their inventories, the availability of capital 

and labor, and the orders that they will receive in the next period. In the model, we can assume 

different levels of information sharing and analyze the respective impact on the post-disaster 

dynamics.  

Technically, the optimization problem only differs from the one described in Section 3.2.1, by four 

equations. We replace Equation 8 with Equation 22: 

1 1( )exp

d t tP Q P+ +                                               (Equation 22) 

and replace Equation 19, 20, and 21 with Equation 23, 24, and 25: 

com,reg, 1 com,reg, 1t tQFAS QINV+ +                                      (Equation 23) 

, 1 , 1

exp

L t L SW tQFE QL+ +                                          (Equation 24) 

, 1 , 1

exp

K t K SW tQFE QK+ +                                          (Equation 25) 

where the superscript 𝑒𝑥𝑝 denotes expected values. By solving this optimization problem, we get the 

quantity of intermediate products that the firm expects to use in the next period, i.e., 
com,reg, 1

exp

tQFAS +
.  

After determining the quantities of intermediate product the firm intends to order, the next step is to 

determine the reservation prices. To that end, the firm estimates the status of the other firms from 

which it wants to order intermediate products. We assume that, based on this information, the firm 

chooses a reservation price. The reservation price is the lowest price at which its supplier, according 

the firm’s estimates, will accept to fulfill the order.  

Technically, a firm calculates the supply of other firms at various reservation prices based on its 

estimates about their information about other firms and households. We can call this relationship a 

"supply-to-me" curve. The firm chooses the appropriate reservation price according to this curve. 

3.2.3 Demand requests from households 

In each period, the regions’ representative households determine how much goods they consume by 

maximizing their utility. Households obtain utility by allocating income to consumption and savings (to 
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some extent, saving means future consumption of goods). The two are substitutes for each other and 

are summed up by the CES utility function.  

We assume that one unit of saving brings one unit of utility (unitary goods). Note that, we do not 

consider the time preference of consumption here, as the model focuses on the short-term 

assessment. Modeling savings helps characterize changes in consumer spending dynamics after a 

disaster (such as retaliatory consumption), which is often not captured in the traditional dynamic IO 

model.  

4. An illustrative example 
We analyze the response of the model to production interruptions triggered by a stylized unexpected 

adverse event. We use this example to illustrate the mechanisms of the model with a simple setting 

and focus on the qualitative behavior of the simulated post-disaster dynamics.  

The hypothetical economic network used for pre-disaster equilibrium is shown in Table 1. It includes 

the supply-consumer links between 4 firms in two sectors and 2 households, abbreviated hhlds. 

Households provides labor and capital to firms in their region, and purchases goods from all regions. 

Firm 1 and 2 and hhld 1 are in one region, and firm 3 and 4 and hhld 2 are in another. Each value in 

Table 1 represents the goods or services provided by the agent corresponding to the row to the 

agent corresponding to the column in each day. Household 1 provide capital and labor for firm 1 and 

2, while household 2 for firm 3 and 4. We suppose that labor and capital cannot flow freely between 

firms in the short term.  

Table 1 A hypothetical economic network 

  Consumers 
  firm 1 firm 2 firm 3 firm 4 hhld 1 hhld 2 

S
u

p
p

li
e
rs

 

firm 1 700 600 500 50 750 400 

firm 2 500 300 400 50 500 250 

firm 3 200 50 900 200 1000 1650 

firm 4 100 50 200 200 250 200 

labor 650 400 1100 350   

capital 850 600 900 150   

 

We first run the model without any external shocks. We find that the model can reproduce the pre-

disaster equilibrium as presented in Table 1. In the following counterfactual, we assume that firm 1 

experiences, due to a disaster event, a labor supply shock for one week, in which 5% of its workforce 

are no longer available.  

4.1 Decision-making processes under incomplete information 

In this study, one of the most important characteristics of economic agents is that they need to make 

decisions with incomplete information. Here, we take a closer look at the results from the decision-

making processes of in the periods just after the disaster.  

In each time step, i.e. one day in the case of our modeling exercise, firms need to anticipate their 

production levels for the next time step to determine how much inputs they need to order from their 

suppliers. To do this, firms need to form expectations about the orders they will receive in the next 

period.  
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First, we assume that there is no transmission of information between firms. Each firm only makes 

decisions based on historical information1. In this case, the affected firm assumes that the orders it 

receives in the next period will be the same as the those of the current period2, which is one type of 

the commonly called “adaptive expectations”42. Therefore, in period 3 (the first period in which the 

labor supply shock affects firm 1), the total orders that firms expect to receive in period 4 are shown 

in Table 2. 

Table 2 Period-4 orders estimated in period 3 based on historical information  

 Expected orders from Total 

expected 

orders 

 

 firm 1 firm 2 firm 3 firm 4 hhld 1 hhld 2 

 

firm 1 700 600 500 50 750 400 3000 

Quantity 
firm 2 500 300 400 50 500 250 4000 

firm 3 200 50 900 200 1000 1650 2000 

firm 4 100 50 200 200 250 200 1000 

         

firm 1 1 1 1 1 1 1  

Price 
firm 2 1 1 1 1 1 1  

firm 3 1 1 1 1 1 1  

firm 4 1 1 1 1 1 1  

 

According to the expected orders and the firm's own situation, firms will form an expectation on their 

production level in for the next period, which is the level of output that maximizes profit under 

current expectations. The result, in terms of quantities, is 2933.4 for firm 1, 4000 for firm 2, 2000 for 

firm 3, and 1000 for firm 4. Although the total expected orders for firm 1 is 3000, its production level 

is 2933.4. It is because it cannot immediately compensate for the 5% drop of workforce (it cannot 

hire more labor nor capital).  

Based on this result, firms issue orders to their suppliers, shown in Table 3. By comparing Table 3 

with the pre-disasters orders, shown on Table 1, we see that the orders issued by firm 1 have 

decreased significantly due to the labor supply shock, while the order of other firms remains 

unchanged. This result reflects the difference between decision-making results under incomplete 

information and under complete information. With complete information, that is, firms 2, 3, and 4 

know that firm 1’s demand for them will decline, they would choose a lower production level to 

reduce the cost of intermediate products. 

Table 3 Orders issued in period 3 based on historical information  

 Orders issued to Total 

expected 

orders 

 

 firm 1 firm 2 firm 3 firm 4 

 

firm 1 684.5 488.9 195.6 97.8 2933.4 

Quantity firm 2 600.0 300.0 50.0 50.0 4000 

firm 3 500.0 400.0 900.0 200.0 2000 

 

 
1 It may be an exaggeration to make this assumption in a game with only 6 participants. But it may be true in a complex real-

world economic network. 

2 We did not assume that the firm itself can obtain its own information. Mainly because in real applications, each firm more 

likely represents an economic sector, which is a combination of many firms. 
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firm 4 50.0 50.0 200.0 200.0 1000 

       

firm 1 1.155 0.997 0.999 0.999  

Price 
firm 2 1.155 1.000 1.000 1.000  

firm 3 1.155 1.000 1.000 1.000  

firm 4 1.155 1.000 1.000 1.000  

 

Last, we turn to the production decisions of firms in period 4. Again, according to the received orders 

and their own conditions, the firms produce 𝑖𝑟 to maximize profits. The result is 2981.9 for firm 1, 

3979.8 for firm 2, 1980.1 for firm 3 and 993.7 for firm 4. The usage of the intermediates is shown in 

Table 4. 

Table 4 Intermediates usage in period 4 

 Intermediates usage from 

 firm 1 firm 2 firm 3 firm 4 

firm 1 695.8 497.0 198.8 99.4 

firm 2 594.0 297.0 49.5 49.5 

firm 3 497.5 398.0 895.4 199.0 

firm 4 49.7 49.7 198.7 198.7 

 

By comparing Table 2 with Table 4, we can derive two key messages. (1) Out of equilibrium, firms 

form erroneous expectations due to a lack of information on other firms’ situation. For example, firm 

1’s demand for intermediate products to other firms will decline due to its own production capacity 

decline (Table 2 and 3). However, because firms 2, 3, and 4 are not aware of it, they expect that 

their output in period 4 would be greater than their actual output in period 4. These erroneous 

expectations further affected intermediate goods orders. Firms 2, 3, and 4 issued more orders than 

they actually needed (Table 3 and 4). 

(2) Prices will be affected by erroneous expectations. As can be seen from Table 3, the price of firm 

1’s products suddenly increased by about 15.5%. If firms 2-4 would have known this, their demands 

would have declined when making decisions, and they would decrease their orders to other firms, 

which would reduce the cost of intermediate products.  

Such erroneous expectations caused by incomplete information will be further transmitted to the next 

periods. We will show this in section 4.2. 

4.2 Dynamics of production and prices 

In Section 4.1, we investigated the dynamics of the period just after the disaster. Figures 4 and 5 

give out the dynamics of production and prices over a longer time period. Prices shown in Fig. 5 is 

the average supply price of the firms (firm provides products to its clients at different prices based on 

their reservation prices). 

Two featured periods can be seen from the out-of-equilibrium dynamics shown in Fig. 4 and 5. The 

first one is a period of fluctuations until day 35. In this stage, the sudden shock caused a drop in the 

production level of firm 1 which started the fluctuation of the whole system. Along with fluctuations in 

production levels, prices have also experienced huge fluctuations (Fig. 5). The reason for these 

fluctuations is that firms cannot form accurate expectations for other agents' decisions in the rapidly 

changing economic environment, as shown in section 4.1. In this stage, the production of firm 1, the 

affected firm, suffered a drop of about 3% in the first ten days. The production level gradually 
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increased after the labor restrictions were lifted, exceeding the level in pre-disaster, which caused by 

the demand to restore the inventories of the other firms. 

 

Figure 4 | Dynamics of production. 

Following the fluctuating period, there is a smooth relaxation period until the system reaches the pre-

disaster equilibrium. In this stage, the economic environment is no longer rapidly fluctuating, such 

that the expectations are accurate enough to lead the system back to equilibrium in a smooth way. 

 

Figure 5 | Dynamics of prices. 

4.3 Dynamics of household savings  

In addition to the strategic behavior of the firms, another factor that has an important impact on 

disaster propagation and post-disaster economic dynamics is the strategic behavior of households 

through savings, which is often ignored in IO-based models. In our model, households will allocate 

income to consumption and savings based on the price of commodities. Figure 6 shows the saving 

dynamics. The two top panels show the changes in prices paid by households to the products of the 

shocked firm, i.e., firm 1. The two bottom panels show the changes in savings (the money they have 

in their savings bank account) of households.  
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In the dynamics of savings of hhld 1, we see three stages. From Figure 6, we can see that the 

savings of hhld 1 dropped by about 1% in the initial shock stage. We call this “savings as 

supplement”. After firm 1 experience the shock, its commodity prices rise (Fig. 6), and the labor 

compensation collected by hhld 1 from the company decreases. Under these two changes, the utility 

of hhld 1 dropped significantly due to the decline in commodity consumption. For example, the 

decline of daily necessities such as food will seriously affect utility. At this stage, hhld 1 will use part 

of its savings (we assume each household have $500 in their account in the equilibrium) to 

compensate for the decline in income and the rise in commodity prices.  

 

 

Figure 6 | Dynamics of savings of households. 

The second stage is “strategic savings”. During this period, hhld 1’s savings increase by about 2% 

(Fig. 6c). After the initial shock, the decline in income and the increase in prices gradually ease (Fig. 

6a). At this stage, hhld 1 no longer has a significant lower consumption level like in the first stage. 

Here, higher commodity prices make it prefer to save the money for the future.  

The third stage is what we call in this report “retaliatory consumption”. At this stage, hhld 1 uses the 

previously increased savings for consumption, and the savings level returned to the pre-disaster level 

(Fig. 6c). In this stage, the economy is less volatile, which helps expectations of firms better match 

reality, and thus commodity prices have gradually fallen back to pre-disaster levels. During these 

periods, hhld 1 use the excess savings accumulated in the previous stage for commodity 

consumption.  

We have seen similar stages in dynamics of savings of hhld 2, with two differences (Fig. 6c and 6d). 

The first point is that hhld 2 does not experience a “savings as supplement” stage. This is because its 

income did not suffer any direct impact from the disaster. In addition, the increase in its savings is 

smaller than that of hhld 1 during the entire fluctuation process, although they have experienced 

similar commodity price changes. This is because hhld 2 is relatively more dependent on the products 

of firm 3 and 4, while hhld 1 is more dependent on the products of firm 1 and 2. 
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5. Concluding remarks 
This report proposes a new approach for analyzing the propagation of disaster shocks in supply-chain 

networks. In the proposed model, the behaviors of economic agents (firms and households) are 

governed by local optimization principles, which avoid the need for multiple ad-hoc behavior rules, 

and enable the modeling of incomplete information. We argue that such an approach represents a 

more realistic situation of economic agents in the modern complex supply-chain networks, especially 

in the disaster aftermath. Since the amount of information each agent holds when making decisions 

can be set flexibly, the proposed model opens up the possibility to analyze the impacts of information 

on disaster propagation and assess the value of information in reducing indirect losses from disasters. 

For example, if we assume that all firms and households know all the conditions of other firms, we 

can expect shorter fluctuations after the disaster. However, if we assume that firms only estimate the 

future situation of the other firms based on the past information and not based on the present 

situation, then we will expect a longer fluctuation duration after the disaster. Through counterfactual 

settings, we can evaluate the effect of information on reducing disaster losses. 

We tested this model by applying it to a hypothetical input-output table. It qualitatively reproduces 

the expected economic dynamics in a post-disaster phase. The inaccurate expectations due to 

incomplete information in a rapidly changing economic environment is captured by the model. This 

mechanism is the source of the large fluctuations in output and prices after the disaster. Some typical 

post-disaster economic dynamics are also reflected in the results of the model. For example, the 

dynamics of household savings. The intensity and speed of the dynamics reflected in the results may 

be different from actual intuition because the data and behavioral parameters are hypothetical. The 

performance of the model in a complex real-world network will be further tested in subsequent 

articles. 

Compared with the exogenous setting based on historical experience, ad-hoc rules, whether a certain 

stage appears in the new model is determined by the characteristics of specific shock and the 

behavioral parameters of agents. We believe that this comprises several advantages. The first and 

most important one is it allows us to avoid the risk of subjective misspecification in the assessment 

model. For example, although a process of “retaliatory consumption” can generally be seen in the 

recovery stage of a disaster, many researchers believe that retaliatory consumption may not happen 

after a large-scale disaster shock43. If we exogenously set a consumption path that contains 

retaliatory consumption during an assessment, its accuracy will be difficult to guarantee. The second 

point is that we no longer need to set the range of changes in savings exogenously based on 

historical experience. 

The proposed model can be easily extended to other information dissemination assumptions. Even 

each agent holds different information. In this way, in real applications, the loss under different 

information levels can be evaluated to investigate the role of information in mitigating losses. 

As a result of the endogenization of most behaviors of economic agents, one major limit of this model 

is the need for a large number of behavioral parameters and data of the pre-disaster equilibrium. The 

Global Trade Analysis Project (GTAP) Database can be a relatively complete source of these data at a 

national level, but it is hard to collect for a sub-national level. Ideally, a set of parameter estimation 

procedures, e.g., econometric tools, based on raw data should be prepared. Also, the model currently 

does not include an investment module, and thus cannot analyze the investment dynamics in the 

post-disaster period. 

Finally, this report mainly focused on developing and presenting the model. Two types of follow-up 

studies are proposed. The first type is comparisons with IO, CGE, and other widely used models for 

disaster impact analysis, both theoretical and empirical. Such a comparison will better highlight the 

distinctive features of the proposed model and is valuable from both a scientific and policy 
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perspective, as the propagation of disaster shocks in supply-chain networks not yet fully be 

understood and disaster impact loss estimates resulting from a range of model outcomes facilitate 

better decisions and policy making. The second type is validation and verification of the model in its 

application in the context of real cases. 
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