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FOREWORD

The mathematical models of multiregional demography, adopted
by the former Migration and Settlement Task, have been found to
be applicable to a wide range of demographic topics. In this
paper, the authors illustrate the application of these multidi-
mensional models to multiple contingency calculations used in
actuarial practice.

Andrei Rogers
Chairman

Human Settlements
and Services Area

-iii-



ACKNOWLEDGMENTS

We are more than grateful to Peer Just for numerous calcu-
lations, only a very few of which we have included, and for his
lively comments on our text and formulas. Jan Hoem read our text
and made valuable suggestions.

—v—



ABSTRACT

This paper expresses a number of standard life contingency
formulas in matrix form, thereby generalizing them to include
multiple contingency situations such as moves in and out of em-
ployment, insurance, marriage, sickness, and retirement.
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SIMPLIFIED MULTIPLE CONTINGENCY CALCULATIONS

INTRODUCTION

To proceed from life contingencies involving a single decre-
ment of death to the many applications with more than one decre-
ment has customarily involved special treatment for each case.
Disability insurance, withdrawals from a life insurance plan,
pensions, multiple lives, each have their own section in Jordan (1975)
and other actuarial texts, with distinct notations and formulas.
Special approximations are introduced for each, some of them awk-
ward. The purpose of this paper is to show how all such multiple
contingencies, along with marriage, labor force, and other tables
treated by demographers, may be handled as special cases of a
theorem due to Kolmogorov, with simple matrix formulae, uniform

calculations, and consistent approximations.

The simplification begins by expressing all instances as in-
dividuals moving from one state to another with specified proba-
bility. Thus a person moves in and out of employment, in and out
of insurance, of marriage, of sickness, of retirement. As long
as the probability of moving is known and depends only on the
state in which one is at the time, we can ask and answer questions
on the annual premium for disability insurance (the premium to be
paid only while the person is working); the premium for a pension
to a widow if her husband predeceases her (that premium to be paid
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while the husband is working). These and many other premiums are
readily calculable, along with the reserve at each duration of

the policy. We are by no means restricted to moves in one di-
rection only; a person can be employed this year, retired next
year, and come back into the labor force again the following year.
Thus we handle not only decrement tables, but also the more gen-

eral increment-decrement tables (Schoen and Land 1978).

The formulas that turn up will be simple matrix analogues
of those familiar in ordinary life contingencies. As such they
not only are easily remembered, in contrast to much of the usual
theory of multiple decrement, but also are readily computed. Ap-
proximations to handle data given in cne-year or five-year inter-
vals are straightforward. To make all these advantages accessible,
we need the matrix differential equation due to Kolmogorov that

generalizes the familiar

—ddzx(x) = - plx) L(x) (1
whose solution is
z
1(x) = exp| - j u(a) da (2)
0

where u(z) is the force of mortality and 7 (x) the probability

of surviving to age x.

To generalize we deal not only with the movement from life
to death represented by the scalar rate p(xz) but with the matrix
B(x), standing for the instantaneous rates of movement between
any pair of states that are to be included in the model—between
life and death, between two regions of a country, between work
and unemployment, between being married and being divorced, be-
tween work and disability. Once the basic rates (strictly forces
or intensities) of movement for the E(x) matrix are known, all
else can be found: the chance that a man of 30 who is married
will be alive 10 years later and divorced or the chance that a
blue-collar person of 25 will be alive and doing white-collar

work 30 yéars later.
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The E(x) matrix is to be constructed from actual data to a
suitable approximation. The off-diagonal elements of u(x) are
each the corresponding observed rate of movement in a small time
interval with sign reversed. Thus - uij(x)dx is minus the chance
that a person in state g transfers to state 7 during the short
period of time and age dx. Each diagonal element of E(x) con-~
tains the rate Hss of dying, with positive sign, along with the
total of the off-diagonal elements of the column, Zi#juij' also
with positive sign. The reason for this is that the column total
has to be conservative—that is, to add to zero with respect to
movements among units. In short, quantities from the jth state
added into the Zth state must be subtracted from the jth, so any
increment to Uij’ 7 # J, has to be subtracted from ujj' The net
total of each column is the death rate.

The notation is indicated in Table 1, giving the matrix u(x)
in some detail. The right-hand subscript is state of origin, the
left-hand subscript state of destination. Thus u23(x) is the
movement from state 3 to state 2 for persons aged x. All other
matrices of this article use the same subscripting, essentially
that of Rogers (1975). The matrix M(x) will be the observations
that correspond to E(x).

Table 1. Matrix E(x) of Moves,

'l
g () 1 g @) - @) = Hy3l2) Cot
T#1
n
= My \E) “’2(‘"’) + 7:2'2 “iz(x) - Li23(1') « e
F
uiz) =
- US-‘(:) - U32(:‘) ’USB(:.:) + 7 u.i(z) - .
iZ3 *°
o * -
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Identical with Equation (1), except that the elements are

now matrices and vectors, is the basic

d {E(w)}/dx = - p(x){l(x)} (3)

which is due originally in this application to Kolmogorov
(Krishnamoorthy, 1978; Willekens, 1978 ). Here {E(x)} is a ver-
tical vector in which the 7Zth element is the number of the popu-
lation surviving and in the Zth category at age x. 1In general,
where people are going in and out of the several categories, we
cannot say that the elements of {I(x)} represent probabilities,
yet probabilities are what we seei. Now suppose that in the small
interval of time and age dx no one will be affected by more than
one event. We would like to pass from p(z) and the vector {E(x)}

to a matrix 7(x) whose typical element 1is (x), the chance

l..
1d
that a person born in the jth state will be in the <Zth state by

age zx.

The theory for doing this is available from standard works
on linear differential equations (Coddington and Levinson, 1955;
Gantmacher, 1959, vol. 2, p. 113). If there are n states, and
so the matrix p(x) is n X n, and if the n latent roots of that
matrix are distinct, then there will be n linearly independent
vectors {E(x)} that satisfy Equation (3). When this is so, the
matrix made by setting those vectors side by side will obviously
also satisfy the equation, and it can be shown to be the complete
solution. Call E(x) the matrix made up of the several {E(x)}.
We shall see how to obtain the elements of E(x) 0 as to ensure
that the Zjth element is the probability that a person born in
the jth category finds himself in the <th category by age =zx.

THE MULTIPLICATIVE PROPERTY

One mathematical property of the E(x) will be important for
the demographic application: 1its multiplicativity. It may be
shown (though not here) that if the interval from zero to y is
broken into two subintervals at any point, say x < y, then
(Gantmacher, 1859, vol. 2, p. 127)



L(y) = L(ylo) L(x) (4)

where the 7jth element of E(ylx) will in our interpretation mean
the probability of being in the 7th state at age y, given that
the person was in the jth state at age x. When y is one or five
years more than x then within the interval (x,y) our E(x) may be
approximated by a matrix whose elements are constants independent
of age. This will be the key to the numerical solution of Equa-
tion (3).

If in the interval z, z + h, uij(x) is constant, say Mij'

for all < and g, and Mx is the array of the Mij' then from

property (4) we can write

-hM
L(x + ) =e ~F L(z) . (5)

-~

With an arbitrary radix 1(0), Equation (5) permits the construc-
tion of I (x) step by step at intervals of % all the way to the
end of life. A somewhat better approximation is obtained by

hM /2

multiplying both sides on the left by e ~%

term in hk, and multiplying by (E + hlle/Z)"1 on the left, to ob-

, expanding to the

tain

1

Lz + h) = (I+ kM /2)" (I - hM_/2) L(x) (6)

The approximation (6) is close enough for many kinds of data

with intervals of one year or even five years. It can be improved
by graduating the original data down to tenths of a year or smal-
ler, and this was essentially what Oechsli (1971, 1975) did, using

spline functions.
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PROBABILITIES OVER LONG INTERVALS

The next obvious question to ask is: what is the probability
that a person in the jth state at age x will find himself in the
ith state at age y, where the difference y - x need not be small?
Without matrix methods the problem is difficult; it has to take
account of not only movement out of the jth state but also
movement into the 7th state of persons not in the jth state at
age r. The multiplicative property tells us that if Z(y|x) is
the desired set of probabilities, we know that E(ylx)~é(x) = E(y),
so multiplying on the right by 1™ '(z) we get

-1

Liylz) = L) 1 " (x) (7)

where the probability of going from the jth state at age x to
the 7th state at age y > x is the jth element of the ith row of

Liy|x).

EXPECTED TIME IN THE SEVERAL STATES

Beyond probabilities we would like to know the expected time
lived between age x and r + % in the several states, where in the
first instance % is small. A straight-line approximation gives,
as time of residence in the Zth state for those initially in the
Jjth state, the 7jth element of the matrix

L = (h/2)(£x + 1 )

h~x ~x+h
and a cubic gives
hEx = (13h/2u)(£x M Ez+h) - (h/zu)(zx-h M 2x+2h) (8)

Adding th estimates person-years over any interval of age
large or small. Cumulating th back from the end of the table
gives the expected years in the 7<th state from age x to the end

of life measured prospectively from birth in the jth state:

w=h W
T(zx) = ) Lia) = J l(a)da
= L3 .-
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For an individual just born in the jth state, the probability
of being in the 7th state by age x is the 7jth element of E(x).
And if the ikth element of the matrix &(x) is the expected number
of years beyond age x in the Zth state~for those who survive to

the kth state by age x, we must have

T(z) = &(z) L(x) (9)
which gives for the jth state at birth the number of years for

which the #th state will be occupied after age =x.

Consider, for example, those in the second state at birth
and let us find their expectation beyond age x in the first state.
The second column of E(x) gives the chance that the person born
in the second state is in the first, the second, and so forth,
state at age x. If residing in the first state at age x, he has
an expected 311(x) in the first state; if residing in the second,
he has an expected 312(x) in the first; and so on. 1In short his
total expectation in the first state, given that he was born in

the second, is prospectively from age zero

511(x) Lyy(x) + 312(x) Lyylx) + 313(x) Lyy(x) + «--

For the whole collection of states, we have

€44 (x) 312(x) 313(x) o] Lygle) Ty, (x)  Tog(m) =--
2211 (e) = 221(x) ezz(x) e23(x) s e 121(x) Zzz(x) 123(x) vee
ST €31(2) S35 (@) e35(x) cee [ Tqq () Lgy(x)  Lag(x) oo

Note that here as in other expressions indexes are read right to
left in order to use column vectors and the conventional subscript-
ing of matrix elements.

Dividing Equation (9) by 7Z(x) on the right, we have for the
expectation in the ¢th state for a person in the jth state at
age x the Zjth element of




(z) = T(x) I (=) (10)

The recursive formulas familiar in the scalar life table are
also available in matrix terms. Thus one way of building up the
expectation of life is to start at the end of life and work back-
wards using

Blz) =L(x) 1 Nx) + &z + 1) Lz + 1) 1™ (a)

MARITAL STATUS

Schoen and Nelson (1974), Krishnamoorthy (1978), and
Willekens et al. (1980) have presented multidimensional increment-
decrement life tables for women by marital status, recognizing the
states of never married, married, widowed, and divorced. Working
with data for the U.S. in 1970, Krishnamoorthy (1979) finds, for
example, that the chance of a child just born being in the never
married status at age 50 is 0.034; of being married 0.727; of
being widowed (and not remarried) 0.067; and of being divorced
(and not remarried) 0.090. At birth, ekpected number of years in
the never married state is 22.56; married (including remarriages)
32.27; widowed 10.22; divorced 4.71.

Repeating Krishnamoorthy's calculations with data on Belgian
women in 1970-71, Willekens et al. (1980) find some differences
in the corresponding probabilities and durations. The probability
that a baby girl just born is in the never married state by age
50 is 0.034; married 0.827; widowed 0.043; and divorced 0.030.
Expected number of years, at birth, in the never married state is
23.27; married 40.83; widowed 8.81; divorced 1.36. An important
finding is that Belgian women, with a divorce rate one fourth that
of the United States, exhibit similar proportions of remarriages
among divorcees and a much lower one among widows (14 percent ver-
sus two percent). Patterns of first marriage are very similar
in the two countries, with about 94 percent of the girls born
eventually marrying after spending roughly 0.31 of their lifetime
in the single (never married) state.



LABOR FORCE STATUS

A standard application of the life table concept is to tables
of working life (Wolfbein, 1949). Recently, Hoem and Fong (1976),
Willekens (1978), and Schoen and Woodrow (1980) have demonstrated
the superiority of the multidimensional approach. Using Danish
data for 1972-74 Hoem and Fong (1976), for example, find that the
chance of a baby boy just born being employed at age 20 is 0.909,
and that the average number of years he can expect to be working
during his entire lifetime is a0.98.* Using the same data Willekens
(1978) calculates that a male unemployed at age 20 can expect to
experience about 10.11 years of unemployment, whereas an employed
male of the same age can expect the somewhat lower total of 8.04

years.

Repeating Willekens' calculations for females shows signifi-
cant differences. The average number of future years spent in
the employed state by a working 20-year-old woman is 29.82, about
11 years less than the corresponding male figure. The difference
at birth is one year less and contrasts markedly with the 15 year
difference in the U.S. reported by Schoen and Woodrow (1980), who
comparing the conventional and the multidimensional approaches,
conclude that although both give rather similar results for the
proportion of total lifetime spent in the labor force, the former
conceals a significant amount of movement into and out of the

employed state.

While the conventional table shows just under one
entry to the labor force per male born, the increment-
decrement table shows a lifetime average of 3 1/4
entries (Schoen and Woodrow, 1980, p. 319).

‘The usual table gratuitously simplifies reality in permitting
movement in only one direction—from never having worked into the

labor force and from the labor force into permanently retired.

Based on these mathematical and demographic preliminaries,

financial calculations can be made as a direct application.

*The data in Hoem and Fong (1976) refer to active and inactive
statuses, which are not equivalent to being employed and unemployed.
Nevertheless, for expositional convenience we shall use the two
sets of terms interchangeably.
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ANNUITIES

A life annuity of one unit per annum, payable continuously
for the rest of life to a person now aged x, has the present

value
w=x
{ e %t 1(x + t)dt
a(z) = — (11)
1(x)

where § is the force of interest, i.e., the nominal annual rate

of interest compounded continuously, and 1(x + t)/l(x) is the
probability that a person now aged x will be alive t years later.
Thus a(x) 1is the present value of the annuity payable irrespective
of whether the person is working or not working, in good health or
bad, living in a certain region or not. It is helpful to write

a(zx) in the form

e 8 1 (s)de

8 ——E

B
|

a(z)

H
SIS
D)

e~ 7 ()

since ¥ (x) and D (x) need be calculated only once for each =z.

Now suppose that the person is to be paid the annuity only
if he is alive and in a certain state—say, sick, retired, or
unemployed. We assume as usual that the condition can be defined
precisely and that it is not affected by the annuity. 1If, for
example, the annuity is large enough that an appreciable number
of people will change their residence in order to obtain it, then
place of residence is not a suitable condition. If the annunity
is payable only when the person is sick, then there must be some
criterion of the sick condition. 1In application we will have in
mind the value of the annuity that the person pays to the company
or government in the form of a premium or tax while he is working,
and the different annuity that the person receives while disabled

or retired.
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Let us then suppose that a person is now aged z and in the
Jjth state, and that the annuity is payable only while he is alive
and in the zth state. The expected future lifetime in state <
for a person initially in state j, 1s provided by the ratio of

two matrices given as (10) above

If money carries no interest, (10) is the answer to the annuity

problem.

If money carries interest at rate § then we need to modify
the matrix T(x) by multiplying all of the Zij(x + t) of which it

is made up by e_ét. The discounted matrix 7 (x), with elements

-dx Zij(x)’ can be designated D(x), and the corresponding cumu-

lative integral

N(z) = J R N (12)

takes the place of the undiscounted ?(z). We have followed the
usual actuarial form of discounting everything back to age zero.
Then we have for the value of an annuity, payable to or by a
person age r initially in state j, but only while he is in state
7, with money discounted at rate of interest §, the Zjth element
of

a(z) = N(z) D' (x) (13)

A common arrangement is a life annuity plus a condition that
the annuity continues for ten (or some other number) years after
the policy is taken out. This means in effect an annuity certain
for ten years plus a deferred annuity beyond that. We would have

as the initial value per payment of unity per annum:

10

-8a -1 1 - 108 -1
Je da+lj(x+10)D (x)=—$—+N(:r:+10)D (x)
0

~
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In practice annuities and insurance are covered not by
single payments but monthly or annually. Let us suppose contin-
uous payments (any other form can easily be approximated from
this) and that payments aremade while the person is in state ¢
and an annuity received while the person is in state A. In the
obvious applications 7 will be working and % retired; or else
i in good health and % in hospital; or ¢ werking and 7 unemployed.
Now a premium of unity from a person in the jth state at age =z,
payable as long as he is in the Zth state,has an initial dis-
counted value given by the zjth element of the matrix alx) =
§(x) 9-1(x), so a premium of Ppsr Say, will have an initial dis-

counted value equal to the zjth element of

1

Phs a(x) = Phs N(x) 9' (z)

The benefit is another annuity, say of unity, paid each
year during tenure in the hth state. For a person in the jth
state this must have a present value of the hAjth element of

(hj)(x).

a(x), say a Then the required premium is obtained by

equating payment and benefit, i.e.,

Py @ =a M ) NG

or

p,; =a @) /a) () (15)

Other forms are straightforward enough to be written out
immediately. Thus a single-payment endowment, on the life of a
person in the jth state, due at age x« + 2, if the person is then
in the Zth state, is the Zjth element of the matrix
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It is often desired to pay only for a certain term at most, with-
out changing the benefit, as in a 20-payment life policy. A 20-
payment life policy for disablement taken out by a person in state
J, with premiums payable in state j and with benefits receivable
in state z, would be the Zjth elements of g(x) divided by the
Jjjth element of g(x) - y(x + 20).

As the simplest of the innumerable examples possible, con-

sider the table of working life calculated by Frans Willekens
(1979). His expectations matrix, recognizing only working as

state 2 and not working as state 1, is

10.09 8.71
e(17)

41.59 42.97

Thus a male employed at age 17 would have an expected 8.71 years
unemployed; one unemployed at age 17 would have an expected 10.09
years of unemployment. If we discount throughout at three per-

cent per annum, then the same matrix becomes

4.54 3.22
a(17)

]

21.28 22.60

so the payment of $1 per year while the person is unemployed
would have a prospective cost of $3.22 for a person initially

employed and of $4.54 for a person initially unemployed.

BENEFITS CERTAIN

People who pay for a pension over many years wish to avoid
the contingency that they might die early in the benefit period,
or indeed before it starts, and thus seem to obtain little or
none of what they have paid for. To avoid the appearance of a
loss, they prefer to have a term certain of benefit that would
go to their beneficiaries and that usually adds little to the
premium. This also can be readily worked out for the general

multi-dimensional case.
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FUNCTIONS OF MULTIPLE LIVES

I1f both father and mother have jobs they may wish to insure
their children against the possibility that both fall sick or

poth die. Matrix expressions can be worked out for such cases.

A GENERALIZED FORM OF INSURANCE

In ordinary insurance practice where living and dead are
the only states recognized, the value of an assurance of unity

on a life now aged z is

W
J e St L(e) 1(e) dt
X

Alx) = = Mx)
- D(x)
e Sz 1 (x)

We proceed to the general case of insuring the person against
passing from the ith to the hth state, given that he is of age «x
and in the Zth state at the time of the insurance. The probabil-
ity discounted back to time x that the transition will take place

at time y is the h<th element in

-0 Ly 1@ e W) gy (17)

where ﬁ(hl)(y) is the probability of transition from 7 to 4,
given that the person has arrived at state 7 by age yf This
has to be added through all ¥ > . Defining M(x) as the sum

~

w
M(x) = J Ty) L(y) e ay
£

there being no danger of confusion with the quite different M(x)
matrix containing average rates in a small finite interval, we

have for the single payment

¥The numerical approximation of the matrix g(y) that has

been used is B(y);(y)}(y)_1, where R(y) is a diagonal magrix
with interstate transition rates or death rates in the diagonal.
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A(z) = M(z) D () (18)
The insurance of unity taken out by a person in the Zth state
aged x, against arriving into the hth state, is worth the h<th
element of A(x). To allow for insurance against the Ath or the

kth state we would add two such expressions.

If the insurance is to be paid for by an annuity then to
find the premium we must divide the required element of A(z) by
an element of g(x). Suppose the person aged x and now i; the
1th state, and insured against passage from the Zth to the Ath
state, to be covered by equal payments while he is in the kth
state. Then the annual premium is

AP0 oy s o R (g (19)

A combined insurance and endowment provides for the payment
of a sum to the beneficiary if the person dies within 10 years,
and to the person if he survives to the end of the 10-year period.
The present value of such a policy taken out in state j, and in-

sured against falling into state 7, is the Zjth element of

1

[M(x) - M(x + 10) + D(z + 10)] 9' (z)

In another type of policy the insured gets his premiums back
without interest if he survives ‘and keeps out of state 7 for the

10 years. If the premium is p then we have to solve

1(x)

-~

p[N(x) - g(x + 10)] D-1(x) = [g(x) - g(x + 10) + 10p g(x + 10{]9-

except that this is not to be interpreted as a matrix equation,
but only as the jjth element on the left for D(z + 10) 9-1(x),
and as the 7jth element for the g's. Thus we would write n(jj)(x)
for the jjth element of [N(x) - N(z + 10) - 10D(z + 10)1D" " (z),

and m'*7) (z) for the ijth element of [M(z) - M(z + 10)1D” '(z),

and the premium is
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p = m ) () 7 n T ()

RESERVES

The contingent liability, say when the person has moved
along from age x to age y, is available for all such policies.
For a single premium annuity taken out at age z and state j, and
payable when the person is in state 7, first suppose it is known
that the person has moved to the kth state. The reserve needed

will be the ikth term of

Viy) = aly) = N(y) D "(y) (20)

-~

If one does not have the information on what the present
state of the indiwvidual is then the reserve might take account of
the probability of the person being in the kth state at age y,
given that he was in the jth state at age x, i.e., the kjth ele-~
ment of

* * *-1
l (ylz) = L y) 1 (x)
where the asterisk * means that the 7 matrix has been recalculated
omitting the contingency of death—we know at least that the per-

son is alive. The reserve is now

Y(y]x) = N(y) Q-1(U) [E*(ylx)] (21)

In practice it is not of great interest to weight according
to the proportions E*(ki)(ylx) that would be in the several states
k, given that they were in a certain distribution of state j when
they took out the policy. Since we do not care about those who
dropped their policies prior to the time of valuation, it is bet-
ter to weight the several states k according to the business in

hand at the time the reserve is being calculated.
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Annuity calculations (13) or (20) give the value of a policy
that pays one unit per year of unemployment. For example, if
money carries no interest and if the policy is issued to an em-
ployed 20-year-old Danish male, then 8.04 units is the value of
the policy. 1If the interest rate is three percent, the value de-
clines to 2.84 units and increasing the rate to six percent lowers
the value of the policy to 1.40. We may calculate the reserve
still needed to cover the expected payments to, say, a 30-year-old
youth. Equation (21) gives the answer, and for the Danish data
the figure is 2.54 units, if the prevailing rate of interest is

three percent, and 1.04 units if it is six percent.

We may leave this somewhat improbable kind of policy and go
on to one in which the payments are made by an annuity while the

person is working‘ and benefits obtained while the person is dis-
abled or unemployed. 1In general to obtain the reserve that would
be needed in respect of a person in state j at age y > r we re-
call that the future payments are an annuity of Py with exggcted
value per unit equal to the Zjth term in g(y), i.e., Pu; a(lJ)(y)
if the person is still in state j. The future benefits are an

annuity of unity while a person now in state j is in state 4,

i.e., a(”J)(y). Hence the reserve must be
na . .
APPROXIMATIONS

If precise information on transitions is available for single
years of age, and in the right form, then no question of approxi-
mations need arise. Thus when we know that the probability that
a man of exact age 31 who is now working will be unemployed one
year later, along with similar information for all other possible
transitions, then we need go no further in order to construct the
l-matrix. For such ratios gives us directly what might be called

a p-matrix covering each year separately, and the cumulative pro-
duct of the p-matrices starting at the beginning of life or any
other point, gives the probabilities of transitions over long

periods of time.
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Rarely is information available in such convenient form. At
best we might have exposed population and deaths or other trans-
itions over a period of a year. The ratio of cases of transition
to exposure we have called the M matrix, and to go from these to
the l-matrix has been discussed above, culminating in (6). By in-
tegrating the E—matrix the stationary population, or g-matrix, can
be calculated, and from that one can go on to expectations of time
spent in the various states. By extension of our recursive formula
for &(zx) we could estimate the inteqral for financial calculations
in o;e-year intervals from the L-matrix,

1

a(z) = &2 L) 17 + 8% alz + 1) pla) (22)

but this seems to add an unnecessary approximation to the pro-
cess. What we should do instead is to multiply the l-matrix at

each age by e °%

, where 7 1is the rate of interest, and then carry
out the integration for g(x) just as though we were finding ex-
pected times T(x). When we calculate g(x) for a man aged 40 not
in the labor ~force on (22) we find the present value of a life
insurance of unity -at three percent to be 0.13295. The alterna-
tive more precise calculation is 0.13302 or about one part in 2000

higher.

CONCLUSION

To rewrite standard actuarial formulas in matrix terms is
an extensive and potentially useful task. This paper points the
way and does a small part of the work. Issues arise that we
find challenging and have not yet resolved, including the retro-
spective valuation of policies in the light of various degrees of
knowledge of what states the person has been through. Prospec-
tive valuation raises no such subtle issues. We have stopped
short of any consideration of variance or of risk; our formulas
are deterministic.
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