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ABSTRACT

Standard proofs of the ergodic theorems of demography rely on theorems
borrowed from positive matrix theory, tauberian theory, and the theory of time-
inhomogeneous Markov matrices. But while these proofs are efficient and ex-
pedient, they give little direct insight into the mechanism .that causes

ergodicity.

This paper proposes a simple and unified proof of the two ergodic theorems.
It is shown that the birth dynamics can be decomposed into a smoothing process
that progressively levels out past fluctuations in the birth sequence and a
reshaping process that accounts for current period-to-period changes in vital
rates. The smoothing process, which causes the birth sequence to lose in-
formation on its past shape, is shown to be the ergodic mechani.m behind both

theorems.
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THE ERGODIC THEOREMS OF DEMOGRAPHY :
A SIMPLE PROOF

W.B. Arthur

It is well known to mathematical demographers and population biologists
that if the age-specific fertility and mortality patterns of a population
remain unchanged over time, its age composition will converge to a fixed form,
regardless of its initial shape. This is the Strong Ergodic Theorem of
Demography, first proven by Lotka and Sharpe in 1911. And it is well known
that if two populations start out with different age compositions, but are
subjected to the same sequence of age-specific vital rates, changing over
time, their age compositions will become increasingly alike, although changing
too, of course, over time. This is the Weak Ergodic Theorem of Demography,

conjectured by Coale in 1958 and proven by his student, Lopez, in 1961.

These two theorems stand at the center of mathematical denwography. The
first theorem makes stable population theory possible. Usually there is no
clear or simple connection between fertility-mortality behavior and the age
composition. But in the special case of unchanging vital rates, the theorem
shows that a unique correspondence between age-specific life-cycle behavior
and the age composition exists. We can use this correspondence, in demographic
analyses, in population projections, and in the estimation of wvital rates.

The second theorem makes clear which vital rates determine the age composition.
Onlyvrecent vital rates count, the influence of the initial age composition
is progressively washed away. We need therefore only know recent demographic

behavior if we want to determine the age structure of a population.



Proofs of both theorems are by now routinely available, rigorous, and
standard. Strong ergodicity is proven either via positive matrix theory
(invoking the Perron-Frobenius theorem) or by asymptotic integral equation
theory (invoking tauberian theorems), depending on whether population dynamics
are described in discrete or continuous time (see, for example, Leslie (1945),
Parlett (1970), or Coale (1972)). Weak ergodicity is proven also by positive
matrix theory, or alternatively by appeal to the theory of time-inhomogeneous
Markov matrices (see, for example, Lopez (1961) or Cohen (1979)). But while
these proofs are not inordinately difficult, they say little directly to our
intuition. The mechanism causing ergodicity in both cases tends to lie hidden,
obscured by the rather powerful mathematical apparatus needed for proof.
Moreover, strong ergodicity appears to describe forces that push the age
composition toward a fixed shape; weak ergodicity appears to describe forces
that cause the age composition to shed information on its past. To the
student unfamiliar with ergodic theory, it is not clear how the two theorems

are related.

It turns out that there is a single and simple mechanism behind both
types of ergodicity and it can be seen clearly without invocation of powerful
outside theorems. This mechanism is the progressive smoothing or averaging
of the birth sequence by the fact that both large and small past cohorts act
together to produce a given year's crop of births. 1In this paper I will

suggest a simple proof of both theorems based on this smoothing mechanism.

l. THE PROBLEM

A single-sex population evolves over time according to the Lotka dynamics

(1) B =

& EBt-xpt,xmt,x ’ t=20,1,...

where Bt is the number of births in year t, mt x is the proportion of those
14

at age x who reproduce at that age in year t, and P, . is the proportionate
14

rise or fall in the cohort born in year t-x, due to mortality and migration.

The initial birth history, B

ceesB_ is assumed given, for ages up to the

-1’ N’
oldest age N in the population. Summation in this case is understood to run
from 1 to M, where M is the upper age limit of childbearing. This year's

crop of births in other words is the sum of births born to those born in past

years who survive and reproduce.



We can of course set time zero to any year we please, arbitrarily. This
will be useful later. Also needed later is a technical condition. For certain
ages fertility might well be zero. I assume that the net fertility age pattern
is non-periodic in the age dimension: that is, that for all times t, there
are at least two ages a, and a, (the same ages each time) which share no
common divisor and have strictly positive fertility rates (greater than ¢

say, some uniform constant).

The age composition, or proportion of the population at age a at time ¢t,

is given by the numbers at age a divided by the total population:

Bt—apt,

(2) c = .
t,a EBt P
X

-x"t,x

Summation in this case is over all ages 1 to N in the population.

I now state the two theorems we want to prove.

Weak Ergodic Theorem: Two populations with different age compositions at
time zero, if subjected to the same time~changing sequence of (non-periodic)
fertility and mortality patterns, tend asymptotically to have identical but

time~changing age compositions.

Strong Ergodic Theorem: The age composition of a population subjected to
time constant patterns of (non-periodic) fertility and mortality tends asymp-

totically to a fixed form.

In looking for a proof of these theorems, we might start by noticing
that the age composition of a population, once the vital rates are given,
depends only on the birth sequence. We might therefore suspec” that strong
and weak ergodicity reside somehow in the birth sequence itself. Looking
further at both theorems we see that what is common in them is that the
initial age composition before time zero eventually ceases to count. 1In the
weak version it is progressively reshaped by events after time zero, identical
events for two populations producing identical reshaping. 1In the strong
version it is also progressively reshaped, but this time into a fixed form
that we know and can predict. Translated to birth sequence terms, what we
must show then is that the shape of the birth sequence before time zero, the
birth history, ceases to determine the future course of the birth sequence

as time passes. This is ergodicity.



In one special case, ergodicity in the birth sequence would be easy to
show. This is where the net reproductive probabilities taken across all
cohorts in each period sum to one. The size of any given year's birth cohort
would then be a weighted average of the size of the reproductive cohorts.

The birth sequence, under these circumstances, would "average its past";
it would smooth over time to a constant level; and it would therefore forget

its initial shape.

In general things are not so simple. Reproductive levels vary from
period to period, usually conforming to no particular level or trend. But
the special case does suggest a strategy for proving ergodicity in general.
Suppose we adjust the birth sequence by factors chosen carefully so that it
smooths, as in the special case, to a constant level. We choose these
factors to depend only on vital rates after time zero. Thus adjusted, the
birth sequence must forget its initial shape. We now recover the actual

birth sequence by the reverse adjustment process. By doing this we will

reshape the smoothed adjusted sequence, but note that we will reshape it only
according to the dictates of vital events after time zero. The initial birth
history remains forgotten, smoothed away, and reshaping determines the future
course of the actual birth sequence. TIf these operations are possible,

ergodicity will be straightforward to show.

2. ERGODICITY IN THE BIRTH SEQUENCE

Following the strategy just outlined, we adjust the birth variable Bt
by a factor rt, so that "adjusted births", gt' are

(3) Bt = Bt/rt

We want to show first that for careful choice of the factors Lo the adjusted
birth sequence, Bt’ iterates to a constant level. Allowing ourselves some
foresight, we choose the factors r, so that they evolve according to the

dynamics

(4) r =

from t = 0 onward, with the initial condition that r_ = g_J where
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g is the real root of 1 = zpo R xg

Dividing (4) through by r_we have

-1

(5) = Ept,xmt,xrt Te-x

. . . . , 1
I shall call this the generalized characteristic equation™ . Note that
the r factors, thus chosen, act at each time to adjust total period fertility

to one, and that they depend only on vital events after time zero.

Now rewrite the dynamics (1) by dividing through by r :

(6) By/Ty = §<Bt-x/rt)pt,xmt,x
= Z(B /r p m r_lr
t-x" t-x""t,x t,Xx t t-x
Writing the term m r—l r U enables us to rewrite (7)
9 € S pt,x t,x t t-x as t,x
simply as
(7) B, = EBt—xwt,x , with gwt,x = 1

the last condition following from the generalized characteristic equation.

The original dynamics have been adjusted merely by dividing through by
the variable factor rt. But notice that for the adjusted birth sequence,

for ﬁt, we have a new dynamic process which is a weighted-averaging or

A~

smoothing process. Bt is a weighted average, with weights wt <’ of the M
immediately past B-values. In turn gt+l is a weighted average, with new
weights , of B. and M-1 past B-values. B is a ighted average of
g wt+l,x ¢ 2 P alu t42 1S weig g
Bt+l' Bt and M-2 past B~values. And so on. This repeated averaging of the

~

B sequence -- of averaging, then of averaging the averages -- we would expect

~

intuitively, will converge B to a limiting constant value B. I shall not

1 . S . .
In this form it is not obvious that this is a more general form of the
familiar characteristic equation. If we put r, = Xl-Kz' ...'At however, (5)
-1 ,-1 -1

m A A vee A i i -
Zpt,x £,x't " Me-1 ALkl where the summation is over repro
ductive ages. This reduces to the familiar form when there are no time
variations.

becomes 1 =
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give the full argument for this here.l Suffice it to say that at any

time the next B value, providing the weights are positive and non-periodic,
must lie within the spread or dispersion of the M past values it averages.
Hence the B process progressively narrows its dispersion, eventually becoming

2
trapped at a constant level.

In the limit then, as time t tends toward infinity,

(8) gt = E , a constant .

Since Bt = ﬁt' r, we may recover the actual birth sequence quite simply by
multiplying through by r,. Hence in the limit

(9) Bt = rtB

In sum, the argument shows the birth dynamics to be a composite of two
processes, one a process that smooths away the initial birth history to a
constant B, and the other a process that progressively reshapes this smoothed,
adjusted birth sequence according to current vital events. This smoothing

and reshaping of the birth sequence is illustrated in Figure 1.

;

—
- - -~

Initial 0 Time
History

Figure 1

For a renewal-theory proof that non-periodic smoothing processes iterate
to a constant see Feller (1968 ; Vol. 1, Chapt. XIII). For an alternative
proof, from first principles, see Arthur (1981). Periodic smoothing processes
in general oscillate. They do not usually settle down to a limit.

It is easy to show that this smoothing process for B converges within
geometrically narrowing bounds.



We can now see clearly the ergodic mechanism at work within the birth
sequence. All the information on the initial birth history is contained in
the B smoothing process. But this information is repeatedly averaged away
into a single constant so that the birth sequence "forgets" the shape it had
before time zero. The r sequence reshapes this constant inte the actual
future birth sequence, but this reshaping sequence depends only on vital rates,
and by definition only on these after time zero. Since the age composition
is a simple transformation of the present birth sequence the two theorems

follow immediately.

3. THE WEAK ERGODIC THEOREM: PROOF

By the decomposition, the age composition as t *®, can be wri%ten

Br
(10) limc = traft,a _ Te-aPria
t ) :

ra Br r
toe g t-xP 4 t—xpt,x

t,x

Any two populations with different initial age compositions, but with iden-
tical time-changing vital rates will have the same reshaping sequence. Hence

their age compositions, given by (10), will, in the limit, be identical. O

4. THE STRONG ERGODIC THEOREM: PROQOF

In this case the vital rates are constant over time, if not over age:
that is = = . i
' pt,x px and mt,x mx Let A be the real root of the eguation

-X
1 = A
lo,m,
X
We then see from the initial conditions for r and from (4) that r, equals At.
Thus r grows geometrically, and in turn so does the asymptotic birth sequence.
Any population subjected to these unchanging vital rates will therefore, by

(10), tend to the fixed age composition

pa
(11) lim ¢ —_— ,
0 t,a szka %
X

which is a function constant in time and uniquely determined. O



5. REMARKS

1. Ergodicity, as shown in both theorems, would seem to be more a once
and for all phenomenon than a continual shedding of past information. This
of course is not the case. By shifting the arbitrary time zero reference
point forward at will in the above proof we can show that the past is con-
tinually forgotten. Another way to see this is to notice that the r sequence
is itself governed by exactly the samé dynamics as the birth sequence. There-
fore it too is ergodic. Therefore events after time zero, which determine r
and equivalently the future movements of the birth sequence, progressively
cease to count too. As time travels forward ergodicity follows behind. Just
how fast the birth sequence forgets its past is an empirical question; Kim
and Sykes (1976) have shown in a series of simulation experiments that in prac-
tical cases 50 to 75 years of vital data determines the age composition to

a fair degree of accuracy.

2. Standard proofs of the weak ergodic theorem work by showing that the
age compositions of two initially different populations become "closer" as
defined by some norm, over time. This proves ergodicity of course, but in-
directly in the sense that if two populations approach each other their
different pasts must no longer count.l The above proof is different. It
shows directly the ergodic mechanism operating within the single population
as the progressive forgetting of the past birth sequence due to the natural
spreading and smoothing out of reproduction. And it shows how the asymptotic
age composition can be constructed from knowledge only of vital events after

time zero.

lAmong these two-population proofs is one due to McFarland (1969) that
discusses the mechanism causing the approach of the two populations in some
detail, and one by Lopez (1967) which uses a smoothing argqument. The Lopez
argument turns out to be closely related to the one given here. (To see this,
note first that the initial conditions for r were chosen to expedite
the strong ergodic case, and that any initiaf history r_yv ...,r_M would
allow the proof to go through. If we identify r, with B2(t), the birth
sequence of Lopez's second population which has an arbitrary initial history,
then by the argument in this paper the two birth sequences B(t) and Bz(t)
tend to a constant ratio. Resemblance of the two age compositions follows.
This is the essence of Lopez's argument.)



3. In a series of remarkable and sophisticated theorems Cohen (1979)
has recently shown that ergodicity extends to the stochastic case where
vital rates are drawn from a sample set governed by a Markov process.
From our viewpoint though, it would be surprising if ergodicity did not
carry over to the stochastic case. What is important in the above smoothing
arqgument is not the level of fertility rates but the fact that reproduction
is spread over several, non-periodic ages. Providing this spreading prop-
erty is preserved, actual levels can be chosen by a stochastic mechanism
and we should still expect ercodicity to take place, although now with the

degree of forgetting and reshaping subject to probability.

6. . CONCLUSION

In this paper I have attempted to show a simple and unified proof of
the two central theorems of demography. The proof relies on a simple de-
composition of the birth sequence into a smoothing part inherent in spreading
the replacement of population over several age groups and a reshaping part
due to period-to-periocd changes in reproductive levels after time zero. It
is the process of smoothing that averages out past humps and hollows in the
birth sequence and this is the ergodic property -- the tendency to lose in-
formation on the past shape of the birth sequence -- that lies behind both
theorems. 1In the Strong Ergodic case it causes the birth sequence to forget
its initial shape and converge to geometric growth, and hence the age compo-
sition to assume a fixed form. In the Weak Ergodic case it causes the birth
sequence to gradually lose information on its past shape, and to follow the
period-to-period relative change in vital rates, and hence the age composition

to be uniquely determined by recent demographic history.
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