NOT FOR QUOTATION WITHOUT PERMISSION OF THE AUTHOR

ASSESSMENT OF FOOD PRODUCTION POTENTIAL: RESOURCES, TECHNOLOGY AND ENVIRONMENT--A CASE STUDY OF KENYA

M.M. Shah G. Fischer

March 1981 WP-81-42

Working Papers are interim reports on work of the International Institute for Applied Systems Analysis and have received only limited review. Views or opinions expressed herein do not necessarily represent those of the Institute or of its National Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS A-2361 Laxenburg, Austria

PREFACE

Understanding the nature and dimension of the food problem and the policies available to alleviate it has been the focal point of the Food and Agriculture Program at the International Institute for Applied Systems Analysis (IIASA) since the program began in 1977.

In the program we are not only concerned with policies over a 5 to 15 year time horizon, but also with a long term perspective to obtain a comprehensive understanding of the food problems of the world.

As we anticipate over the coming decades a technological transformation of agriculture which will be constrained by resource limitations and which could have serious environmental consequences, a number of important questions arise.

- (a) What is the stable, sustainable production potential of the world? of regions? of nations?
- (b) Can mankind be fed adequately by this stable, sustainable production potential?
- (c) What alternative transition paths are available to reach desirable levels of this production potential?
- (d) What are sustainable, efficient combinations of techniques of food production,
- (e) What are the resource requirements of such techniques?
- (f) What are the policy implications at national, regional global levels of sustainability?

Stability and sustainability are both desirable properties from the considerations of inter-generational equity as well as of political stability and peace.

We hold environmental considerations to be of critical importance in answering the questions posed.

This report presents the results of a case study of Kenya carried out as a part of the FAO/UNFPA Project INT/513, Land Resources for Populations of the Future, being carried out in collaboration with the Food and Agriculture Program, IIASA.

The results are preliminary and should be regarded as the first approximation. At the present time a detailed case study of Kenya (Phase 2, FAO/Kenya/IIASA Study) is being carried out. As understanding of the ecological and technological limits of food production is a critical part of agricultural development planning, this report highlights the results for Kenya and the methodology of evaluating agricultural production potential, population supporting capacity and soil degradation hazards. Policy relevance and implications for Kenya are briefly discussed.

This preliminary report in collaboration with the Land and Water Division of the FAO is the first of a series on the potentials and limits of food production in developing countries.

Kirit S. Parikh Acting Program Leader Food and Agriculture Program IIASA ACKNOWLEGEMENTS

We are most grateful to Graham Higgins and Amir Kassam for introducing us to and keeping our "interest" rate high in the world of Agro-ecological zones. Bozena Lopuch's dedication and generosity with time and effort is highly appreciated.

We have benefitted from the insights and assistance of many people within Kenya, FAO and IIASA. In particular we acknowledge the contribution of the following:

Within Kenya

R.	Jatzold,	(Consultant) Ministry of Agriculture
J.	Lijoodi,	Head, Development and Planning Division,
		Ministry of Agriculture.
Υ.	Masakhali	ia, Permanent Secretary, Ministry of Planning.
F.	Muchima,	Head, Kenya Soil Survey.
L.	Ngugi,	Head, Human Resources Division, Ministry of
		Planning.
N.	Nyandat,	Director, National Agricultural Laboratories.
H.	Schmidt,	Farm Management Division, Ministry of Agricul-
		ture.
Ρ.	Singh,	Director, Central Bureau of Statistics.
	-	

Within FAO

R. Dudal, Di	rector, Land	and water	Division,

- F. Hauck, Senior Officer, Land and Water Division,
- G. Higgins, Project Coordinator, Land and Water Division, J. Hrobowsky, Senior Policy and Planning Coordinator, Agricultural Department,
- Consultant, Land and Water Division, A. Kassam,
- L. Naiken, Consultant, Land and Water Division,
- A. Peckrot, Senior Officer, Land and Water Division.

Within IIASA

с.	Csaki,	Food	and	Agriculture	Program,
в.	Lopuch,	Food	and	Agriculture	Program,
Κ.	Parikh,	Food	and	Agriculture	Program,
F.	Rabar,	Food	and	Agriculture	Program.

Mrs. Milde and Mrs. Enzlberger who typed the manuscript.

CONTENTS

1.	INTROI 1.1.	DUCTION Previous Work: Ecological Categorization in Kenya 1.1.1. Ecological Zones 1.1.2. Agro-Economic Zones	1 2 2 3
2.	METHOI 2.1. 2.2. 2.3.	DOLOGY OF RESOURCE EVALUATION FAO Agro-ecological Zone Methodology Land Available for Rainfed Agricultural Production Crop Choice: Alternative Assessments of Potential Crop Production	4 4 11 12
3.	RESULT 3.1. 3.2. 3.3. 3.4.	TS Assessment of Crop-wise Production Potential Estimate of Potential Arable Land and Degrada- tion Hazard Assessment of Food Production Potential and Population Supporting Capacity Estimate of Land Degradation Hazard	12 12 16 16 20
4.	POLICY 4.1. 4.2. 4.3. 4.4. 4.5.	Y RELEVANCE Soil Erosion and Conservation Policy Migration and Food Distribution Policies Agricultural Technology Policy Domestic Food Demand and Trade Policies National Game Parks Policy	20 20 22 23 23
5.	CONCLU	IDING REMARKS AND FURTHER WORK	24
Append	lix A:	Results of Individual Crop Production Potential	25
Append	lix B:	Results of Food Production Potential and Population Supporting Capacity	42
Refere	ences	reparation Supporting Capacity	55

1. Introduction

Kenya became independent in 1962 and from the outset the use of natural resources, namely, climate and land has been an area of concern.

"While many of our domestic resources are not fully utilized, still others are being dissipated, wasted and in some cases destroyed. The use of outmoded farming techniques may result in erosion; the cutting of wind breaks and the burning of vegetation may turn fertile areas into desert".

"The heritage of future generations depends on the adoption and implementation of policies designed to conserve natural resources.....The thoughtless destruction of....productive land threatens our future and must be brought under control. A national land-use policy must be created."

> "African Socialism and its Application to Planning in Kenya", Government of Kenya Sessional Paper No.10, 1965.

Recent demographic estimates suggest that Kenya has one of the highest* population growth rates in the world. This coupled with the domestic requirements for food, industrial raw materials and export crops requires sound policies of agricultural land use especially if sustainability of production is to be ensured in the long run. What are the ecological potentials of agricultural production in Kenya? What are the levels of population that can be supported by the land and climate base? What trade patterns will be necessary to ensure that the food demand in the country will be met in the future? These are some of the central issues of agricultural development planning in Kenya. The ecological potential production depends on a number of factors, namely, specific crops, level of input (management and technology), climate, rainfall, radiation, soil and associated characteristics, etc. The last four factors represent the natural resources under which agriculture is practiced. The evaluation of potential production should be based on the use of these natural resources for a specific use (crop) and under the assumption of alternative technologies. The Agro-ecological zone inventory (FAO, 1979) has been created specifically for this purpose. The features of this inventory will be described in Section 2.

1.1. Previous Work: Ecological Categorization in Kenya

Kenya has a land area of 575,000 sq. ha. and 8,000 sq. ha of open water. The country has a wide range of climatic, topographic and soil conditions. For example, conditions range from high rainfall tropical forests to afro-alpine areas to deserts. The wide range of conditions requires and at the same time makes it difficult to categorize the natural resources base into agro--climatic--ecological zones. One of the first and to date most widely used classifications is due to Pratt and Gwynne, 1965.

1.1.1. Ecological Zones (Pratt and Gwynne, 1965)

Six broad zones were categorized and the classification was based on moisture indices. The zones were also related to climate, vegetation and land-use. This zoning has been widely used in Kenya and a brief description of each of the zones is given below.

Zone I: This extends to some 800 km² at high altitude above the tree line. Vegetation is moorland or grassland, but barren land is common. (No agricultural potential).

Zone II. This covers about 53,000 km² and embraces the bulk of Kenya's indigenous and planted forests. The agricultural potential is high, particularly in the highlands. Tea, coffee and pyrethrum are important cash crops at higher altitudes; livestock can be kept intensively on leys with carrying capacity up to one stock unit per half ha. (High Agricultural Potential).

* 3.9%, Economic Survey, 1979, Central Bureau of Statistics, Nairobi. Zone III. This covers about 53,000 km². The zone contains most of the large scale mixed farming areas in which hybrid maize, wheat and barley are important crops. In smallholder areas, maize is the dominant crop; cotton, groundnuts, pulses and oilseeds are also grown, and have considerable potential for expansion and improved productivity. Livestock can be kept intensively on leys with carrying capacities similar to Zone II. (Medium Agricultural Potential).

Zone IV. This covers about 53,000 km². Commerical ranching on well managed natural pasture can support one stock unit on four ha or less. Subsistence crop farming and livestock are important in smallholder areas. Drought-escaping Katumani maize has been developed for this area but, like cotton, pulses and oilseeds which are grown in the area, the considerable expansion potential requires increased research. (Marginal Agricultural Potential).

Zone V. This covers just over 300,000 km². The zone is the focus of many of the present and proposed livestock development programs. Increasing subsistence - oriented shifting cultivation reflects population pressure on better lands, and the risk of crop failure is great. (Moderate range potential).

Zone VI. This zone extends to about 112,000 km² in northern Kenya. Sparse and erratic rainfall, giving flush growth of predominantly annual grass species, leads to the nomadism of the pastoral people of the zone. (Marginal range potential)

According to the above classification only about 7% of land area has "good" agricultural crop production potential, 4.5% has marginal potential and the rest is rangeland with large extents of semi-desert areas.

1.1.2. Agro-economic Zones, Ministry of Agriculture, 1978.

This categorization at the individual district level is presently being carried out. The aim here is to develop for each mixed farming district the agro-ecological zones based on rainfall and broad soil types and by identifying the farming system within these zones to arrive at agroeconomic zones. Since the work is being carried out for a number of selected districts the scope and extension to regional and national level analysis is limited. A comparison of these results for individual districts with the corresponding results from the Phase 2 Kenya Study will provide useful bases for agricultural planning at the district level.

The aim of the present paper is to report on the preliminary (first approximization) assessment of food production potential, degradation hazards and population supporting capacity of the natural resources (climate and land) under the assumption of various input (management and technology) levels. In Section 2 the methodology of the assessment is described and the results are given in Section 3. The policy relevance and implications of the results are discussed in Section 4 and we conclude Section 5 with an outline of the further work in progress.

2. Methodology of Resource Evaluation

Resource evaluation has to be in light of specific requirements and specific objectives. The deliberate choice to efficiently use resources on a sustained basis is the true meaning of efficient resource use, but this also includes enhancement of resources, as well as preservation, restoration and reclamation. Figure 1 shows the framework of the analytic approach to agricultural resource use. Here land is the fundamental resource. The land base provides a number of necessary and legitimate requirements. For example land is required for food production, industrial raw material production, forestry production (energy and paper products), urban settlements, rural settlements, infrastructure (roads) and recreation. As population increases and development progresses the land requirement for each of the above uses also increases. Land use planning is concerned with the "efficient" allocation among alternative requirements. Our primary interest in this study is concerned with the land that is available for rainfed production.

As shown in Figure 1, from the "requirements" and "resource availability" certain objectives are formulated and the aim is to "evaluate" how these objectives can be realized. The environmental conditions of the resource base change in time and space. If the resources are to be used on a sustained basis then conservation of the environment, in terms of basic resource as well as development (reclamation, restoration and enhancement) of degraded and new resources, is essential. All parts of this system are dynamic. The FAO Agro-ecological Zone Methodology, Figure 2, thus far developed is to analyze the agricultural production potential in a comparative static sense. (e.g. Year 2000). The multidisciplinary manpower, information and data for a country level dynamic analysis are immense. However starting with a static analysis and a step by step refinement of methodology and data base, a dynamic analysis can be aimed for in the long term.

2.1 FAO Agro-ecological Zone Methodology (FAO, 1979, a, b)

This methodology and computer programs (Shah and Fischer, 1979) for the assessment of agricultural production potential is based on principles (FAO, 1976) which are fundamental to any sound evaluation of land, namely,

- o Land suitability for specific crops.
- Evaluation of production in respect to specified input levels, alternative crops and criteria of crop choice.
- o sustainability of production.

Figure 2 illustrates, in a simplified form, the methodology developed to assess land suitability and potential yield. This is applied for each of the eighteen food crops, Table 1. Note that the last crop, grassland, is used for the estimation of yield of livestock products, Blair Rains and Kassam (1979).

FIG. 2. FAO Agro ecological zone methodology for the assessment of production potential

CRC	DP CODES	SEED Requirement* kg/Ha Dry weight
Nr.		
1.	Pearl Millet	20
2.	Sorghum	20
3.	Maize	30
4.	Soyabean	40
5.	Phaselous Bean	40
6.	Cotton**	
7.	Sweet Potato	135
8.	Cassava	0
9.	Bunded Rice	90
10.	Spring Wheat	85
11.	White Potato	300
12.	Winter Wheat	-
13.	Winter Barley	75
14.	Upland Rice	30
15.	Ground Nut	75
16	Banana and Plantain	0
17.	Sugarcane	350
18.	Oilpalm	0
19.	Grassland (livestock)	

- * Waste is assumed to be 10% of production. In the detailed phase 2 Kenya Study, seed and waste assumptions are modified according to country data.
- ** Not included in the present study.

.

Population and Land Distribution by Major Climate and Length of growing Period

	Length of Growing Period (Days)	Population '000	Percentage Distribution	Area '000 Ha	Percentage Distribution	Population Density Persons/Ha
WARM TROPICAL						
CLIMATE	24 0- 270	403	3,18	212	0,37	1.90
	210-240	777	6.12	401	0,70	1.94
	180-210	479	3.79	478	0.83	1.00
	150-180	755	5,95	1127	1.97	0.67
	120-150	863	6.06	2295	4.01	0.37
	90-120	1071	9.44	3202	5.59	0.33
	75 - 90	592	4.66	3772	6.59	0.16
	0- 75	3718	29.29	31168	54.47	0.12
	0	156	1.23	5778	10.10	0.03
MODERATELY COOL						
TROPICAL CLIMATE	330-365	29	0.23	31	0.05	0.93
	300-330	99	0.78	210	0.37	0.47
	270-300	269	2.12	409	0.72	0.66
	240-270	290	2.28	500	0.87	0.58
	210-240	219	1.72	464	0.81	0.47
	180-210	384	3.03	992	1.73	0.39
•	150-180 *	446	3.52	691	1.21	0.64
	120-150 *	443	3.49	560	0.98	0.79
	90-120	252	1.99	551	0.96	0.46
	75- 90	68	0.54	462	0.81	0.15
	0- 75	140	1.10	933	1.65	0.15
COOL TROPICAL						
CLIMATE	330-365	18	0.14	25	0.04	0.73
	300-330	50	0.39	105	0.18	0.48
	270-300	137	1.08	214	0,37	0.64
	240-270	144	1.14	251	0.44	0.57
	210-240	108	0.85	232	0.41	0.47
	180-210	193	1.52	496	0.87	0.39
	150-180 *	223	1.76	353	0.62	0.63
	120-150 *	223	1.76	289	0.50	0.77
	90-120	126	0.99	283	0.50	0.44
	75- 90	38	0.30	252	0.44	0.15
	0-75	71	0.56	479	D. 84	0.15
	TOTAL	12694	100.0	57216	100.00	0.22

* City of Nairobi (Population 1975, 862000) located in moderately cool/cool tropical climates and length of growing period 120 - 180 days

Basic to the assessment is the soil and climatic inventory. This inventory comprises overlay of a specially compiled climatic inventory on to the 1.5 million FAO/UNESCO Soil Map (FAO, The climatic inventory differentiates major climates 1971-79). and length of growing period zones at 30 day intervals (e.g. 120-150 days). Measurements of the unique agro-ecological zones resulting from this combination allows quantification of the land resources in terms of soil and climatic conditions. Table 2 shows the distribution of Kenya's 1975 population and land area by major climate and length of growing period. The population density for each length of growing period is also Note that this density decreases as we move from shown. wetter to drier areas except for the 120-180 day period in moderately cool and cool tropical climates. The latter is due to the location of the capital city of Nairobi in this area.

The first step in the methodology is to match the climate and LGP inventory with the specific crop requirements to assess the agro-climatic suitability in terms of genetic potential yield. The main features of the climatic inventory created by FAO for the assessment of agro-climatic crop suitability (Kassam 1977, 1979) are:

- Classification of crops into climatic adaptibility groups according to their fairly distinct photosynthesis characteristics.
- Classification of temperature and moisture requirements of crops. The quantification of heat attributes and moisture conditions is based on the actual temperature regime during the growing period and a water balance model comparing precipitation with potential evapotranspiration.

The data utilized for calculation of the water balance and for further climate-related calculations, comprises Kenyan meteorological records where extended data on rainfall, maximum and minimum temperatures, sunshine duration, vapour pressure, wind speed, etc., are available.

Individual crop productivity rules, (Kassam, 1979) as determined for each major climate and length of growing period zone, enable the assessment of agro-climatic crop yields. This is modified by next considering the soil limitations (Sys and Riquier, 1979). The resultant potential yield (land suitability) is adjusted according to the input level. Table 3 shows that attributes of each of the three input circumstances used in the assessment. Note that the assumption of only three discrete input levels is for simplicity and convenience. The crop yield and input functional relationship is continuous. Within the country there is a wide variation in the level of input (technology of production) applied to particular crops. The simple assumption of three input levels implies that each of these is applied to all crops throughout the country. It is unlikely that high input level (as specified in Table 3) can be implemented universally throughout Kenya in the short/ medium term will be applied universally throughout Kenya. However this does enable us to estimate the "maximum" production potential in the light of presently known "high" technology.

ATTRIBUTES OF INPUT LEVELS

ATTRIBUTE	LOW INPUT LEVEL	INTERMEDIATE INPUT LEVEL	HIGH INPUT LEVEL
Market Orientation	Subsistence	Subsistence/ Commercial	Commercial
Capital Intensity	Low	Intermediate	High
Labor Intensity	High	High	Low
Power Sources	Hand Tools	Improved Imple- ments and/or Animal Traction	Complete Mechanization
Technology Employed	Local Cultivars No Fertilizer No Pest Control No Disease Control	Improved Cultivars "Sub-Optimum" Fertilizer Some Chemical Pest and Disease Control	High Yielding Cultivars "Optimum" Fertilizer Chemical Pest and Disease Control
Land Holdings	Small, Fragmented	Small, Fragmented/ Consolidated	Large Consolidated

Table 4. IRRIGATED AREA - KENYA

	IRRIGATED	AREA 1000 Ha
CLIMATE CLASSIFICATION	1975	2000*
Warm Tropical Climate	29	72
Moderately Cool Tropical Climate	12	23
Cool Tropical Climate	2	8
Total	43	103

*FAO AT2000 Projections

FIG. 4. LAND USE: LAND AVAILABLE FOR RAINFED AGRICULTURE (ANNUALLY)

* Not considered in the present study; phase 2 study will incorporate these requirements

The input limitations allows the quantification of the anticipated yield. The final step in the methodology is to take account of environmental degradation. The climate, length of growing period, soil characteristics (soil, slope, texture and phase) and input levels determine the environmental degrada tion in relation to a particular crop. Degradation of land takes place in many ways, water erosion and wind erosion being the most obvious in rainfed agricultural production. The productivity loss caused by the rate of soil loss under various climatic, soil and land use circumstances reveal the severity of the degradation hazard in the various agro-ecological zones, (Arnoldus 1980 and FAO/UNEP/UNESCO 1979). Figure 3 shows the framework of this degradation model. In the present study degradation hazard is taken into account after the other physical factors influencing productivity have been considered, and is applicable only to land found to be at least marginally productive.

The final step in the estimation of yield is the deductions for seed and waste. Table 1 shows the assumption for seed requirements. In the present study the loss due to waste has been assumed to be ten percent of production. In the detailed Phase 2 Kenya Study actual data on Kenya waste losses by crop will be used; for example according to the 1974/75 Integrated Rural Survey, Central Bureau of Statistics, Nairobi, the waste losses for maize may be as high as 20% to 30% of production.

The final "actual" yield is site and input specific. The methodology is applied to all units of annually available land, Figure 4, to assess the potential production of each crop under the assumption of three input levels and with and without degradation hazard (with degradation implies no conservation measures and without degradation implies that all necessary conservation measures are carried out).

2.2. Land Available for Rainfed Agricultural Production

The annually available land, Figure 4, for rainfed crop production is estimated by making appropriate allowances for non-agricultural requirements, irrigation land requirements (Table 4 shows the estimate of present and future irrigated area in Kenya) and rest period (fallow) land requirements. The latter is dependent on the level of the crop input level, soil and climatic conditions (Young and Wright, 1979). It is important to take account of rest periods for specific crops since land, especially in the tropics, cannot be continuously cultivated in it's natural state without undergoing degradation. The allowances of various land uses in Fig. 4 appears to be a simple accounting procedure; however considerable detailed analysis is necessary for this. For example, the land requirements for non-agricultural use entails projections e.g. growth and location of urban areas. 2.3 Crop Choice: Alternative Assessments of Potential Crop Production.

The application of the methodology, Figure 2, to each unit of available land, Figure 4, will result in a number of crops (less than eighteen) that can be potentially produced in each unit of land. Note that this unit of land is about 10000 ha in the present study; in the detailed Phase 2 Study, the unit of land will be about 400 ha. A decision regarding the crop choice for each unit of land depends on the criteria of choice. In the present study two alternatives are considered, namely:

- Maximize calories subject to a protein constraint at the national level, i.e., for each unit of land, choose the crop that gives maximum calories subject to the protein constraint.
- Maximize calories subject to the present crop mix constraint. The present cropping pattern in the country is dependent on the domestic and trade demands. This pattern cannot be radically changed in the short/medium term and hence the inclusion of this constraint enables an assessment under the assumption of the continuance of the present crop-mix pattern.

The aforementioned two alternative assessments and the crop-wise production potential assessment are considered for each of the three input levels, with and without conservation measures. The results are discussed in the next section.

- 3. Results
- 3.1. Assessment of Crop-wise Production Potential

The aim here is to evaluate the maximum production potential for each crop of the assessment. The information generated includes for each crop, the total suitable land, land productivity classes and production from each land class. The results for each of the crops, Table A1 to A16, are given in Appendix A. A summary of the total potential production and average yield for each of the crops is given in Table 5. The results show the tremendous increases in potential of all commodities as input level is increased and especially if conservation measures are implemented. Table 6 quantifies the percentage of loss in production and the responsible factor (wind and water erosion) in the absence of conservation measures. This type of information is useful in comparison with the future demand of particular crops in the sense that necessary levels of inputs and risks of degradation can be assessed. LOW INPUT

INTERMEDIATE INPUT

HIGH INPUT

		WITH CONSEN PRODUCTION	RVATION YIELD	WITHOUT CON PRODUCTION	NSERVATION YIELD	WITH CONSE PRODUCTION	RVATION YIELD	WITHOUT CON PRODUCTION	SERVATION YIELD	WITH CONSEL PRODUCTION	RVATION YIELD	WITHOUT CO PRODUCTION	NSERVATION YIELD	
	_	'000	Dry Wt	. '000	Dry Wt.	'000	Dry Wt.	'000	Dry Wt.	000	Dry Wt	'000	Dry Wt.	
													·	-
1.	Millet	741	0.384	178	, 235	2843	1.049	836	0.676	6107	1.752	2604	1.069	
2.	Sorghum	936	0.346	260	,254	3778	1.096	1414	0.883	7275	1.694	3542	1.199	
3.	Maize	1300	0.487	339	.337	4804	1.425	1862	1.149	9855	2.295	4726	1.578	
4.	Soybean	299	0.160	121	.111	1506	0.572	808	0.495	3126	0.905	1591	0.688	
5.	Beans	618	0.196	200	.135	2639	0.697	1169	0.543	4910	1.059	2494	0.787	
7.	Sweet Potato	609	0.482	260	.360	2727	1.352	1486	1.157	5872	2.165	3660	1.898	
8.	Cassava	339	0.283	123	. 283	1520	0.756	726	0.821	4141	1.472	2465	1.592	I
9.	Bunded Rice	188	0.217	172	. 201	634	0.731	598	0,697	1098	1.311	1008	1.222	د. س
10.	Spring Wheat	761	0.593	275	.516	2208	1.783	1138	1.463	3299	2.796	1829	2.067	I
11.	White Potato	1010	0.996	271	.679	3330	2,887	1496	2.087	4648	4.031	2258	2.576	
12.	Winter Wheat	-	-	_	-	-	-	-	-	-	-	-	-	
14.	Upland Rice	271	0.180	161	.157	1062	0,529	755	0.489	2267	0.996	1658	0.849	
15.	Groundnut	222	0,129	78	.081	1290	0.487	666	0,414	3018	0.874	1593	0.689	
16.	Banana/Planta	in 30	0.189	28	.190	61	0.378	56	0.380	87	0.569	82	0.571	
17.	Sugarcane	45	0,242	35	.219	343	0.8 3	316	0.796	889	0.863	835	0.820	
18.	Oil Palm	71	0.161	67	.161	199	0.451	185	0.448	195	0.458	184	0.454	
19.	Livestock	9610	0.287	7532	.229	19248	0.575	16805	0.509	36042	1.218	32039	1.100	
			_											

TABLE 5: ASSESSMENT OF POTENTIAL CROP PRODUCTION ('OOO MT)

- THREE Input Levels : Low, Intermediate, High

- With and Without Conservation Measures

TABLE 6.	PERCENT	REDUCTION	τN	PRODUCTION	POTENTIAL.	DHE	то	SOTI	FROSTON
	LUKOBAL	100001100	T 1.1	I NODUCITON	LOIDUITE	000	10	SOLP	CV02 T0N

		LOW	INPUT		INTERMEDI	ATE INPU	<u>T</u>	HIC	GH_INPUT	
		% Production	% Loss WATER	Due to WIND	7 Production	& Loss WATER	Due to WIND	% Production	% Loss WATER	Due to WIND
		Loss	EROSIO	N EROSION	Loss	EROSION	EROSION	Loss	EROSION	EROSION
1.	Millet	76	46	54	71	3 [.] 7	63	57	35	65
2.	Sorghum	73	74	26	63	61	39	51	62	38
3.	Maize	74	76	24	61	68	32	52	61	39
4.	Soybean	60	55	45	46	40	59	49	34	60
5.	Phaselous Beans	68	78	22	56	69	31	49	56	44
7.	Sweet Potato	57	80	20	46	70	30	38	62	38
8.	Cassava	64	69	31	52	71	29	41	69	31
9.	Bunded Rice	8	99	1	6	100	1	8	98	2
10.	Spring Wheat	64	91	9	48	91	9	45	86	14
11.	White Potato	73	94	6	55	93	7	51	90	11
14.	Upland Rice	41	75	25	29	80	20	27	81	19
15.	Groundnut	65	62	38	48	48	52	47	35	65
16.	Banana/Plantains	6	100	0	8	100	0	6	100	0
17.	Sugarcane	21	100	0	8	100	0	6	100	0
18.	Oil Palm	5	100	0	7	100	0	6	100	0
19.	Livestock	22	38	63	13	52	48	11	79	22

- THREE INPUT LEVELS : Low, Intermediate and High

TABL	Е7.	KENYA : POTENTIAL ARABLE* LAND	'000 Ha	
WITH CONSI	ERVATIVE MEASURES	GOOD AND MARGINAL LAND	GOOD LAND	'VERY'GOOD LAND
ΓΟΙ	NPUT	vи + и + и + ц 6362	ин + н + м 2726	VН + Н 1037
IN,	TERMEDIATE INPUT	6776	3736	1695
ΗI	TUPUT	6893	4688	2383
WITHOUT C	ONSERVATIVE MEASURES			
LOI	W INPUT	3170	908	257
NI I	TERMEDIATE INPUT	4343	1529	597
ΗI	GH INPUT	6146	2323	839
НЛ	Very High Productive			
Н	High Productive			
W	Moderate Productive			
Г	Low Productive			
*For VH +	H + M + L calculated as Mille	t + Soybean (>240 days) + Rice + 1	Highland Phasel	ons Beans

calculated as Millet + Sweet Potatoes (>240 days) + Rice + Highland Wheat $W + H + H\Lambda$

1975 Reported arable (Rainfed) Land, 3895 and 'good' arable land, 1787

AT2000 Estimates - Arable land, 6739 and 'good rainfall' arable land, 2020

3.2 Estimate of Potential Arable Land and Degradation Hazard.

Table 7 shows an approximation of the potential arable land in Kenya. This is based on the assumption that the agroclimatic requirements for pearl millet, soyabean/sweet potatoes, rice and highland phaselous beans/highland wheat, are different and hence an aggregate of the productive land for each of these crops (Table A1, A4-5, A7, A9-10, and A14) approximates the potential arable land.

Depending on the level of input the available potential arable land varies between 6.4 and 6.9 million ha. Soil conservation measures are critical especially at low and intermediate input levels. For example at low levels of inputs there would be an almost 50% loss of arable land in the absence of soil conservation measures. The corresponding percentage loss for intermediate and high input levels are of the order of 36% and 11% respectively. The present (1975) land use in Kenya suggest that arable land under cultivation is about 3.9 million Kenya's population is likely to double by the end of the ha. present century and consequently the possibility of land extensive agriculture in the long run is not feasible. This is especially critical in view of the large areas of marginal agricultural land in Kenya. As shown in the table the "good" agricultural land accounts for 43%, 55% and 68% of the total potential arable land for low, intermediate and high input levels respectively. Furthermore the need of soil conservation in the areas of "good" land is essential since in the absence of conservation measures loss (in terms of agricultural use) of these lands is as high as 67%, 59% and 50% for the low, intermediate and high input levels respectively. Note that the availability of "very" good land is even more limited.

Soil conservation as well as improvement in technology (higher levels of input) will be essential to ensure the satisfaction of the food and agriculture demands by the end of the century.

3.3. Assessment of Food Production Potential and Population Supporting Capacity

The results for the first alternative, i.e., Maximize Calorie Production Subject to National Protein Constraints are given in Table B1 to B6 of Appendix B. The corresponding results for the second alternative (with present crop mix constraint) are in Table B7 to B12.

The calorie and protein production for each of these two alternative assessments is translated into population supporting capacity. Here the Kenyan requirement is assumed to be 2,380 calories and 38.8 grams of protein per capita per day. The results for the population supporting capacity in terms of the ratio of potential to present population are given in Table 8. TABLE 8.

Total Population (1975) 12,694,000 Total Area (Ha) 56,991,000 Total Irrigated, 1975 (Ha) 43,000 Total Non-Ag. Land, 1975 (Ha) 633,000 1975 Overall Population Density (Persons/Ha) 0.223 1975 'Arable' land Population Density (persons/Ha) 3,259

Number of Climates4Number of Zones (LGP)32

	LOW INPUT	INTERMEDIATE INPUT	HIGH INPUT
CONSERVATION			
POTENTIAL/PRESENT POPULATION			
MODE 1: MAXIMIZE CALORIES	0.824	2.302	4.509
MODE 3: PCMIX* CONSTRAINT	0.640	1.836	3.681
WITHOUT CONSERVATION			
POTENTIAL/PRESENT POPULATION			
MODE 1: MAXIMIZE CALORIES	0.366	1.181	2.481
MODE 3: PCMIX CONSTRAINT	0.309	0.986	2.107

*PCMIX : Present crop mix constraint

TABLE 9 . Comparison	of 1976 and 2000)Demand*** fo	r main food c potential pr	onwodities in oduction***	Kenya with Agro-ec	ological
					FAO-IIASA-KENY	ACROECOLOGICAL
					ZONE	STUDY
	KENYA DEVELOPMENT	PLAN ¹ AT2000 ²	KENYA STUDY ³	I LASA KENYA STUDY ⁴	INTERMEDIATE INPUT	HIGH INPUT ^O WITH CONSERVATION
	(1979-83) 1976	2000	Alternative _A 2000	Alternative <i>B</i>	PRESENT CROP MLX	MAXIMUM CALUKIES
CEREALS						
Malze	1634	3823	51/6	3254	3552	4693
Wheat	165	161	591	992	319*	566
Rice	23	104	87	161	53*	113
Millet and Sorgh	um 277	661	161	866	292*	3224
Pulses	248	482	407	585	272*	16*
Roots	514	146	805	707	1386	5498
White Potato	113		210	286	1196	2799
Sweet Potato Cassava	105		595	421	*96	922 1777
Livestock Products					•	
Calorie ^{xx} Equiv	alent 952	2281	1938	3358	11638	21296
Beef	128	314	258	543		
Mutton	65	84				
rig Meat	۳ :		194	373		
Fultry	28	209				
Milk	652	1912	1754	2647		
1. 1976 KENYA Fo	od Balance Sheet	, Developme	nt Plan 1979-8	33, Government	of Kenya, Nairobi,	1979
2. FAO AT2000 St	udy, Rome, 1979				•	
3.4. "Food Demand	Projections Inco	prporating In	come Distribul	tion and Urban	ization", IIASA, La	kenburg, 1979:
(3.7%) and n	A assumes tirely o change in inco	me distribut	per annum) of ion Alternativ	per captra ex Je Bassumes h	penditure, mign pop ieh erowth (7.52 ner	utallion growin Frannum) of
per capita e	xpenditure, high	population	growth (3.7%)	and moderate	change in income di	stribution
5.6. FAO-IIASA-KEN	YA Agro ecologic	al zone stud	y, Laxenburg,	1981	1	
5. Here the assu	mptions are : in	itermediate]	evel of input	is applied s	oil conserv.tion me	asures are
Hare the seen	nd the 17/2 crup mrtion are : Ui	-mix parcern	continues	and licitation	and the monotone of the	
u. nets the food	mpLIUN ate; ni (raloric) value	gli level or ie maximized	Inpuc Is appri	led solt conse	rvacion measure are	1mp1emenced
	Catoticy value	T3 11177011770	•			

- 18 -

Expected 2000 Demand is not net for these commodities Units are Million Calories. The agroecological study estimates an aggregation of livestock and related products. * *

Metric tons dry weight. ***

In 1975 the overall population density was 0.223 persons per hectare; however the density per hectare of arable land was 3.259. The results show that food demand of the present population in Kenya cannot be satisfied under the assumption of low input level (all crops and throughout the country). To a lesser extent (98.6% of the population can be supported) this is also the case for the intermediate level of input without any con-In reality the input level in Kenya is servation measures. between low input and intermediate input for some crops and higher for others. Also some soil conservation measures are practiced and this is likely to intensify in view of the govern-ment policy on environmental conservation. The results show that at least an intermediate level of inputs with soil conservation measures will be necessary for the national food demands of Kenya's population in the year 2000 (present population will double in size). Note that in estimating the population supporting capacity the irrigated production (calorie equivalent, Wood, 1979) is also taken into account.

Another interesting aspect of the results is that the population supporting capacity of the maximize calories alternative is higher than the continuing present crop-mix alternative. The implication of this is that some changes in the present crop mix will be necessary to increase levels of production of certain food crops (for example policies to encourage demand and production of sorghum and millet).

Table 9 shows a comparison of the present and future demand and agroclimatic potential (for the two above alternative assessments) for four food commodities in Kenya. The expected demand (year 2000) for wheat, rice, millet and sorghum, pulses, sweet potatoes and cassava is not met by the agro-climatic production from the assessment based on intermediate levels of inputs with conservation measures and a continuation of the present crop mix pattern. For sweet potatoes and cassava some of the land allocated to white potatoes could be used for production (the potential production of white potatoes is more than five times the expected demand). In a similar manner the production of some of the above mentioned crops could also be somewhat increased. This is feasible in view of the potential production (Appendix A) of these crops. Note that the level of production of livestock products is also more than five times the expected demand.

In comparison, for the high input level with conservation measures and maximization of food values (calories) the production levels are well above the expected demand for all commodities except pulses. The pulses production could be increased by using some of the area that has been allocated to maize and sorghum and millet.

The results of the assessment have been considered at the national level. However, in the study the potential area for each crop is identified in terms of its location in the country. This disaggregated information would enable further surveys and evaluation of particular crops on a regionalized basis.

3.4. Estimate of Land Degradation Hazard

In the above assessments it is clear that considerable reduction in potential production and population supporting capacity will occur if soil conservation measures are not implemented in Kenya. Table 10 quantifies the land availability, total and by land productivity class, under the assumption of with and without conservation measures, for each of the three input levels and the two alternative assessments. In both the alternatives, degradation would lead to substantial loss of total agricultural land and in particular the more productive land classes. For example more than 55% of the very high and high productivity land would be "lost" in the absence of conservation measures. Overall a change in crop mix, from present crop mix to maximize (calorie) production, also appears to reduce the risk of degradation. As in the case of the crop production, the national level estimates of land degradation can be disaggregated by location (regionalized) to identify the critical areas succeptible to soil erosion in the context of the agricultural crops and input levels.

4. Policy Relevance

The data and information generated in this study is useful for many aspects of Agricultural Development Planning. The present results should be regarded as a first approximation. The Phase 2 Kenya Study (based on the 1.1 million soil map of Kenya, i.e., basic land unit of 400 ha) will be more realistic and even at this level further regionalization and field analysis will be necessary to validate the results. The policy use and implications of the study are numerous. Here the discussion will be limited to some of the more pressing policy issues of agricultural development in Kenya.

4.1 Soil Erosion and Conservation Policy

"Agricultural production in Kenya still relies on the exploitation and consumption of natural resources.... Soil erosion has reached disquieting proportions, natural pastures are being degraded and the flow of water from the catchment areas is threatened. The soil of Kenya is a stock resource, irreplacable once destroyed and <u>action</u> is required to maintain it in a productive state for future generations".

Kenya Development 1979-83, pp 208.

The study generates data on the location of areas where soil erosion may be critical. This erosion is a consequence of a number of factors, namely, natural conditions (climate, rainfall,soil, etc), crops, levels of inputs, etc. For a particular area, the analysis provides information on what crops and input levels would reduce the level of soil erosion. For example, tree crops (bananas and plantains) may be appropriate in some areas. The identification of the areas susceptible to soil erosion also enables an assessment of the conservation measures necessary. The latter can be translated TABLE 10.

.

DEGRADATION HAZARDS AND LAND PRODUCTIVITY: NATIONAL

LAND AREA (1000 Ha) BY PRODUCTIVITY CLASS

Present Crop-Mix	TOTAL	VH	Н	М	L	RANGE	LAND
without Conservation							
LOW	1871	53	187	381	1250	26117	
INT.	2407	106	374	526	1401	26156	
HIGH	3700	197	477	791	2235	22700	
With Conservation							
LOW	3612	310	744	659	1899	24366	
INT.	3882	442	814	947	1679	24374	
HIGH	4850	614	1112	1269	1855	21027	
Degradation Hazard							
(% Land Loss)	TOTAL	VH	H	м	L	RANGE	LAND
LOW	48.2	82.9	74.9	42.2	34.2	- 7.2	2*
INT.	38.0	76.0	54.0	44.5	16.6	- 7.3	}*
HIGH	23.7	67.9	57.1	37.7	-20.5*	• - 8.0)*
Maximize Cals						. ,	
without							
Conservation							
LOW	2464	70	202	513	1679	26119	
INT.	2782	165	434	488	1695	26152	
HIGH	3812	223	484	735	2370	22734	
With Conservation							
LOW	3974	343	973	1143	1515	24376	
INT.	4115	590	1261	1276	988	24374	
HIGH	4880	711	1689	1651	829	21037	
Degradation Hazard (% Land Loss)							
LOW	38.0	79.6	79.2	55.1	- 10.8	3*-7.2*	,
INT.	32.4	72.0	65.6	61.7	- 71.5	5*-7.3*	:
HIGH	21.9	68.6	71.3	55.5	-185.9	9*-8.1*	r

* Increase in area; this occurs (for the LOW productivity land and the rangeland) due to degradation of the more productive lands.

into labour requirements and linked to government policy on public works and employment during slack agricultural seasons as well as setting of farmers' incentives for conservation.

4.2 Migration and Food Distribution Policies.

Rural-Rural Migration Policy.....

- (i) to promote the productivity of land in every rural and pastoral area so that the economic pressures for migration elsewhere are reduced in magnitude;
- (ii) to encourage migration to areas of the country where opportunities and productivity are increasing most rapidly;
- (iii) to ensure that movements are not in such large numbers that they exceed the opportunities available, leading to frustration and dissatisfaction".

Kenya Development Plan, 1979-83, pp. 66.

In the study the potential production as well as the location of the land is identified. This data is useful for the formulation and analysis of policies as mentioned above. Also areas which are presently critical (levels of food production and corresponding inputs, e.g., labour requirements) or are likely to become critical in the future are identified. Policies on outmigration and/or alternative development are relevant here.

In contrast to the movement of people from areas, when the land base cannot produce the local food requirements, is to create alternative employment opportunities and/or transfer food from surplus areas. The latter aspect will necessitate investments in transporation and additional food storage capacity. Hence the policy on infrastructure development is also relevant in this context.

4.3 Agricultural Technology (level of input) Policy

"Technological change is a major driving force in agricultural and rural development. Increased emphasis....for land use intensification in small holdings and on production techniques for areas of low and unpredictable rainfall, research on developing viable mixed crop and livestock systems for arid areas will be emphasized."

Kenya Development Plan, 1979-83, pp. 210.

The preliminary results of the study suggest that crops such as sorghum and millet and livestock production are viable in some of the drier areas. The latter are identified in relation to regional location. Of course there are crops and varieties (short yielding cereals) other than the ones considered in the present study which may be even more viable. The methodology is general in that such aspects can be incorporated. 4.4 Domestic Food Demand and Trade Policies

Relative prices, shifts in traditions, marketing systems and "development" has been largely the cause of changes in the domestic food demand. For example, there has been a decline in the demand for sorghum and millet, sweet potatoes and cassava etc. At the same time demand for wheat and white potatoes has increased. Does Kenya have the natural resources (climate, rainfall and land) to satisfy the increasing domestic demand for particular food crops. Preliminary data for the analysis of such issues is generated in the study. The results on potential production of individual crops can be incorporated in domestic food policies to "push" (increase demand) for crops with high production potential and "pull" (decrease demand) for crops with low production potential.

Kenya's agricultural export trade has been concerned basically with non-food crops. The potential production of some cereal crops, roots and livestock products suggest trade possibilities. Also there may be other crops which are in demand on the world market and for which Kenyan production is low or nil. Examples of such crops are cassava or soyabean respectively. The methodology enables an evaluation of this type of issue.

4.5 National Game Parks Policy

In Kenya there are some 30 existing national game parks and these account for 7.2% of the total land area. In addition a further 21 national reserves are proposed and this will amount to a further 4.5% of the land area. Many of these parks and reserves are situated in marginal areas; however there are some areas with a considerable agricultural potential. In 1978 producer prices, the value of production from national parks and proposed reserves, has been estimated, (Shah, 1980) to be as high as 83.7 and 20.1 million Kenyan pounds*. Interestingly the majority of the production is accounted for by two national parks and two proposed national reserves.

Kenya is committed to preserve the wildlife heritage (mankind's) but will the population of the next century be forced to reassess** this commitment?

^{* £1} Kenyan = U.S. \$2.8

^{**} In how many regions has agriculture displaced (destroyed) wildlife?

5. Concluding Remarks and Further Work

The assessment of food production, degradation hazard and population supporting capacity has been discussed in this paper. The results should be regarded as a preliminary first approximation. We attempted to outline the type of information/ data that is produced and the relevance of this in terms of Agricultural Development in Kenya.

Detailed country analysis at a lower scale (much lower than the 1:5 million scale as in this Phase 1 Study) will be necessary for planning and policy analysis. The Phase 2, 1:1 million scale study, will contribute towards this but even at this scale, the results will need to be verified and modified from subsequent field studies.

Some aspects of the further work on the Kenyan Case Study are listed below:

- Detailed country case study with country specific crops and data (FAO/UNFPA/Kenya study in collaboration with IIASA).
- Methodology for crop choice developed on the basis of domestic food self-sufficiency and maximization of export earnings/profits.
- Quantification of soil conservation requirements in terms of labour, materials and related costs.
- Quantification of the input requirements, (labour, fertilizer, power, infrastructure, processing, etc.) and the assessment of the country's economy to meet these input levels. Some of these aspects will be analysed in conjuction with the general equilibrium model of Kenya being developed at IIASA.
- Refinement of the methodology and development of a dynamic model version for possible linkage with the IIASA Kenya Model.

Work on the above is in progress and will be the subject of future reports.

APPENDIX A - RESULTS

Assessment of LAND PRODUCTIVITY, POTENTIAL CROP PRODUCTION and DEGRADATION LOSSES

TABLES A1 - A16

Area in '000 Hectares

Production in '000 Metric Tons Dry Weight

	PRODUCTI	VITY CLASS		PO	TENTIAL	
CROP : Pearl Millet	VERY HIGH AND HIGH '000 Ha	MODERATE '000 Ha	LOW '000 Ha	TOTAL AREA '000 Ha	TOTAL PRODUCTTON '000 MT	AVERAGE YIELD MT per Ha
MAXIMUM POTENTIAL WITH CONSERVATION MEASURES						
LOW INPUT	414	883	631	1928	741	0.38
INTERMEDIATE INPUT	822	1297	591	2710	2843	1.05
HIGH INPUT	1294	1498	693	3485	6107	1.75
MAXIMUM POTENTIAL WITHOUT CONSERVATION MEASURES						
LOW INPUT	44	129	584	757	178	0.23
INTERMEDIATE INPUT	135	317	785	1237	836	0.68
HIGH INPUT	263	726	1447	2435	2604	1.07

DEGRADATION HAZARD

	Z AREA LOSS	REDUC	Z CTION EA	7 PRODUCTION LOSS	REDUC PROD	Z TION IN DUCTION
		WIND EROSION	WATER EROSION		WIND EROSION	WATER EROSION
LOW INPUT	60.7	59.3	40,7	76.0	53.6	46.4
INTERMEDIATE INPUT	54.4	67.6	32.4	70.6	63.0	37.0
HIGH INPUT	30.1	68.0	32.0	57.4	65.3	34.7

1975 : Area 84000 Ha YIELD 1.45 MT/Ha

KENYA : PEARL MILLET

	PRODUCTI	VITY CLASS				
CROP : SORGHUM	VERY HIGH AND HIGH '000 Ha	MODERATE '000 Ha	LOW '000 Ha	TOTAL AREA 'OOO Ha	TOTAL PRODUCTION 'OOCMT	AVERAGE YIELD MT per Ha
MAXIMUM POTENTIAL WITH CONSERVATION MEASURES						
LOW INPUT	693	662	1411	276 6	956	0.35
INTERMEDIATE INPUT	1023	839	1584	3446	3778	1.10
HIGH INPUT	1401	1150	1742	4293	7275	1,69
MAXIMUM POTENTIAL WITHOUT CONSERVATION MEASURES						
LOW INPUT	159	164	703	1026	260	0,25
INTERMEDIATE INPUT	348	316	937	1601	1414	0.88
HIGH INPUT	571	546	1838	2954	3542	1.20

DEGRADATION HAZARD

	Z AREA LOSS	REDU	Z CTION EA	7 PRODUCTION LOSS	REDUC	Z TION IN UCTION
		SOIL EROSION	WATER EROSION		SOIL EROSION	WATER EROSION
LOW INPUT	62.9	40,3	59 ,7	72.8	26,3	73.7
INTERMEDIATE INPUT	53,5	52,2	47,8	62,6	38,8	61,2
HIGH INPUT	31.2	53,2	46.8	51.3	38,4	61.6

1975 : Area 210,000 Ha Yield 0.94 MT/Ha

KENYA : SORGHUM

TABLE A3.

	PRODUCTI	VITY CLASS		POTENTIAL				
CROP : MAIZE	VERY HIGH AND HIGH '000 Ha	MODERATE '000 Ha	LOW '000 Ha	TOTAL AREA '000 Ha	TOTAL PRODUCTION 'OOC MT	AVERAGE YIELD MT per Ha		
MAXIMUM POTENTIAL WITH CONSERVATION MEASURES								
LOW INPUT	582	589	1496	2667	1300	0.49		
INTERMEDIATE INPUT	964	870	1538	3372	4804	1.42		
HIGH INPUT	1307	1125	1862	4293	9855	2.30		
MAXIMUM POTENTIAL WITHOUT CONSERVATION MEASURES								
LOW INPUT	74	179	752	1006	339	0,34		
INTERMEDIATE INPUT	278	374	968	1621	1862	1,15		
HIGH INPUT	397	641	1957	2995	4726	1.58		

DEGRADATION HAZARD

	Z AREA LOSS	REDUC	Z CTION EA	7 PRODUCTION LOSS	REDUC PROD	Ž TION IN VUCTION
		SOIL EROSION	WATER EROSION		SOIL EROSION	WATER EROSION
LOW INPUT	62.3	38,3	61.7	73,9	24,2	75.8
INTERMEDIATE INPUT	51.9	52.9	47.1	61.2	32.1	67,9
HIGH INPUT	30.2	55.4	44.6	52,0	38.6	61.4

1975 : Area 1513000 Ha, Yeild 1.6 MT/Ha

KENYA : MAIZE

PRODUCTION POTENTIAL AND DEGRADATION HAZARD - LOW INTERMEDIATE AND HIGH INPUT LEVEL

- 28 -

TABLE A4.

	PRODUCTI	VITY CLASS				
CROP : SOYBEAN	VERY HIGH AND HIGH '000 Ha	MODERATE '000 Ha	LOW '000 Ha	TOTAL AREA 'OOO Ha	TOTAL PRODUCTION 'OOOMT	AVERAGE YIELD MT per Ha
MAXIMUM POTENTIAL WITH CONSERVATION MEASURES						
LOW INPUT	278	378	1218	1874	299	0.16
INTERMEDIATE INPUT	492	656	1483	2631	1506	0,57
HIGH INPUT	711	867	1877	3455	3126	0,91
MAXIMUM POTENTIAL WITHOUT CONSERVATION MEASURES						
LOW INPUT	57	121	914	1092	121	0,11
INTERMEDIATE INPUT	251	202	1180	1633	808	0.49
HIGH INPUT	242	419	1650	2311	1591	0.69
DECENDATION						

DEGRADATION HAZARD

	Z AREA LOSS	REDU	Z CTION EA	7 PRODUCTION LOSS	REDUC	Z TION IN PUCTION
		SOIL EROSION	WATER EROSION		SOIL EROSION	WATER EROSION
LOW INPUT	41,7	62,7	37,3	59,5	44,6	55,4
INTERMEDIATE INPUT	38.0	75,7	24,3	46,4	59.7	40.3
HIGH INPUT	33,1	84,0	16.0	49,1	66.1	33.9

1975 : No Production

KENYA : SOYBEAN

TABLE A5.

	PRODUCT	IVITY CLAS	s	POTENTIAL			
CROP : PHASELOUS BEAN	VERY HICH AND HIGH 'OOO Ha	MODERATE '000 Ha	LOW '000 Ha	TOTAL AREA '000 Ha	TOTAL PRODUCTION 'OOCMT	AVERAGE YIELD MT per Ha	
MAXIMUM POTENTIAL WITH CONSERVATION MEASURES							
LOW INPUT	820	675	1661	3157	618	0,20	
INTERMEDIATE INPUT	1221	898	1665	3784	2639	0.70	
HIGH INPUT	1470	1111	2054	4634	4910	1,06	
MAXIMUM POTENTIAL WITHOUT CONSERVATION MEASURES							
LOW INPUT	179	305	1001	1485	200	0,14	
INTERMEDIATE INPUT	480	432	1241	2153	1169	0,54	
HIGH INPUT	632	621	1917	3170	2494	0,79	
DEGRADATION							

HAZARD

	Z AREA LOSS	Z REDUCTION AREA		Z PRODUCTION LOSS	Z REDUCTION IN PRODUCTION	
		SOIL EROSION	WATER EROSION		SOIL EROSION	WATER EROSION
LOW INPUT	53,0	32,4	67.6	67.6	22,2	77.8
INTERMEDIATE INPUT	43.1	48.2	51.8	55,7	31.3	68.7
HIGH INPUT	31,6	65.2	34.8	49.2	43,7	56,3

1975 : Area 613,000 Ha, Yield 0.48 MT/Ha. includes other pulses

KENYA : PHASELOUS BEAN

	PRODUCTI	VITY CLASS	5	POTENTIAL			
CROP : SWEET POTATO	VERY HIGH AND HIGH '000 Ha	MODERATE '000 Ha	LOW '000 Ha	TOTAL AREA '000 Ha	TOTAL PRODUCTION '000 MT	AVERAGE YIELD MT per Ha	
MAXIMUM POTENTIAL WITH CONSERVATION MEASURES							
LOW INPUT	181	85	997	1263	609	0.48	
INTERMEDIATE INPUT	318	99	1600	2017	2727	1,35	
HIGH INPUT	215	381	2116	2713	5872	2.17	
MAXIMUM POTENTIAL WITHOUT CONSERVATION MEASURES							
LOW INPUT	41	61	621	723	260	0.36	
INTERMEDIATE INPUT	107	145	1031	1284	1486	1.16	
HIGH INPUT	74	209	1645	1928	3660	1,90	

DEGRADATION HAZARD

	Z AREA LOSS	Z REDUCTION AREA		7 PRODUCTION LOSS	Z REDUCTION IN PRODUCTION	
		SOIL EROSION	WATER EROSION		SOIL EROSION	WATER EROSION
LOW INPUT	42.7	40,3	59.7	57.3	20,3	79.7
INTERMEDIATE INPUT	36.3	56.8	43,2	45.5	29,9	70.1
HIGH INPUT	28.9	68,9	31.1	37.7	38,2	61.8

1975 : Area 52000 Ha Yield 2.95 MT/Ha

KENYA : SWEET POTATO

	PRODUCT	TVITY CLASS	5.	POTENTIAL				
CROP : CASSAVA	VERY HIGH AND HIGH '000 Ha	MODERATE '000 Ha	LOW '000 Ha	TOTAL AREA '000 Ha	TOTAL PRODUCTION 'OOO MT	AVERAGE YIELD MT per Ha		
MAXIMUM POTENTIAL WITH CONSERVATION MEASURES								
LOW INPUT	30	97	1070	1197	339	0.28		
INTERMEDIATE INPUT	60	178	1774	2011	1520	0.76		
HIGH INPUT	257	173	2385	2814	4141	1.47		
MAXIMUM POTENTIAL WITHOUT CONSERVATION MEASURES								
LOW INPUT	4	29	402	435	123	0,28		
INTERMEDIATE INPUT	14	72	798	884	726	0.82		
HIGH INPUT	129	138	1281	1548	2465	1.59		

DEGRADATION HAZARD

	Z AREA LOSS	Z REDUCTION AREA SOIL WATER		7 PRODUCTION LOSS	Z REDUCTION IN PRODUCTION SOIT WATER	
		EROSION	EROSION		EROSION	EROSION
LOW INPUT	63.6	57.0	43,0	63,6	30.8	69.2
INTERMEDIATE INPUT	56.0	64.8	35.2	52,2	29.2	70.8
HIGH INPUT	45.0	78.3	21.7	40,5	31.1	68,9

1975 ; Area 95000 Ha, Yield 2.94 MT/Ha

KENYA : CASSAVA

	PRODUCT	IVITY CLASS	5	POTENTIAL				
CROP : BUNDED RICE	VERY HIGH AND HIGH '000 Ha	MODERATE '000 Ha	low '000 Ha	TOTAL AREA 'OOO Ha	TOTAL PRODUCTION 'OOO MT	AVERAGE YIELD MT per Ha		
MAXIMUM POTENTIAL WITH CONSERVATION MEASURES								
LOW INPUT	46	346	476	868	188	0.22		
INTERMEDIATE INPUT	70	353	445	868	634	0.73		
HIGH INPUT	105	346	386	837	1098	1.31		
MAXIMUM POTENTIAL WITHOUT CONSERVATION MEASURES								
LOW INPUT	41	290	526	857	172	0.20		
INTERMEDIATE INPUT	64	310	483	857	597	0.70		
HIGH INPUT	87	303	436	825	1008	1.22		
DEGRADATION								

HAZARD

	Z AREA LOSS	Z REDUCTION AREA		7 PRODUCTION LOSS	Z REDUCTION IN PRODUCTION	
		SOIL EROSION	WATER EROSION	_	SOIL EROSION	WATER EROSION
LOW INPUT	1,3	0.5	99.5	8,4	0,7	99.3
INTERMEDIATE INPUT	1.3	0.5	<u>99</u> ,5	5.8	0.5	99.5
HIGH INPUT	1,4	1.0	99.0	8,2	1,7	98.3

Rice 1975 : Negligble rainfed production KENYA : BUNDED RICE PRODUCTION POTENTIAL AND DECRADATION HAZARD

- LOW INTERMEDIATE AND HIGH INPUT LEVEL

		PRODUCT	IVITY CLAS	S	POTENTIAL			
CROP :	SPRING WHEAT	VERY HIGH AND HIGH 'OOO Ha	MODERATE	LOW '000 Ha	TOTAL AREA '000 Ha	TOTAL PRODUCTION '000 MT	AVERAGE YIELD MT per Ha	
MAXIMUM POTENTI WITH CONSERV MEASURE	AL AL S							
LOW INP	UT	506	388	388	1283	761	0,59	
INTERME INPUT	DIATE	670	297	271	1238	2207	1.78	
HIGH IN	PUT	752	240	188	1180	3299	2.80	
MAXIMUM POTENTI WITHOUT CONSERV MEASURE	AL ATION S							
LOW INP	UT	163	191	177	532	274	0.52	
INTERME INPUT	DIATE	346	219	213	778	1138	1,46	
HIGH IN	PUT	378	271	237	885	1829	2.07	

DEGRADATION •HAZARD

	7 AREA LOSS	Z REDUCTION AREA		Z PRODUCTION LOSS	Z REDUCTION IN PRODUCTION	
		SOIL EROSION	WATER EROSION		SOIL EROSION	WATER EROSION
LOW INPUT	58,5	3,0	97,0	63.9	9.4	90.6
INTERMEDIATE INPUT	37.2	3.0	97.0	48.4	9.0	91.0
HIGH INPUT	25.0	2.9	97.1	44.5	14.1	85.9

1975 : Area 110000 Ha, Yield 1.61 MT/Ha

KENYA : SPRING WHEAT

	PRODUCTI	VITY CLASS	5	POTENTIAL				
CROP : WHITE POTATO	VERY HIGH AND HIGH '000 Ha	MODERATE '000 Ha	low '000 Ha	TOTAL AREA '000 Ha	TOTAL PRODUCTION '000 MT	AVERAGE YIELD MT per Ha		
MAXIMUM POTENTIAL WITH CONSERVATION MEASURES								
LOW INPUT	483	297	234	1014	1010	1.00		
INTERMEDIATE INPUT	692	322	139	1153	3329	2.89		
HIGH INPUT	692	317	144	1153	4648	4,03		
MAXIMUM POTENTIAL WITHOUT CONSERVATION MEASURES								
LOW INPUT	114	158	126	399	271	0,68		
INTERMEDIATE INPUT	293	284	140	717	1496	2,09		
HIGH INPUT	268	318	291	877	2258	2,58		
DEGRADATION								

HAZARD

	Z AREA LOSS	Z REDUCTION AREA		7 PRODUCTION LOSS	Z REDUCTION IN PRODUCTION	
		SOIL EROSION	WATER EROSION		SOIL EROSION	WATER EROSION
LOW INPUT	60.7	2,9	97,1	73.2	6,1	93.9
INTERMEDIATE INPUT	37.8	2.6	97,4	55.1	6.6	93,4
HIGH INPUT	24.0	2.5	97.5	51.4	10,5	89.5

1975 : Area 80,000 Ha, Yield 0.75 MT/Ha

KENYA : WHITE POTATO

TABLE All.

	PRODUCTI	VITY CLASS	5	POTENTIAL			
CROP : UPLAND RICE	VERY HIGH AND HIGH '000 Ha	MODERATE	LOW '000 Ha	TOTAL AREA '000 Ha	TOTAL PRODUCTION 'OOO MT	AVERAGE YIELD MT per Ha	
MAXIMUM POTENTIAL WITH CONSERVATION MEASURES							
LOW INPUT	52	48	1403	1503	271	0,18	
INTERMEDIATE INPUT	101	85	1822	2008	1062	0,53	
HIGH INPUT	190	236	1851	2277	2267	1,00	
MAXIMUM POTENTIAL WITHOUT CONSERVATION MEASURES							
LOW INPUT	6	37	986	103 0	161	0,16	
INTERMEDIATE INPUT	46	74.	1422	1542	755	0.49	
HIGH INPUT	82	183	1688	1952	1658	0.85	
DEGRADATION							

HAZARD

	Z AREA LOSS	Z REDUCTION AREA		Z PRODUCTION LOSS	Z REDUCTION IN PRODUCTION	
		SOIL EROSION	WATER EROSION		SOIL EROSION	WATER EROSION
LOW INPUT	31,5	41,2	58,8	40,5	24,9	75,1
INTERMEDIATE INPUT	23.2	41,8	58,2	29,0	20,1	79,9
HIGH INPUT	14,2	52,4	47.6	26,8	18,9	81,1

1975 : Negligble rainfed production

KENYA : UPLAND RICE

	PRODUCTI	VITY CLASS		POTENTIAL					
CROP : GROUND NUT	VERY HIGH AND HIGH	MODERATE	LOW	TOTAL AREA	TOTAL PRODUCTION	AVERAGE YIELD			
	'000 Ha	'000 Ha	'000 Ha	'000 Ha	'000MT	MT per Ha			
MAXIMUM POTENTIAL WITH CONSERVATION MEASURES									
LOW INPUT	235	362	1119	1716	222	0.13			
INTERMEDIATE INPUT	244	633	1769	2646	12 <u>9</u> 0	0.49			
HIGH INPUT	411	1062	1982	3455	3018	0.87			
MAXIMUM POTENTIAL WITHOUT CONSERVATION MEASURES									
LOW INPUT	43	106	814	963	77	0,08			
INTERMEDIATE INPUT	105	147	1358	1610	666	0,41			
HIGH INPUT	172	252	1887	2311	1593	0,69			
DECRADATION									

DEGRADATION HAZARD

	Z AREA LOSS	Z REDUCTION AREA		7 PRODUCTION LOSS	REDUC	Z TION IN UCTION
		SOIL EROSION	WATER EROSION		SOII, EROSION	WATER EROSION
LOW INPUT	43.9	60.1	39,9	65,0	37.7	62.3
INTERMEDIATE INPUT	39.2	72.1	27,9	48.4	52,4	47,6
HIGH INPUT	33,1	84.0	16,0	47,2	65,2	34,8

1975 : Area 12000 Ha, Yield 0.38 MT/Ha

KENYA : GROUND NUT

CROP:BANANA PLANTAINVERY HICH AND HIGH 'OOO HaMODERATE 'OOO HaLOW 'OOO HaTOTAL AREA OOO HaTOTAL PRODUCTION MT per H.MAXIMUM POTENTIAL WITH CONSERVATION MEASURES-157160300,19INTERMEDIATE INPUT3-157160610,38HIGH INPUT3-150153870.57MAXIMUM POTENTIAL WITH CONSERVATION MEASURES-147150280.19INTERMEDIATE POTENTIAL WITHOUT CONSERVATION MEASURES-144147560.38HIGH INPUT3-140143820.57		PRODUCTI	VITY CLASS		POTENTIAL				
NAXIMUM POTENTIAL MAXIMUM POTENTIAL WITH 3 - 157 160 30 0.19 INTERMEDIATE 3 - 157 160 61 0.38 HIGH INPUT 3 - 157 160 61 0.38 HIGH INPUT 3 - 150 153 87 0.57 MAXIMUM POTENTIAL WITHOUT 3 - 150 153 87 0.57 MAXIMUM POTENTIAL WITHOUT 3 - 147 150 28 0.19 INTERMEDIATE 3 - 144 147 56 0.38 HIGH INPUT 3 - 140 143 82 0.57	CROP : BANANA PLANTAIN	VERY HICH AND HIGH	MODERATE	LOW	TOTAL AREA	TOTAL PRODUCTION	AVERAGE YIELD		
MAXIMUM POTENTIAL WITH CONSERVATION MEASURES 3 - 157 160 30 0,19 INTERMEDIATE INPUT 3 - 157 160 61 0,38 HIGH INPUT 3 - 150 153 87 0.57 MAXIMUM POTENTIAL WITHOUT CONSERVATION MEASURES - 147 150 28 0.19 INTERMEDIATE INPUT 3 - 144 147 56 0.38 HIGH INPUT 3 - 140 143 82 0.57		'000 Ha	'000 Ha	'000 Ha	'000 Ha	'000 MT	MT per Ha		
LOW INPUT 3 - 157 160 30 0,19 INTERMEDIATE 3 - 157 160 61 0,38 HIGH INPUT 3 - 150 153 87 0.57 MAXIMUM POTENTIAL WITHOUT CONSERVATION MEASURES - 147 150 28 0.19 LOW INPUT 3 - 144 147 56 0.38 HIGH INPUT 3 - 140 143 82 0.57	MAXIMUM POTENTIAL WITH CONSERVATION MEASURES								
INTERMEDIATE 3 - 157 160 61 0.38 HIGH INPUT 3 - 150 153 87 0.57 MAXIMUM POTENTIAL VITHOUT CONSERVATION MEASURES J J 150 153 87 0.19 LOW INPUT 3 - 147 150 28 0.19 INTERMEDIATE INPUT 3 - 144 147 56 0.38 HIGH INPUT 3 - 140 143 82 0.57	LOW INPUT	3	-	157	160	30	0,19		
HIGH INPUT3-150153870.57MAXIMUM POTENTIAL WITHOUT CONSERVATION MEASURES-150153870.19LOW INPUT3-147150280.19INTERMEDIATE INPUT3-144147560.38HIGH INPUT3-140143820.57	INTERMEDIATE INPUT	3	-	157	160	61	0,38		
MAXIMUM POTENTIAL WITHOUT CONSERVATION MEASURES S <t< td=""><td>HIGH INPUT</td><td>3</td><td>-</td><td>150</td><td>153</td><td>87</td><td>0.57</td></t<>	HIGH INPUT	3	-	150	153	87	0.57		
LOW INPUT3-147150280.19INTERMEDIATE INPUT3-144147560.38HIGH INPUT3-140143820.57	MAXIMUM POTENTIAL WITHOUT CONSERVATION MEASURES								
INTERMEDIATE INPUT3-144147560.38HIGH INPUT3-140143820.57	LOW INPUT	3	-	147	150	28	0.19		
HIGH INPUT 3 – 140 143 82 0.57	INTERMEDIATE INPUT	3	-	144	147	56	0.38		
	HIGH INPUT	3	-	140	143	82	0.57		

DEGRADATION HAZARD

	Z AREA LOSS	Z REDUCTION AREA		7 PRODUCTION LOSS	Z REDUCTION IN PRODUCTION	
		SOIL EROSION	WATER EROSION		SOIL EROSION	WATER EROSION
LOW INPUT	6.5	_	100,0	6.2	-	100,0
INTERMEDIATE INPUT	8.2	-	100.0	7.8	-	100.0
HIGH INPUT	6.1	-	100.0	5,8	-	100,0

1975 : Area 32000 Ha, Yield 2,57 MT/Ha

KENYA : BANANA/PLANTAIN

TABLE A14.

	PRODUCTI	VITY CLASS	5	PO		
CROP : SUGAR CANE	VERY HIGH AND HIGH '000 Ha	MODERATE 'QOO Ha	LOW '000 Ha	TOTAL AREA '000 Ha	TOTAL PRODUCTION 'OOO MT	AVERAGE YIELD MT per Ha
MAXIMUM POTENTIAL WITH CONSERVATION MEASURES						
LOW INPUT	8	19	156	183	45	0,24
INTERMEDIATE INPUT	10	45	366	422	343	0,81
HIGH INPUT	13	71	946	1030	889	0,86
MAXIMUM POTENTIAL WITHOUT CONSERVATION MEASURES	,	·				
LOW INPUT	7	147	79	161	35	0,22
INTERMEDIATE INPUT	9	33	355	397	316	0.80
HIGH INPUT	9	53	954	1018	835	0,82
DUGDADAGTON						

DEGRADATION HAZARD

	Z AREA LOSS	Z REDUCTION AREA		7 PRODUCTION LOSS	Z REDUCTION IN PRODUCTION	
		SOIL EROSION	WATER EROSION		SOIL EROSION	WATER EROSION
LOW INPUT	12.5	0,6	99,4	20.9	0.3	99.7
INTERMEDIATE INPUT	5,9	1.1	98,9	7,9	0,3	99.7
HIGH INPUT	1,2	3.5	96.5	6.1	0,1	99,9

1975 : Area 33000 Ha, Yield 6,32 MT/Ha

KENYA : SUGAR CANE

	PRODUCTI	VITY CLASS	5	POTENTIAL			
CROP : OIL PALM	VERY HIGH AND HIGH 'OOO Ha	MODERATE '000 Ha	LOW '000 Ha	TOTAL AREA '000 Ha	TOTAL PRODUCTION 'OOO MT	AVERAGE YIELD MT per Ha	
MAXIMUM POTENTIAL WITH CONSERVATION MEASURES							
LOW INPUT	7	-	433	440	71	0,16	
INTERMEDIATE INPUT	7	-	433	440	198	0,45	
HIGH INPUT	7	-	418	425	195	0.45	
MAXIMUM POTENTIAL WITHOUT CONSERVATION MEASURES	·						
LOW INPUT	7	-	412	419	67	0,16	
INTERMEDIATE INPUT	7	-	406	413	185	0.45	
HIGH INPUT	7	-	3 9 8	405	184	0,45	

DEGRADATION HAZARD

	Z AREA LOSS	Z REDUCTION AREA		Z PRODUCTION LOSS	REDUC	Z TION IN UCTION
		SOIL EROSION	WATER EROSION		SOIL EROSION	WATER EROSION
LOW INPUT	4.9	-	100.0	5.4	-	100.0
INTERMEDIATE INPUT	6.3	_	100.0	6.8	-	100,0
HIGH INPUT	4.7	-	100.0	5.6	-	100.0

-1975 : No Production

KENYA : OIL PALM

	PRODUCTI	IVITY CLASS		POTENTIAL			
CROP : LIVESTOCK	VERY HICH AND HIGH '000 Ha	MODERATE	LOW '000 Ha	TOTAL AREA '000 Ha	TOTAL PRODUCTION '000 MT	AVERAGE VIELD MT per Ha	
MAXIMUM POTENTIAL WITH CONSERVATION MEASURES							
LOW INPUT	7638	10509	15335	33482	9610	0.29	
INTERMEDIATE INPUT	7638	10509	15335	33481	1 92 48	0.58	
HIGH INPUT	7610	10173	11820	29603	36042	1,22	
MAXIMUM POTENTIAL WITHOUT CONSERVATION MEASURES							
LOW INPUT	4003	7626	21275	32904	7532	0.23	
INTERMEDIATE INPUT	5433	9153	18420	33008	16805	0.51	
HIGH INPUT	6044	8574	14522	29139	32040	1.10	

DEGRADATION HAZARD

.

	Z AREA LOSS	Z REDUCTION AREA		7 PRODUCTION LOSS	Z REDUCTION IN PRODUCTION	
		SOIL EROSION	WATER EROSION		SOIL EROSION	WATER EROSION
LOW INPUT	1,7	5.5	94.5	21.6	62,5	37,5
INTERMEDIATE INPUT	1.4	1.3	98.7	12,7	47,6	52.4
HIGH INPUT	1.6	0.8	99 .2	11.1	21,5	78,5

KENYA : LIVESTOCK

APPENDIX B - RESULTS

ASSESSMENT OF CROP PRODUCTION AND POPULATION SUPPORTING CAPACITY

ALTERNATIVE 1

PRESENT CROP-MIX CONSTRAINT

TABLES	B1-B3	=	LOW,	INTERMEDIATE CONSERVATI	and ION	HIGH	INPUT	WITH
TABLES	B4-B6	-	LOW,	INTERMEDIATE	and	HIGH	INPUT	

ALTERNATIVE 2

WITHOUT CONSERVATION

MAXIMIZE CALORIE PRODUCTION WITH PROTEIN CONSTRAINT

TABLES	в7−в9	=	LOW,	INTERMEDIATE	and	HIGH	IMPUT	WITH
				CONSERVAT	TION			

TABLES	B10-12	=	LOW,	INTERMEDIATE	and	HIGH	INPUT
			V	WITHOUT CONSEN	RVAT	ION	

£)) 10
ef 6 1 mv	
2 2	
114	
۲×	M N
11.110	11 11
L H H H	2 1 2 1
۲. ۲	
имани	
ร	

ج 5 م	12693752. 8118139. 0.223 0.142 0.640	56991 56315 56315 43 43 6874432 162079 38	69180 9118 5775298 152857 152857 19577 19577 19477 67119 67119
YEAR ■ 1975 HODF ■ 3 LEVEL ■ L NUMAER UF ZONFS THELUDED NUMBER OF ZONFS SKIFPED	TUTAL POPULATION POTENTIAL PUPULATION PRESENT DENSITY POTENTIAL DENSITY POTENTIAL DENSITY	TOTAL AREA Total Abricultural Land Tutal Irrigaten Land Total Calorif Pronuction Total Protein Prinuction Calorie/Protein Ratio	THRIGATED CALORIF PRDDUCTION THAIGATLD PHOTFIN FRODUCTION HAINFED CALORIF PHONUCTION RAINFED PHOTFIN PHONUCTION LIVESTOCK CALORIE PHONUCTION LIVESTOCK PHOTFIN PHONUCTION NS-HANGE LAND CAL PHODUCTION NS-HANGE LAND PHI PHODUCTION NS-HANGE LAND PHI PHODUCTION SURPLUS PROTFIN

100 100 100	
STOCK CALOPIE PRODUCTIO Stock Profetu Productio Ange Land Cal, Productio Ange Land Pri, Productio Lus Protein	- ALLOCATED LAND - CHOP LAND - Range Land - Effetive Land - Effetive Land - Fallom Land - HS-Paing Land
L I VE L I VE NS-RJ NS-RJ SURPL	T0TAL T0TAL T0TAL T0TAL T0TAL T0TAL

37606. 11137 26469 27978 5339 348

••
C
►
ŝ
-
<
►
S
2
ē
<u>e</u>
·ن

- ر	۔ ی بے س	Н Н Г Этк 44.0 5.1
_	121	
_	1178	399 B 349 9 1172
	441	163.2 92.4 4MI
m	-	0.5 2.4 1
÷		b.1 4.3 3
39	r	0 B 34.9
5	4	38.3 26.2 4
5		77.0 14.7
	_	0°N N.0
2	_	2.5 6.U
Ur.	-	6°9 6°5
α,		4 B B C
5	1941 1	3982.5 6273.9 149F

TABLE B1 ASSESSMENT OF CROPS PRODUCTION AND POPULATION SUPPORTING CAPACITY

- present Crop mix constraint

LOW input with conservation

¢	
NULUIN	
2	Ē
114	
CONNTRY	
F ŋR	
Y UAMMU.	

1975	
¥	,
2	1

*	•
ب	
ā	1
Ξ	

LEVEL = 1 Number of Zan_fs Included Number of Zanfs Sktipla

ňs

12693752, 23593794, 0,225 9,009 1,036	56991. 56.315. 43. 19/33652. 520477.	691449 9117 9123652 1666852 195238 19229 122953 190499	37686. 11139. 26477. 26256. 3183. 2283.
TOTAL POPULATION Potential Population Present density Putential Density Potential /Tutal Population	TOTAL AHFA TUTAL AGRICULTURAL LAHD TUTAL HRIGATED LAHD Futal Calumif Production Tutal Protfin Production Calorif/Photfin Ratio	IRRIGATED CALMPTE PRUMUCTION JERIGATED PRUTELN PRODUCTION RAINED CALORTE PRODUCTION RAINED FROTE PRODUCTION LIVESTOCK CALORTE PRODUCTION LIVESTOCK PROTELN PRODUCTION NS-RANGE LAND CAL PRODUCTION NS-RANGE LAND PRT_PRODUCTION NS-RANGE LAND PRT_PRODUCTION SURPLUS PROTELN	TOTAL ALLUTATED LAHD TUTAL CKHF LAHD Total Range Land Total Fffettur Land Total Fallom Lahd Tutal NS-kathe Land

CROP STATISTIC 1

T CHUPLAND	1.148	5.867	61.925	15,555	0.975	1.295	2.156	4 . Mal	2.04.1	585.8	N.154	0.631	N.UGU
X EFF,LAND	0.24N	4.846	142.8	1,062	0.134	9.178	M.296	0.555	0.414	A.BAU	B.N18	R.61.8.7	85.252
CALORIES	235377.	664837	11615288.	928908.	245428.	298698.	192952.	8 56447.	2181843.	195216.	6251.	127958.	14525A.
PRODUCTION	76.92	215.16	3552.38	272,91	94.01	95.43	53,28	519.27	1195.66	24.34	1.88	42.35	11638.21
-	0,3	139.6	496.5	548°9	26.1	35.9	41.4	39.6	21.0	7.9		14.5	14788.1
T	47.2	91.9	789.5	61.9	9.9	4.2	34.9	17.6	15.5	4.7	в.я	a • 5	6273.9
Ŧ	15.6	38.5	523,2	71.1		7.1	1.4	61.9	78,2	5.9	ы . Я		3090.0
НХ	1.7	1.7	174.6	44.2	9.4	3.1	6,6	42.9	154.5	4.1	0.61	ц ° с	21.3
INTAL	61 . R	227.7	7.1046	526.1	37.9	50.3	AJ.7	156 A	215.5	22.6	5.2	24.5	P. 5 1 5 5
NR	-	a,	-1	ų	~	•0	•	10	11	15	16	11	61

TABLE B2. ASSESSMENT OF CROP PRODUCTION AND POPULATION SUPPORTING CAPACITY

- Present Crop-mix Constraint

Intermediate input with conservation

ø	1
10N	
REG	
2	Ī
114	
THY	
COUL	
F (JR	
LEY .	
3(IMH)	

	J.2 A	1,2693752。 46728169。 78,223 88,828 3,681	56991. 56315. 43. 49569416. 1038334.	691888 9118 91886 938866 1453696 14536 11711 18699 18699 568569	33136. 18513. 22623. 25077. 1244. 3238.
YÉAR = 1975 HADE = 3 LEVEL = 11	NUMBER OF ZONES INCLUDED Number of Zones Skipped	TOTAL PUPULATION Potential Population Present density Povential density Potential/Total Population	TOTAL AREA Total Agricultural Land Total Irrigated Land Total Calorie Production Total Protein Production Calorie/Protein Ratio	IRFIGATED CALORIE PRODUCTION IRRIGATED PROFFIN PRODUCTION RAINFED CALORIF PRODUCTION RAINFED CALORIF PRODUCTION LIVESTOCK CALORIF PHODUCTION LIVESTOCK PROFFIN PRODUCTION NS-RANGE LAND PRT_PRODUCTION NS-RANGE LAND PRT_PRODUCTION NS-RANGE LAND PRT_PRODUCTION	TOTAL ALLOCATED LAND Total Crop Land Total Range Land Total Effective Land Total Effective Land Total Fallom Land Total NS-Range Land

-
J
-
-
-
-
H-
5
CROP

X EFF.LAND X CROPLAND	c19,1 565.0	1,120 5,974	12,942 69,056	1,778 9.444	0,172 0,915	6,228 1,217	R.289 1.117	0,651 3,474	1,050 5.605	R.009 R.476	6.620 0.100	8,126 N.682	BI . 259 R. MAN
CALORIES	623757 .	1919286.	25547714.	1455898.	526530.	100/429.	223118.	1504431	3674855.	303318.	9305	249951	1453696.
PRODUCTION	203.84	621.13	7812.75	426.71	173.43	323.20	16.18	514.21	1576.51	50.76	2.A2	63, 32	21219.69
د.	8.8	15.9	1396.8	248.2	29.3	23.1	20.4	15.7	2.8	2.6	5.2	26.3	11706.8
Ŧ	41.9	19.4	938.3	97.5	1.8	1.8	22.5	16.8	59.6	9.6	9°9	0.3	11.9150
Ŧ	45.4	19.1	145.0	57.8	11.1	16.5		78.6	73,6	1 6	0.0	6 S	5000,2
нл	6 . 5	54,6	267.7	55,3	2.2	18.4	0,0	65,1	137.1	7.1	A.0	8,8	21.3
101AL	93.8	289.7	3349.8	458.8	44.4	59,8	54.2	165.5	271.7	2],1	2°5	1.12	21027.5
R	-	~	~	ŝ	~	•	œ	8	11	15	16	17	61

AND	~
DP PRODUCTION	RTING CAPACITY
OF CRO	SUPPOI
ASSESSMENT (POPULATION !
69	
TABI,E	

- Present Crop-mix Constraint

High input with conservation

4	
HEGION	
z	
114	i
NTRY	
50	-
FGR	
SUMMARY	

ASSESSMENT OF CROP PRODUCTION AND POPULATION SUPPORTING CAPACITY

TABLE B4.

Low input without Conservation

- Present Crop-mix Constraint

	32.00	12693752. 3917000. 8.223 8.469 8.389	56991. 56315. 43. 1316916. 77389.	691889, 9118, 2219216, 48248, 354695, 17497, 51284, 21916, 21916,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
YEAR = 1975 Mude = 13 Level = L	NUMBER OF ZONES THCLUPED Number of Zones skipped	TOTAL POPULATION Potential Prpulation Present density Potential density Potential density	TOTAL ARÉA Total Agricultural Land Total Ihrigated Land Total Calurie Prouvetion Total Pritein Production Calorie/Phutein Ratio	IRRIGATED CALMRIE PRNDUCTION IKHIGATED PROTEIN PHOPUCTION RAINFED CALMRTE PHOPUCTION RAINFED PROTEIN PRNDUCTION LIVESTOCK CALMRIE PRODUCTION LIVESTOCK PHOTEIN PHODUCTION NS-RANGE LAND PRT, PHODUCTION NS-RANGE LAND PRT, PHODUCTION SUMPLUS PROTEIN	TOTAL ALLDCATED LAND Total Cade Land Total Range Land Total Effective Land Total Effective Land Total NS-Range Land

. <mark></mark>	
31	
A L	
51	
CROP	

CALORIES X EFF ₆ land X Chupland	9.048 B.U37 8.568	50572, 0.216 3,235				6/10473, 8,434 5,426 109989, 0,436 5,521	187989 8,434 6,466 189989 8,434 6,466 19989 8,436 6,721 1988989 9,051 8,757	6006578 6.434 6.466 189989 6.454 6.466 198899 6.451 6.721 19888 6.051 6.751 86578 0.598 7.598	60067 6434 6446 189989 6456 64821 199888 6451 64821 86578 7598 182478 7598	600000 00 00 00 00 00 00 00 00 00 00 00	6106.1 6.434 6.436 189989 0.4356 6.461 19988 0.456 6.821 19989 0.456 6.821 19989 0.456 6.751 0.578 0.578 1.598 0.578 0.518 1.598 182478 0.732 10.942 182478 0.732 10.942 31546 0.241 3.466	6/10/17 8.434 6.464 187949 0.456 6.421 187949 0.456 6.421 19848 0.456 6.421 16278 0.508 1.598 16278 0.508 1.598 16278 0.712 10.942 182478 0.732 10.942 31536 6.241 5.408 20129 0.449 4.75	6,000 6,000 6,000 189989 6,05 6,05 19088 6,05 6,05 19089 6,05 6,05 19089 6,05 6,05 19089 6,50 7,59 182978 8,50 7,59 1529 0,71 8,99 1536 8,78 9,942 1536 0,712 19,942 31536 0,241 8,79 5129 0,49 9,218	670047 6.434 6.436 189999 8.434 6.486 189999 8.434 6.486 18989 8.434 6.71 86578 8.598 7.598 86578 8.598 7.598 86578 8.598 7.598 86578 8.598 7.598 86578 8.598 7.598 86578 8.598 7.598 86578 8.598 7.598 86578 8.598 7.598 86578 8.598 7.598 86578 8.598 7.598 81546 8.284 5.778 81546 8.284 5.718 81547 8.284 5.718 81547 8.284 5.718 81547 8.819 9.751 8157 8.799 9.176	670473 6.434 6.436 189989 8.434 6.466 19080 8.434 6.71 19080 8.456 6.71 182478 8.456 6.71 86578 8.598 7.598 182478 8.598 7.598 182478 8.736 9.578 182478 8.736 9.428 182478 8.736 9.428 231536 8.736 9.428 31536 8.736 9.428 31536 8.737 9.428 31539 8.732 1.79 31539 8.732 9.435 31317 0.624 9.435
PRODUCT ION	3,22	16.37	261,50		11.85	17.85 36,23	11.85 36,23 6,18	17.85 36,23 6,18 24.82	17,85 36,23 6,18 24,42 69,65	17.85 36.23 46.18 24.18 24.25 192.25	17.85 36.23 46.18 6.4 6.4 6.4 6.4 6.5 75 8.75 8.75	17.85 36.23 26.24 2.69.65 2.25 2.25 2.25 2.25 2.25 2.25	20 20 20 20 20 20 20 20 20 20 20 20 20 2	17.85 86.23 86.24 86.25 82.25 8.75 8.75 1.1 1.1	1, 25 4, 1 4, 2 4, 2 4, 2 4, 2 4, 2 4, 2 4, 2 4, 2
	1.1	41.8	613.1			119.8	6.11 6.11			1	10041 100000000				
E	•••	5.5	1.14.7	70 6				6	1 3 1 4 6 9 1 4 9 1 4 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1	ດອດເຊຍອດ ເບີ້ອດເຊືອດ ເບີ້ອດເຊືອດ ເບີ້ອດເຊືອດ ເບີ້ອດເຊືອດ ເບີ້ອດເຊືອດ ເບີ້ອດເຊືອດ ເບີ້ອດເຊືອດ ເບີ້ອດເຊືອດ ເບີ້ອດເຊຍອດ ເບີ້ອດ ເບີ້ອດ ເບີ້ອດ ເບີ້ອດ ເຫຼືອດ ເບີ້ອດ ເຫຼືອດ ເຫຼືອດ ເຫຼືອດ ເຫຼືອ ເຫຼີ ເຫຼືອ ເຫຼືອ ເຫຼືອ ເຫຼືອ ເຫຼືອ ເຫຼືອ ເຫຼືອ ເຫຼືອ ເຫຼືອ ເຫຼືອ ເຫຼືອ ເຫຼືອ ເຫຼືອ ເຫຼືອ ເຫຼືອ ເຫຼືອ ເຫຼືອ ເຫຼືອ ເຫຼືອ ເຫຼີ ເຫຼີອ ເຫຼີອ ເຫຼີອ ເຫຼີ ເຫຼີອ ເຫຼີອ ເຫຼີອ ເຫຼີອ ເຫຼີອ ເຫຼີອ ເຫຼີອ ເຫຼີອ ເຫຼີອ ເຫຼີອ ເຫຼີອ ເຫຼີອ ເຫ	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			, N ∩ 6 N − 6 6 7 6 7 6 7 N − 6 6 7 6 7 6 7 6 7	9 ~ 9 ~ 9 ~ 9 ~ 9 ~ 9 ~ 9 ~ 9 ~ 9 ~ 9 ~
T	1.4	13.2	60.3	9.9		- 271 	- 27 	1 - G		₩~₽₹₩ ₩~₽₹₩ ₩~₽₩₩		- M - C - C - M - C - M - C - M - C - M - C - M - C - M - C - M - C - M - M		₩-9 ₩-9 ₩-9 ₩-9 ₩-9 ₩-9 ₩-9 ₩-9 ₩-9 ₩-9	N-9 N-9 N-9 N-9 N-9 N-9 N-9 N-9 N-9 N-9
НЛ	8,8	8 8 8	2,2	8.8	•	2.4	କ ୯ ୧ ୧ ୧	0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
TOTA _{1.}	10.5	60.5	AID.3	121.4		127.7	127.7	127.7	127.7	127.7 124.2 198.2 298.8 298.8	24 24 24 24 24 24 24 24 24 24 24 24 24 2				
۲.	-	ŝ	~	Ś		-	~ 0	~ 80	~ * * *	~ 8 6 8 -	~ 8 0 9 - 4	~ 8 6 8 - 4 5	~ 9 ~ 8 - 4 5 9	~ 8 4 8 - 4 16 4 7	~ 8 4 8 - 4 5 4 2 2 8

TABLE B5. ASSESSMENT OF CROP PRODUCTION AND POPULATION SUPPORTING CAFACITY - Present Crop-mix Constraint Intermediate input without conservation					DH CALDRIES X EFF.LAND X CROFLAND	69913, 8,896 1,163 1 124429, 8,168 2,137	1 4773547, 4.546 55,448		381286, B, 348 3, 654	1 163046, 0,9054 0,992 266227 8.434 5.156	6,538 6,584				12/0/00 0.594 1.650	194429. 91.574 И.ИИИ
					PKOUNCT 10	6 22.65 5 46.27	5 1459,89	6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	99.24	4 52.31 4 73.87	8 234.55	5 642,92	0 15.54	2 1.64	14°.44 14°.44	9 11626.35
					-	5 29.			. 17.	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	41.		7		169.	17619,
					I	11.	289. 2		.0		99	- 6 0	-	e .	- 6	5878.
32 0 12693752 12221597 12221 0,222 0,222	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	69188 9118 199185 199185 199185 19189 127388 127388	37463 7694 29769 29769 20563 2761		T	1.6 10.5	160.9	15.9	4		52.1	9°001	. œ.	6 1 6 1		9.2145
THCLUDED SKTPPED TION POPULATION	AL LAND Land Opuction Opuction Ratio	E PRODUCTION N PRODUCTION PRODUCTION PRODUCTION E PRODUCTION N PRODUCTION L PRODUCTION L PRODUCTION T PRODUCTION	LAND LAND And		НХ	2 G	50° 50° 50° 50° 50° 50° 50° 50° 50° 50°	-		2 ° 2	19,3	5.5	4.1	80	2 0 2	84.7
EAH 1975 DDE 13 EVEL 13 JMRER OF 20NES JMRER OF 20NES JTAL POPULATION DTENTIAL POPULATION DTENTIAL DENSITY DTENTIAL DENSITY DTENTIAL DENSITY	ITAL AREA Mal Agricultur Mal Igricaten Mal Protein Pru Mal Protein Pru Lorie/Protein Pru	RAIGATEN CALNER HAIGATEN PROTFI LINEED CALNREE LINEED CALNREE LINEEO PROTEIN VESTOCK CALNE VESTOCK PROTEIN VESTOCK PROTEIN L'HANGE LAND PR LANDE PROTEIN	ITAL ALLOCATED STAL CROP LAND Ital Range Land Stal Effective Ital Effective Stal N3-Range L	OP STATISTIC I	101 AL	28.8 51.4	1298.4	60°-94	87.8	124.1	153.6	601).4 87_2	10.3		169.1	26155.4

SUMMARY FOR COUNTRY 114 IN REGION &

- 47 -

YEAR Hode Lével	1975 11 11						Mang 94 03 -		
NUMBER Number	OF ZONES INCLUDED Of Zones Skipped	32 0				• 68 378V1	POPULATION	N SUPPORTING CAPAC	UN I AMU
T0TAL P P0TENTI PRESENT P0TENTI P0TENTI	OPULATÌON Al Population 1 densițy 1al density 1al density	12693752 267463722 867463722 86923 8693 8693 8693 8693 8693 8693 8693 869					High Inpu	rop-mix constraint t without Conserva	tion
T01AL A 101AL A 101AL 1 101AL 1 101AL C 101AL P Calorie	AREA GARICULȚURAL LAND (Rrigated Land Alorie Production Protein Production (Protein Ratio	36991 563113 563113 726499 726499 726499 726499 726499 726499 726499 726499 726499							
IRA1641 IRA1641 RAINFE0 RAINFE0 RAINFE0 LIVE810 NS-RANG NS-RANG NS-RANG	TED CALORIE PRODUCTIO TER PROTEIN PRODUCTIO CALORIE PRODUCTION PROTEIN PRUDUCTION PROTEIN PRUDUCTION ICK CALORIE PRODUCTION ICK PROTEIN PRODUCTION ICK PROTEIN PRODUCTION ICK LAND PRT, PRODUCTION ICK LAND PRT, PRODUCTION	Z 2 2 2 2 2 2 2 2 2 2 2 2 2							
1014L A 1014L C 1014L R 1014L R 1014L R 1014L R	ALLOCATED LAND Rop Land Ange Land Infective Land Algmange Land Algmange Land	32997 32997 25722 25922 26922 2124							
CROP 51	ATIBTIC F								
AR	TOTAL VH	Ξ.	£	-	PRODUCTION	CALORIES	X EFF.LAND	X CROPLAND	
	45.6 2.8 114.3 21.9	2.8 46.8	38.8 29.2	1.9	72.48 261.98	221794. 889513.	0,175 0,453	1.232 J.067	
~ ~	2568.0 71.5 214.7 1.9	233.9	460.1	1788.6	3062,26 132,72	12695851. 452571.	9.727 8.813	69,376 5,799	
~ @		6 . 5 . 5	5 G 6 G	35°8	144,68	439248.	6.182 0.203	1,297 1,49	
	6.6 6.6 6.6				122.48	441119	6.412	2,942	
11	242.0 54.5		81.4	13.6	96.366	2321629.	116.8	6.537	
				26.5	17.50	64151.	0.100	A, 716	
<u>.</u>	21.0 4.1 5.2 6.0		6 6 N	4 6 2 6	20.52 20.52	210766. 9386.	6 ° 6 0 6	8, JO 7	
1		-01			92.08	278654		1.544	
	22700.0 51.7	8°9 3519,8	8.8 5329.3	56.7 14014.0	61,28 22864,29	541755. 1547653.	65.98F	0.989	

SUMMARY FOR COUNTRY 114 IN REGIOM 6

୍ୟ	- 36
	- 0
	- 11
- 2	н
·:⊃	- 15
-	- 14
ي ا	18
ц,	- 14
x	- 11
	. 11
2	11
F	- 11
	11
4	2
-	n
	- 15
	18
>	18
54	- 14
7	. 10
	п
Ξ	40
C	- 43
c	.11
x	м
S	D
L .	н
	11
>	ы
£	н
<	4
Ξ.	м
Ξ.	15
\supset	48
ŝ	u,

1975	~	-
μ	н	u
YEAR	HODE	LEVEL

3 2 0	12693752. 10455523. 104555223. 104223. 183 183 183 0.824	55991. 56315. 413. 8853736. 193684.	691800. 9118. 7758432. 169662. 397256. 19597. 308. 5249. 50613.	37696. 11128. 26478. 28478. 28472. 283478.
NUTTER CF ZONFS INCLUDED NUTTER CF ZONES SKIPPED	TUTAL POPULATION Potustial Pupplation Patustal Pupsty Potuntial Ocusity Potuntial/Tutal Population	TGTAL AREA TDIAL AGRICULTUFAL LAND TATAL IRRIGATED LAND TATAL CALORIE PRODUCTION TOTAL CALORIE PRODUCTION TUTAL FROTEID PRODUCTION CLALORIE/PROTFIN RATIO	IFRIGATED CALGRIE PRODUCTION IRRIGATED PROTELY PRODUCTION RALMED CALORIE PRODUCTION RALMED FROTETY PRODUCTION RALMED FROTETY PRODUCTION IVESTOCK CALURIE PRODUCTION IVESTOCK PROTELY PRODUCTION US-RANGE LAND PRT, PRODUCTION US-RANGE LAND PRT, PRODUCTION US-RANGE LAND PRT, PRODUCTION US-RANGE LAND PRT, PRODUCTION	TOTAL ALLOCATED LAND Total Crop Land Total Range-Land Total Effective Land Total Fallow Land Total NS-Kange Land

ASSESSMENT OF CROP PRODUCTION AND POPULATION SUPPORTING CAPACITY	Mawimize calories with Protein Constraint
B7.	1
TABI.E	

- Low input with Conservation

LAND X CROPLAND	89 14,523	69 12,299	85 27,005	28 0.196	21 5.012	51 6.354	ຣ໌ ເ	97 4.643	58 :9.171	64 0.445	69 0.476	88 6,465	15 0,200
X EFF,	2.0	1,7	3,8	5°.0	1.9	0.0	• •	6,6	2.7	0,0	0.0	6.0	85.6
CALORIES	781410.	249043.	2357032.	2029.	834356	33516.	304816.	476257	2151105.	25244	58677.	482347.	397256
PRODUCTION	255,36	80.60	724.80	0.77	274 82	10.75	B4 . 53	162,54	522,82	7,00	9,32	54.56	5813.78
بـ	19.4	503.7	485.8	B.1	28.7	10.5	178.5	30.8	103,8	16.2	0.0	278.6	14980.7
Σ	425.2	0.0	293.7	0.81	45.8	51	157.6	21.2	195.4	0.0	0.0	6.3	6273.9
I	150.2	в <u>,</u> 2	263.3	0,0	95,8	с. С	24.45	75.8	317,4	ତ ୍ ଟ	17.2	2.7	3099.0
нл	0°0	9 . 9	63.2	ං ං	37.0	2.7	ນ ີ ຄ	7.0.5	163.7	0°0	2.4	0 . 6	23.3
TGTAL	594 . 6	503.7	1196.9	θ . 1	202	14.5	362.5	198.4	785.2	18.2	19.6	29 1. 3	24575.8
ик		~1	m	ഗ	2	ġ	6	01	11	14	15	53	6

CROP STATISTIC :

1

5.1.5	АКУ К., С <u>1947687 114 ТИ</u> В какалалалыканалындынан							
YCAS MORE LLVL	1 = 1975 1 = 1.					TABLE B8. AS	SESSMENT OF CR	OP PRODUCTION AND
AULT RUMS	LEN OF ZAMES INCLUDED LER OF ZOMES SKIPPED	де В				2 ±	rumitum suppo Ximite calorie	KTTING CAPACITY 38 with Protein Constraint
7014 7014 7015 7016 7016 7016	L POPULATION MIAL POPULATION 1647 DEMSITY MIAL CENSITY NIAL CENSITY	12693752. 29225814. 0.223 0.523 2.5322 2.392				I	termediate inp	out with Conservation
1014 1014 1014 1014 1014 1014 1014 1014	L AREA L AGRICULTURAL LAND L IRRIGATEN LAND L Calurie Production L Protein Production Rie/Protein Patio	50991, 55315, 43, 24748426, 24748426, 43, 43,						
11441 1441 1441 1441 1441 1441 1441 14	GATED CALCRIE PRODUCTION GATED PROTEIN PRODUCTION FED CALORIE PRODUCTION FED PROTEIN PRODUCTION STCCK CALORIE PRODUCTION STCCK CALORIE PRODUCTION ANGE LAND CAL, PRODUCTION ANGE LAND PRT, PRODUCTION ANGE LAND PRT, PRODUCTION LUS PROTEIN	691800 9118 23140866 525336 795236 39229 113295 15589 165376						
101A 101A 101A 101A 101A 101A	L ALLUCATEN LAND 2 CROP LAND 1 Rayge Land 1 Effective Land 1 Effective Land 1 Falloy Land 1 NS-Nange Land	37686 11130 26477 26477 28552 3188 2109						
CROP	STATISTIC :							
NR	TOTAL VH	I	£	٦	PRODUCTION	CALORIES	X EFF.LAND	X CRUPLAND
-4 (1503.4 5.0	431.4	8 Å 2 • 9	264.0	1546.87	4730986.	5.265	35,983
u m	857.4 159.2	268.5 268.5	206.5	0.0 223.0	9.67 1779,19	29689 . 5817958.	0, 820 3 683	0,139 20,521
5 r	13.1 U.C 387.1 4P.B	0.0 156.3	5.1	8.0	4 6 8 4 7 9 7 5	15970	0.846	8,312 9.24
8	5.5	2.5	1.6	0 3	54,98	171116.	0.632	S 200
6 E		16.3	91.4	111.7	154.42	556517.	0,768 9,645	5,251
23	603.1 236.6	222.0 232.0	96.96	42.6	2291.11	5340588.	2.130	0,240
रू ए 	3.8 5.1 5.2	7.8	5.6	4 N C		15652	0.015	668.0
12	34°3 36 88	24•1 1-9	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.07 1.9	80.54 10.63	518855 . 31804.	242 0	2,016 0.091
13	207.2 0.0		0.0	204.5	129.43	1144169	0,726	
	0,10 P.C.040	9.44.42	24.6120	1 . 007 4 1	1202011	, 963641	195,60	3, 540

MORE A I Ulvel a H								
rutets OF ZORES IF Number OF ZONES Sr	16L ⁰ 4ÊÛ (1PPEO	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				TABLE B9.	ASSESSMENT OF POPULATION SU	CRUP PRODUCTION AND PPORTING CAPACITY
TCTAL POPHLATION POTENTIAL POPHLATI POTENTIAL POPHLATI POTENTIAL DENSITY POTENTIAL JEUTAL PO	טיט. ניטין ניטין	12693752 57233752 6.223 1.024 4.509				•	Haximize calo High Input wi	ries with Protein Constraint th Conservation
ТОТАЦ АКЕА ТОТАЦ АКВІСЧТИВА ТОТАЦ ТАВІБАТЕD ЦЛ ТОТАЦ САЦЗКІЕ РКОО ТОТАЦ РЕОТЕТИ РЖОО ТОТАЦ РЕОТЕТИ РЖОО САЦОРТЕ/РКОТЕТИ КЛ	, LAND AND DUCTION DUCTION ATIO	56991. 56315. 43. 43. 43. 1153672. 43.						
IRRIGATED CALORIF IRRIGATED CALORIF RAINFED CALORIE PF RAINFED FROTEIN PF LIVESTOCK CALOPIE LIVESTOCK PHOTEIN NS-KANGE LAND FRTNS-KANGE LAND FRTSURFLUS PHOTEIN	PRODUCTION PRODUCTION RGUCTION RGUCTION PRODUCTION PRODUCTION PRODUCTION	691800 9118 9118 45949836 1034594 1455169 71783 36474 36474 36177						
ТОТАС АLLOCATED L/ Total Cade Land Total Namge Land Total Refective Land Total Reledi Land Total NS-Range Lan		2002 2002 2005 2005 2005 2005 2005 2005						
CROP STATISTIC :								
NR TOTAL	нл	I	£	Ŀ	PRODUCTION	CALORIES	X EFF.LAND	Z CROPLAND
1 1794.2	7°0	643.4	903,9	238.4	3118.59	9542887.	6,909	36,368
2 57.8 3 1515.6	4.9 230.8	11.7	15•2 376 . 8	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	105.65	15346554.	0 140 5,836	0,151 30,735
5. 55. 5	0	0	14.2	אין 1923 1931	15.67	53442	0,007	0_455 2_455
8 250 1	76.4	5 ° 2 7 1	54.1	1.0	1777.66	5546955	280°0 582	5.173
9 82.7	a. 0	14.7	37.8	30.3	112,46	435364	0,319	1,676
10 246.9	149.1	A . 	7.5 20 5	5 t 1	96°768	2040647. 4534141	164.0	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
15 198.1	7.6	10001	1 JU 0	- 6 - 0 - 0	26"752	1523121,	0 510	191
17 12.3	0.0	2 ° 0	9.6	5 • 2	56.73	170198.	6,047	0,250
18 125.4 19 21037.1	0,0 21,3	2.7 3090.0	0.0 6219.0	105.7	125,83 21296,20	1112351 . 1455169.	0,418 81,012	2,199 0,600
								-

•

11

сологор 202 Сантика пра 10 КССО) — а настоятското постания пра 10 КССО).

1.60 2 1475

YEAR = 1975	
NODE = 11	
LEVEL = L	
-	
NUMBER OF ZONES INCLUDED	32
HUMBER OF ZONES SKIPPED	0
	•
TOTAL POPULATION	12693752
POTENTTAL POPULATION	4650694
PRESENT DENSITY	0 223
POTENTIAL DENATTY	0.082
POTENTIAL /TOTAL POPULATION	0.000
OTENTAL/INTAL FORDERITOR	0.000
TOTAL AREA	56091
	54315
TOTAL TERICATED LAND	12
TOTAL FALGETE BEDDUCTTON	7978200
TOTAL REOTETH PRODUCTION	2120207
	01153
CACOUTE/PROTEIN MAILS	40.
TERTENTED CALORIE PRODUCTION	601860
TRRIGATED PROFETN PRODUCTION	0118
RAINEED FROIPIN FRONSELLIN	5110 a
PATHEED PROTENT PRODUCTION	57007
LIVESTOCK CHOOSE PRODUCTION	354748
IVESTOCK ENOTETH REGOUCTION	17530
NEWARGE AND CAL PRODUCTION	1/3000
NE-EARCE LAND DET BRODUCTION	42300
NOT AND LAND PRI PRODUCTION	2101.
SURFLUS PRUTEIN	12005.
TOTAL ALLOCATOR LAND	77460
TOTAL COOR AND	3/408.
TOTAL CHUP LAND	7646.
TOTAL REPERTANCE LAND	24654.
TOTAL CIPELITYE LAND	28584.
TUTAL FALLOW LAND	2229,
IUTAL NS+RANGE LAND	2158,

Table B10 ASSESSMENT OF CROP PRODUCTION AND POPULATION SUPPORTING CAPACITY

- Maximize calories with Protein Constraint
- Low input with Conservation

CROP	ST	AŢ	1 S	T :	10	:
------	----	----	-----	-----	----	---

NR	TOTAL	۷н	н	н	L	PRODUCTION	CALORIES	X EFF.LAND	X CROPLAND
1	1.0	0.0	0.0	0.0	1.0	0.16	486.	0.003	0.040
2	269.3	0.0	0.0	0.0	269.3	43.08	133132	0 942	16.927
3	316.9	1.9	29.5	82.1	199.4	141.86	463885.	1.085	12.616
5	16.3	0.0	ี ข.้อ	0.0	16.3	1.54	5264.	0.057	0.659
7	342.3	2.4	4 4	16.4	318.8	103.63	314632.	1.197	13.888
8	9.1	e.e	0.0	0.0	9.1	3.44	10730	0.032	0.369
9	614.2	£ . ()	25.1	218.5	370.7	119,10	429236	2.149	24.924
10	165.0	35.3	54.3	57.3	22.1	120,83	316569	0.591	6.858
11	285.9	28,8	76.4	133.3	47.3	236.21	550601	1.000	11.599
14	112.7	0.0	0.2	P.2	112.4	22.51	81111.	0.394	4,575
15	23.5	1.2	8.1	7.6	6.6	6.54	39849.	0.082	0.952
17	4.6	0.6	1.7	0.0	3.0	3.56	10681.	0.016	0.187
18	305.7	0.0	2.7	0.0	303.1	55.85	493698.	1.070	12.406
19	26119.2	26.1	1675.8	4663.0	19754.3	5191,69	354748	91,378	0.000

YEAR = 1975 HUDE = 11 LEVEL = I NUMBER OF ZONES INCLUDED 32 NUMBER OF ZONES SKIPPED а TOTAL POPULATION 12693752. POTENTIAL POPULATION 14991871. PRESENT DENSITY 0.223 POTENTIAL DENSITY 0.263 POTENTIAL/TOTAL POPULATION 1.181 TOTAL AREA 56991. TOTAL AGRICULTURAL LAND 56315. TOTAL IRRIGATED LAND 43. 12695118. TOTAL CALORIE PRODUCTION TOTAL PROTEIN PRODUCTION 272346. CALORIE/PROTEIN RATIO 47. IRRIGATED CALORIE PRODUCTION 691800. IFRIGATED PROTEIN PRODUCTION 9118. RAINFED CALORYE PRODUCTION 11106133. RAINFED PROTEIN PRODUCTION 218969. LIVESTOCK CALOPIE PRODUCTION 794429. LIVESTOCK PROTEIN PRODUCTION 39189. NS-RANGE LAND CAL. PRODUCTION 102758. NS-RANGE LAND PRT PRODUCTION 5969 SURPLUS PROTEIN 63031. TOTAL ALLOCATED LAND 37463. TUTAL CROP LAND 7694. TOTAL RANGE LAND 29769. TOTAL EFFECTIVE LAND 28938 TOTAL FALLOW LAND 1603. TOTAL NS-RANGE LAND 2414

NO ----

CROP STATISTIC :

NR	TOTAL	٧н	н	м	L	PRODUCTION	CALORIES	% EFF,LAND	% CROPLAND
1	10.7	1.4	3.8	10.5	3,1	20.73	63430.	0.265	0,673
3	666.0	29.8	72,7	138.8	426.7	724,67	2369654	2.308	24.007
4	2.8	Ð. 11	0.0	0.0	2.8	1.02	3424	e 010	0,101
7	662.4	9.2	40.8	45.9	566.5	777.03	2354070.	2,289	23.824
8	4.1	0.0	0.0	0.0	4.1	3,97	12365	8.014	0,148
9	294.8	0.0	23.3	105.2	166.3	203,29	732665	1.019	10,594
10	279.4	67.5	119.5	61.5	30.9	516.70	1353742	0.966	10.242
11	338.2	50.3	133.6	108.1	46.2	867.31	2021703.	1,169	12,156
14	135.7	0.0	6 4	6.6	126.7	72.46	261145	0.469	4.877
15	75.1	7.2	35.0	11.7	21.3	94.77	566234	0.260	2.701
17	7.1	£.0	1,9	0.0	5.2	12.42	37259	0.025	0.250
18	296.1	0.0	2.7	0.0	293.4	149.94	1325439	1 023	10.642
19	26155.9	84.7	2573,9	5878.3	17619,0	11626,35	794429.	90,385	0,000

ASSESSMENT OF CROP PRODUCTION AND Table Bll POPULATION CUPPORTING CAPACITY

.

- Maximize caloriés with Protein Constraint

Intermediate input without Conservation

ASSESSMENT OF CROP PRODUCTION AND POPULATION SUPPORTING CAPACITY	Maximize calories with Protein Constraint	High Input without Conservation		•			X EFF,LAND X CROPLAND	6,059 0,412 6,601 0,610 6,972 48,564	0,659 0,274 2,209 15,565	0,723 5,485 0,723 5,037	0,895 6,234 1,263 8,501			8,394 2,742 85,643 0,000
TABLE B12	,	-					ČALORIES	186354 . 2199. 9823388.	20587. 3716598.	3351709 . 829317 .	1849987 . 2715898	230467	1 + 00 - 00 - 00 - 00 - 00 - 00 - 00 - 0	1075193. 1511230.
							PRODUCTION	34.76 0.71 2759.44	6,04 1224.18	1075.30	706.10	55,62	86.75	121,63 22116,63
							ر	0,0 0,0 1318,8	535.8	25.1	16.6 68.5	58.0	21,99	101.8 14014.0
							I	8.6 0.13 328.7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	77.5 69.8	42.2	1 40 - 2 40 - 1 4	1.2	0.0 5357,3
	5 0 0	12693752. 31487485 2.223 2.223 0.552 2.481	56991. 56315. 43. 26463605. 571474.	691808. 91186 91280. 4785170. 15112370. 1883360. 1883360. 125548.	32997 7238 25759 25558 880 1992		T	4 . 1 D . 1 1 3 8 . 8	6°2°	80.4 17.9	104.0	101	2. N	3328.9
	NCLUDED KIPPED	ION OPULATION	L LAND AND Duction Atio	PRODUCTION RODUCTION RODUCTION PRODUCTION PRODUCTION PRODUCTION PRODUCTION	AND AND ND		H>	6.9 9.9 9.9	00.00 00	26.0 2.0 2.0	70.9	10- 10-	- 0	37.7
= 1975 = 1 = L	R OF ZONES I R OF ZGNES S	PDPULATION TIAL POPULAT HT DENSITY TIAL DENSITY TIAL/TOTAL P	AFEA AGRICULTURA Irrigaten L Calorie Pro Protein Pro Ie/Protein R	ATED CALDRIE ATED PROTEIN ED CALORIE P ED PROTEIN P TOCK CALORIE TOCK CALORIE TOCK LAND CAL NGC LAND PRI NGC LAND PRI US PROTEIN US PROTEIN	ALLOCATED L CROP LAND RANGE LAND Farctive L Falloy Land S-Range La	STATISTIC 1	TOT AI.	15.7 0.4 1851.1	10.4 586.4	1.92.1	237.6	1.59	29.3	104_5 22737.9
YEAR Mode Level	NUMBE	101AL P016N P016N P016N P016N	1014L 1014L 1014L 1014L 1014L 1014L	2002 C 20	1014L 1014L 1014L 1014L 1014L 1014L	CROP	8	- 11 11	v. •-	ю с -	91	• 🕁 🛛	12	18

REFERENCES

- Arnoldus, H.M. 1980. Degradation Hazard Evaluation, Working Sheet No. 9, Report on the Second FAO/UNFPA Expert Consultation on Land Resources for Population of the Future, Rome.
- Blair Rains, A., and A.H. Kassam. 1980. Land Resources and Animal Production, Report on the Second FAO/UNFPA Expert Consultation on Land Resources for Population of the Future, Rome.
- FAO/UNESCO 1971-79. Soil Map of the World. Vol. 1-10, UNESCO Paris.
- FAO 1976. A Framework for Land Evaluation. Soils Bulletin No. 32 AGLS, Rome.
- FAC 1979. Report on the Agro-ecological Zone Project, Vol. 1, Methodology and Results for Africa, World Soil Resources Report, No. 48, AGLS, Rome.
- FAO 1979. Report on the Second FAO/UNFPA Expert Consultation on Land Resources for Population of the Future, Rome.
- FAO/UNEP/UNESCO 1979. A Provisional Methodology for Soil Degradation Assessment, Rome
- FAO 1979. Agricultural: Toward 2000, Rome.
- Kassam, A.M., J. Kowàl and S. Sarraf. 1977. Climatic Adaptability of Crops. Consultants Report, Agro-ecological Zone Project, AGLS, FAO Rome.

- Kassam, A.M. 1979. Agro-climatic Suitability and Yields of Rainfed Crops of Winter Barley, Upland Rice, Groundnut, Sugarcane, Banana/Plantain and Oil palm. Consultant's Working Paper No. 4, FAO/UNFPA Project INT 75/P13, FAO, Rome.
- Kassam, A.M. 1979. Multiple Cropping and Rainfed Crop Productivity in Africa. Consultant's Working Paper No. 5, FAO/UNFPA Project INT 75/P13 AGLS, FAC, Rome.
- Kenya Government. African Socialism and its Application to Planning in Kenya. 1965. Government of Kenya Sessional Paper No. 10 Nairobi.
- Kenya Government. Economic Survey 1979. Central Bureau of Statistics, Nairobi.
- Kenya Government. Development Plan 1979-83, Nairobi.
- Kenya Government. Integrated Rural Survey 1974-75. Central Bureau of Statistics, Nairobi.
- Pratt, D.J., and M.D. Gwynne. 1965. Rangeland Management and Ecology in East Africa. Hodder and Stoughton, London.
- Shah, M.M., and G. Fischer. 1980. Assessment of Population Supporting Capacities - Overall Computer Programms. Report of the Second FAO/UNFPA Expert Consultation on Land Resources for Populations of the Future. Rome.
- Woods, S. 1980 The Allocation of Irrigated Areas and Production by Agro-ecological Zones. Report on the Second FAO/UNFPA Expert Consultation on Land Resources for Populations of the Future, Rome.
- Young, A., and A.C. Wright. 1980. Rest Period Requirements of Tropical and Subtropical soils under annual crops. Report on the Second FAO/UNFPA Expert Consultation on Land Resources for populations of the Future.