

Scenarios for sustainable biofuel development

Sylvia Tramberend

Water Security Group, Biodiversity and Natural Resources Program

Webinar: Bioenergy for Sustainable Development

Sustainable Water & Energy Solutions Network

Virtual, 8 June 2021

Outline

 Understanding potentials for sustainable aviation biofuels

• Roundtable on Sustainable Biomaterials (RSB)

- Land use balance \rightarrow How much land ?
- Biofuel feedstock potentials → *Quality of land ?*
- Scenarios → What future (2050s) potential ?

Sustainable aviation biofuel potentials

- → Apply criteria of the Roundtable on Sustainable Biomaterials (RSB) to identify the regional biofuel feedstock production potential
- \rightarrow Biofuel feedstock assessment
- → Scenarios to estimate potential up to 2050

http://pure.iiasa.ac.at/id/eprint/15708/

http://pure.iiasa.ac.at/id/eprint/15626/

THE 12 RSB PRINCIPLES

- Legal
- Social
- Environment
- Management

Principle 4: Human and Labour Rights

Operations do not violate human rights or labour rights, and promote decent work and the well-being of workers.

Principle 5: Rural and Social Development

In regions of poverty, operations contribute to the social and economic development of local, rural and indigenous people and communities.

Principle 6: Local Food Security

Operations ensure the human right to adequate food and improve food security in food insecure regions.

Principle 7: Conservation

Operations avoid negative impacts on biodiversity, ecosystems, and conservation values.

Operations Implement practices

degradation and/or maintain soli

that seek to reverse soll

Principle 8:

Soil

health.

Principle 9: Water

Operations maintain or enhance the quality and quantity of surface and groundwater resources, and respect prior formal or customary water rights.

Principle 1: Legality

Operations follow all applicable laws and regulations.

Principle 2: Planning, Monitoring & Continuous Improvement:

Sustainable operations are planned, implemented, and continuously improved through an open, transparent, and consultative impact assessment and management process and an economic viability analysis.

Principle 3: Greenhouse Gas Emissions

Biofuels contribute to climate change mitigation by significantly reducing life-cycle GHG emissions as compared to fossil fuels.

Principle 10: Air Quality

Air pollution shall be minimised along the whole supply chain.

Principle 11: Use of Technology, Inputs, and Management of Waste

The use of technologies shall seek to maximise production efficiency and social and environmental performance, and minimise the risk of damages to the environment and people.

Principle 12: Land Rights

Operations shall respect land rights and land use rights.

Local Food Security

Operations ensure the human right to adequate food and improve food security in food insecure regions.

Principle 6: Local Food Security

→ Exclude cropland for food production
→ Set aside land for livestock feed

Land cover data, cropland

Distribution and intensity of cropland in GLC-Share (% of 30 arc-second grid cell)

Source: FAO/IIASA GAEZ v4, based on Latham et al., 2014

Land requirements for ruminant livestock

Estimated share of grassland/shrubland set aside for livestock grazing, 2010

Conservation

Operations avoid negative impacts on biodiversity, ecosystems, and conservation values.

Principle 7: Conservation

EXCLUDE

- \rightarrow All forest land
- → Areas of importance for the environment and biodiversity (WDPA, GLWD, KBA,....)
- \rightarrow Buffer around protected areas

Land set-aside for environment and biodiversity

۹. . ۵۰

Source: Fischer et al., 2019

Land related RSB criteria

- Respect food security
- No deforestation
- Safeguard environment & biodiversity

Intensity and spatial distribution of REMAIN land

Pagion	Total land	REMAIN la	EMAIN land in 2010		
Region	1000 km ²	1000 km ²	%		
Eastern Africa	3,562	1,042	29		
Central Africa	5,329	1,152	22		
Southern Africa	4,737	1,431	30		
Sudano-Sahelian Africa	8,541	1,493	17		
Gulf of Guinea	2,097	386	18		
Total Sub-Saharan Africa	24,266	5,504	23		

Source: Fischer et al., 2019

Land related RSB criteria

Land balance and exclusions for Sub-Saharan Africa, 2010

	1000 km ²	Land use	% of	Excluded	Reason for	REMAIN
		category	total		exclusion	land ¹
1	Cropland	2,353	10 %	2,353	Food security	0
2	Forest	6,901	28 %	6,901	Environment ²	0
3	Built-up land	270	1 %	270	Not for farming	0
4	Water	281	1 %	281	Not for farming	0
5	Shrub land	4,538	19 %	1,270	Environment (Env)	
				454	Livestock (Lvst) ³	
				1,724	Env & Lvst	2,813
6	Grassland	4,856	20 %	1,608	Environment (Env)	
				558	Livestock (Lvst) ³	
				2,166	Env & Lvst	2,691
7	Sparsely veg. &				Not considered for	0
	bare	5,068	21%	5,068	commercial farming	
	TOTAL	24,266	100%	18,759		5,504

Biofuel feedstock assessment

Global Agro-Ecological Zones

Global Agro-Ecological Zoning version 4 (GAEZ v4)

http://www.gaez.iiasa.ac.at

10.4060/cb4744en

Biofuel Feedstocks	Bio-material	
Solaris tobacco	Vegetable oil	
Jatropha	Vegetable oil	
Oil palm	Vegetable oil	
Soybean	Vegetable oil	
Camelina	Vegetable oil	
Macauba	Vegetable oil	
Ethiopian rape	Vegetable oil	
Sugar cane	Sugar	
Sweet Sorghum	Sugar/Starch	
Maize	Starch	
Cassava	Starch	
Triticale	Starch	
Miscanthus	Lignocellulosic	
Energy cane	Lignocellulosic	
Hardy artichoke	Lignocellulosic	
Agric. crop residues	Lignocellulosic	

Soil

Operations implement practices that seek to reverse soil degradation and/or maintain soil health.

Principle 8: Soil

 \rightarrow Exclude areas of high soil organic matter content

→ to maintain soil fertility, assume only 50% of crop residues used for biofuel feedstock Agro-ecological suitability of rain-fed biofuel feedstock production on REMAIN land

Sweet sorghum

Cassava

Source: Fischer et al., 2019

Land suitability and farm economics

Acronym	Suitability description	Farm economics
VS	Very suitable land (80-100 % of maximum achievable yield in Sub- Saharan Africa)	Prime land offering best conditions for economic feedstock production
S	Suitable land (60—80%)	Good land for economic feedstock production
MS	Moderately suitable land (40-60%)	Moderate land with substantial climate and/or soil/terrain constraints requiring high product prices for profitability
mS	Marginally suitable land (20-40%)	Commercial production not viable. Land could be used for subsistence production when no other land is available
VmS	Very marginally suitable (< 20%)	Economic production not feasible
NS	Not suitable	Production not possible

GHG emissions

Biofuels contribute to climate change mitigation by significantly reducing lifecycle GHG emissions as compared to fossil fuels.

Principle 3: Greenhouse Gas Emissions

- ightarrow 60 % minimum saving vis-à-vis fossil fuels
- \rightarrow Fossil fuel comparator of 94 g CO_{2equ}/MJ

- Life cycle emissions of biofuel pathway assumed g CO2 eq / MJ for each biofuel feedstock
- Annualized emissions from direct land use change [Soil carbon stock changes, Biomass carbon stocks, Management options, Co-product allocation]

Suitability of REMAIN land for sugar/starch/lignocellulose based biofuel feedstocks

Suitability of REMAIN land for sugar/starch/lignocellulose based biofuel feedstocks

Water

Operations maintain or enhance the quality and quantity of surface and groundwater resources, and respect prior formal or customary water rights.

→ Consider irrigated biofuel feedstock production only in areas where water scarcity does not prevail today or in the future.

Principle 9: Water

Development scenarios consistent with IPCC

	SC1 Sustainability	SC2 Medium
Shared Socio- economic Pathways (SSPs)	SSP1 Sustainability - Taking the Green Road	SSP2 Middle of the Road
Climate Forcing Ensemble Mean	RCP 2.6	RCP 6.0
2050 CO ₂ concentrations*	443 ppm	493 ppm

* CO₂ concentration in Reference Period 1982-2010 is 360 ppm

Scenario Land use changes

Land use changes in the development scenarios, 2010 to 2050

Biofuel potential of REMAIN land ins SSA compliant with GHG criteria, contribution by crop

Climate	Reference (1981-2010)		Ensemble RCP2.6 (2041-2070)		Ensemble RCP6.0 (2041-2070)			
CO2 conc.		360ppm		443p	443ppm		493ppm	
Land use	2010	SC1-2050	SC2-2050	SC1-2050	SC1-2050	SC2-2050	SC2-2050	
CO2 fertilization		reference		with	without	with	without	
Prime and good la	nd VS+S (<i>P</i>	etajoules)						
Maize	0	0	0	0	0	0	0	
Sorghum	0	0	0	18	14	38	25	
Triticale	0	0	0	0	0	0	0	
Cassava	0	0	0	0	0	0	0	
Sugarcane	907	692	647	222	208	150	133	
Miscanthus	3,645	2,773	2,444	1,890	1,515	1,963	1,392	
Oil palm	1,294	1,081	1,030	801	649	920	659	
Jatropha	17	961	909	1,001	852	906	785	
Soybean	0	0	0	0	0	0	0	
Camelina	0	0	0	0	0	0	0	
Solaris	1	1	1	30	14	28	11	
TOTAL VS+S	7,064	5,508	5,030	3,962	3,252	4,003	3,004	

TOTAL	15,510	12,860	11,962	11,171	10,528	11,159	10,154
V2+2+IN2							

Biofuel potential of REMAIN land compliant with GHG criteria of the RSB

- For sub-Saharan Africa, we estimate a current biofuel potential of 7 PJ down to 3-4 PJ by the 2050s produced on prime and good land.
- If demand is strong and crop prices are high, farmer may also cultivate on moderately suitable land, which more than doubles the potential to 15 PJ (current) and 10-11 PJ (2050s)
- Main RSB compliant crops include miscanthus, sugar cane, oil palm and jatropha.
- By the 2050s land use changes required for food (and expanding urban areas) are the main reason for reduction of potentials.
- Further reductions are due to climate change, partly compensated by CO₂ fertilization effect. In smaller areas, some crops (solaris, sorghum) may benefit from climate change.

Sustainability of land-based biofuels depends on

- Land availability, e.g. estimation on REMAIN land
- GHG reduction potential vis-à-vis fossil fuels determines viable crops
- Economics of production, i.e. strong demand and higher achievable prices make moderately suitable areas interesting for biofuel feedstock production

Thank you!

Sylvia Tramberend

sylvia.tramberend@iiasa.ac.at